电子探针(EPMA1600) 实用技术讲座

2009年03月26日

分析测试中心 雷淑梅 smlei@scut.edu.cn

提纲

- 1. 前言
- 2. 电子探针的发展过程简介
- 3. 电子探针工作原理简述
- 4. WDS和EDS的区别
- 5. 电子探针功能特点及应用
- 6. 样品制备
- 7. 结束语

1、前言

电子探针是电子探针X 射线显微分析仪的简称,英文缩写为EPMA (Electron Probe X-ray Micro-Analyser), 它用一束聚焦得很细(50nm~ $1 \mu m$)的加速到5kV-30kV的电子束,轰击用光学显微镜选定的待分 析试样上某个"点"(一般直径为1-50um),利用试样受到轰击时发射 的X射线的波长及强度,来确定分析区域中的化学组成。随着电子光 学技术和计算机技术的发展,现在的EPMA同时具有扫描电镜SEM的 形貌观察、结构分析等功能。不但像仪器发明之初那样,以金属和矿 物样品中不同相或不同组成的成分分析为主要目的,而且也应用在冶 金、电子电器件、陶瓷、塑料、纤维、木材、牙齿、骨骼、叶、根等 等方面。其应用领域之广泛,可说目前已经涉及到所有固体物质的研 究工作中,尤其在材料研究工作方面。这种仪器不仅是研究工作中的 重要工具,而且也是质量检查的手段之一。

2.电子探针的发展过程简介 (--)

- □ 1913年的两个物理基础: 莫塞莱定律和布拉格定律。
- □ 莫塞莱定律: v =C(Z- σ)², 特征X射线频率与发射X射线的 原子的原子序数平方之间存在线性关系。
- 著名的布拉格定律: 2dsin θ =n λ,式中,d为晶体的晶面间
 距,单位为Å,θ为X射线的入射角,λ为X射线的波长,
 单位为Å,n是正整数。测出X射线的掠射角θ,即可计算
 出X射线的波长,进而确定出产生波长特征X射线的元素。

2.电子探针的发展过程简介(=)

- 30年代以来的实验技术基础:逐步完善起来的电子光学技术以及Johann和Johansson设计和制造的约翰型(半聚集法)和约翰逊型弯晶(全聚焦法)X射线谱仪。
- 1949年法国卡式坦Castaing与纪尼叶Guinier将一架静电型电子显微镜改造成为电子探针仪。
- 1951年的Castaing的博士论文奠定了电子探针分析技术的仪器、原理、实验和定量计算的基础,其中较完整地介绍了原子序数、吸收、荧光修正测量结果的方法,被人们誉为EPMA显微分析这一学科的经典著作。

2.电子探针的发展过程简介 (三)

- 1956年, Cosslett和Duncumb在英国剑桥大学卡文迪许实验 室设计和制造了第一台扫描电子探针。法国CAMECA公司 于1958年提供第一台电子探针商品仪器, 取名为MS-85。
- 50-60年代电子探针技术得到蓬勃发展,70年代中期比较成 熟,近30年来,随着科学技术的发展,电子探针显微分析 技术进入了一个新的阶段,电子探针向高自动化、高灵敏 度、高精确度、高稳定性发展。现在的电子探针为波谱 WDS和能谱EDS组合仪,用一台计算机同时控制WDS和 EDS,结构简单、操作方便。现在世界上生产电子探针的 厂家主要有三家,即日本岛津公司SHIMADZU、日本电子 公司JEOL和法国的CAMECA公司。

2. 电子探针的发展过程简介(四)

- EPMA同时配有波长色散谱仪WDS (Wavelength Dispersive Spectroscopy)和能量色散谱仪EDS (Energy Dispersive Spectroscopy),在微区成分分析上具有无与伦比的优越性,并具有 SEM (Scanning Electron Microscope)的图像观察、分析功 能。
- 从1949年发明电子探针,1958年生产第一台商品化的电子探针的五十余年,EPMA得到了广泛的应用。日本近2000台,美国1000台以上,其他发达国家中至少有几百台,由于价格较贵,国内各种型号的电子探针共有几十台,分布在各个领域,发挥着重要的作用。

3. 电子探针工作原理简述 (一)

二次电子SE——能量低小于50eV ,样品表面5nm-10nm 的深度 内才能逸出表面,用于表面微观形貌观察。

背散射电子BSE——背散射电子是指入射电子弹性和非弹性散射 后,再次逸出样品表面的高能电子。背射电子的产额随样品的 原子序数增大而增加,所以背散射电子信号的强度与样品的化 学组成和凹凸信息有关。用背散射电子像可以观察元素分布或 相分布,并可确定元素定性、定量分析点。

特征X射线——高能电子入射到样品时,样品中元素的原子内壳 层(如K、L 壳层)处于激发态,原子较外层电子将迅速跃迁到 有空位的内壳层,以填补空位降低原子系统的总能量,并以特 征X 射线释放出多余的能量。特征X射线由于WDS或EDS的定性和 定量分析。

阴极发光——指晶体物质在高能电子的照射下,主要是价电子 跃迁,发射出可见光、红外等长波光现像,波长与基体物质有 关,还与杂质原子有关。例如半导体和一些氧化物、矿物等, 用EPMA的同轴光学显微镜可以直接观察可见光,还可以用分光 光度计进行分光和检测其强度来进行元素分析。乃是了解物质 结合状态与结晶状态,是否含有杂质元素等最有效的手段。

一束细聚焦的电子束轰击样品表面时,入射电子与样品的原子核和核外电子将产生弹性 或非弹性散射作用,并激发出反映样品形貌、结构和组成的各种有用的信号,如二次电 子、背散射电子、吸收电子、阴极发光和特征X 射线等,电子探针探测这些信息进行形貌 结构观察和成分的定性和定量分析。

作用范围的大小)

扩散区域示意图

当原子序数小时:

(a)加速电压低时的情况; (b)加速电压高时的情况;

当原子序数大时:

(c)加速电压低时的情况; (d)加速电压高时的情况。

电子束扩散区域的范围大小,由电子束直径,加速电压、原子序数 和样品本身密度的性质所决定。

3. 电子探针工作原理简述 (三)

重原子序数最可能发生的电子跃迁和由此产生的X射线特征谱的主要谱线和峰

3. 电子探针工作原理简述 (四)

- 元素H和He没有X射线峰。通常每个元素约有2~10个强峰,相对 其他光谱分析,谱峰数少。
- Z<32的较轻元素,只出现一个K_α双峰和一个较高能量的K_β
 峰;用K线系计算;
- 32 ≤ Z ≤ 72的较重元素,增加了几个L峰,他们大多数有一个 α 双峰,其后跟随具有更高能量的 β、 γ 群,用L线系计算;
 Z>72的重元素,没有K峰,除L峰外还出现M峰,通常用M线系

计算。

3. 电子探针工作原理简述 (五)

- 对K峰, K_α:K_β约为100:15
- **对**L峰,L₁:L_a:L₁:L_β:L_{γ1}:L_{γ3}约为3:100:1:70:10:3
- **一**对M峰, $M_{\alpha}:M_{\beta}:M_{\gamma}$ 约为100:50:4
- EPMA定性、定量分析,就是利用电子束轰击样品所产生的特征X射线,作为其中所含元素的可靠依据。
- WDS利用分光晶体色散特征X射线波长来确定不同元素,EDS
 利用特征X射线的能量位置来确定元素类别。

4.WDS和EDS的区别

4.1 波谱仪 (WDS) 和能谱仪 (EDS) 的基本检测方式

4.2 能量分散谱仪EDS工作原理

被激发的X光子进入Si(Li)固态探测器;

参 检测器输出脉冲信号→信号放大→反馈入 多道脉冲分析器;输出脉冲高度取决于入 射光子能量;

根据样品分析点所发射的X射线谱线的能量 组成,进行元素的定性或定量分析;

能谱仪结构示意图

4.3 分光晶体

- X射线与晶体的取向关系满足布拉格条件:
 2dsinθ=nλ,就产生衍射,在衍射方向用探测器将 其接收。取n=1的衍射线,即d≥λ/2,选择分光晶体 的晶面间距d必须大于所测X射线波长的一半。
- 不同元素的特征X射线的波长不同:轻元素的特征X射线的波长长;重元素波长短。不同元素选用不同的分光晶体。

 在长波波段中难找合适的分光晶体。要在易于探测的角度 范围内使X光产生衍射,分光衍射晶体的晶格间距要和所 衍射的X光波长大致相当。轻元素产生的X光波长,大致在 130-20Å范围内,可是迄今尚未发现晶面间距为几十埃, 且能用来做分光晶体的天然或人工晶体,只能用堆叠百十 层皂化薄膜的办法,权充伪晶体使用。

高效率的分光晶体

常用分光晶体的基本参数及可检测范围

晶体	化学分子式 (和缩写)	反射晶面	晶面间距 d (A)	可检测波长 范围(A)	可检测元素范 围
氟化锂	LiF (LiF)	200	2.013	0.89~3.5	K:20Ca-37Rb L:51Sb-92U
异成四醇	C5H12O4 (PET)	002	4.375	2.0~7.7	K:14Si-26Fe L:37Rb-65Tb M:72Hf-92U
邻苯二酸 铷(或钾)	CঃH₅O₄Rb (RAP) [或KAP]	1010	13.06 (13.32)	5.8~23.0	K:9F-15P L:24Cr-40Zr M:57La-79Au
肉豆蔻酸铅	(C14H27O2)2M* (MYR)		40	17.6~70	K:5B-9F L:20Ca-25Mn
硬脂酸铅	(C18H35O2)2M* (STE)		50	22~88	K:5B-8O L:20Ca-23V
廿四烷酸铅	(C24H47O2)2M* (LIG)		65	29~114	K:4Be-7N L:20Ca-21Sc

4.4 WDS工作原理

- 根据元素检测范围选择分光晶体;
- 利用分光晶体对X射线的布拉格衍射,确定
 某波长 λ 对应的 θ;
- 连续改变θ,在2θ方向上接受各种单一波
 长的X射线讯号——正比计数器检测强度;
- 对应一系列分光晶体,展示适当波长范围
 内的全部X射线谱。

WDS原理图

特征X射线的波长和能量表

元素 K a 1		Κ β 2			
Ζ	符号	λ (Å)	E (Kev)	λ (Å)	E (Kev)
4	Be	<u>114.00</u>	<u>0.109</u>		
5	В	<u>67.6</u>	<u>0.183</u>		
6	С	<u>44.7</u>	<u>0.277</u>		
7	Ν	<u>31.6</u>	<u>0.392</u>		
8	0	23.62	<u>0.525</u>		
9	F	<u>18.32</u>	<u>0.677</u>		
10	Ne	<u>14.61</u>	<u>0.849</u>	<u>14.45</u>	<u>0.858</u>
11	Na	11.91	1.041	11.58	1.071
12	Mg	9.89	1.254	9.52	1.302
13	ΑΙ	8.339	1.487	7.96	1.557
14	Si	7.125	1.740	6.75	1.836
15	Ρ	6.157	2.014	5.796	2.139
16	S	5.372	2.308	5.032	2.464
17	CI	4.728	2.622	4.403	2.816
18	Ar	4.192	2.958	3.886	3.191
19	К	3.741	3.314	3.454	3.590
20	Са	3.358	3.692	3.090	4.103
21	Sc	3.031	4.091	2.780	4.461

元素		K	α 1	L α 1	
Z	符号	λ (Å)	E (Kev)	λ (Å)	E (Kev)
22	Ti	2.749	4.511	27.42	0.452
23	V	2.504	4.952	24.25	0.511
24	Cr	2.290	5.415	21.64	0.573
25	Mn	2.102	5.899	19.45	0.637
26	Fe	<u>1.936</u>	<u>6.404</u>	<u>17.59</u>	<u>0.705</u>
27	Со	<u>1.789</u>	<u> 6.930</u>	<u>15.97</u>	<u>0.776</u>
28	Ni	<u>1.658</u>	<u> </u>	<u>14.56</u>	<u>0.852</u>
29	Cu	<u>1.541</u>	8.048	<u>13.34</u>	<u>0.930</u>
30	Zn	<u>1.435</u>	8.639	<u>12.25</u>	<u>1.012</u>
31	Ga	<u>1.340</u>	9.252	<u>11.29</u>	<u>1.098</u>
32	Ge	1.254	9.886	10.44	1.188
33	As	1.177	10.53	9.671	1.282
34	Se	1.106	11.21	8.99	1.379
35	Br	1.041	11.91	8.375	1.480
36	Kr			7.817	1.586
37	Rb			7.318	1.694
38	Sr			6.863	1.807
39	Υ			6.449	1.923

EDS分析常见元素的K α 与某些元素的L α 或M α 的重叠峰(单位: Kev)

- **ΝΚ** α **Ο. 39**—**Τ** i L α **Ο. 45**
- **ΟΚ α 0. 52—VL α 0. 51**
- **FK** α **0. 63**—**Fe** L α **0. 70**
- Na K α 1. 04—Zn L α 1. 01
- **MgK** α **1.25**—**As** L α **1.28**
- **AIK** α **1. 49**—**B**r L α **1. 48**
- **SiKα1.74**—**Ta** Lα1.71; WMα1.78
- **SK** α 2. 31—Mo L α 2. 29; PbM α 2. 35
- **KK** α 3. 31—In L α 3. 29
- **CaK** α 3. 69——Sb L α 3. 61

WDS和EDS的区别

	WDS	EDS
探测效率	需要大束流,探测效率低。 常用B.C电流20nA以上 (EPMA1600)	不受聚焦圆的限制,探测器可以靠近试样放置, 可用小束流获得较多的X射线,探测效率高。常 用B.C电流7nA左右 (EPMA1600)
峰值分辨率	好,在MnKα处6eV,谱线能分离,峰背比 高。	不好,在MnKα处130eV,谱线有重叠现象,峰背 比低。
探测轻元素	最低到铍Be(Z=4)	最低可到铍Be(Z=4)
探测灵敏度	对块状试样,由于峰背比高,最好情况下最小 探测限度可达0.005wt.%,对膜层试样,由于 检出效率低,灵敏度较低。	对块状试样,由于峰背比低,最好情况下最小探 测限度可达0.01wt.%;对膜层试样,由于检出效 率高,绝对灵敏度约为10 ^{-18g}
谱线显示	可同时使用4道波谱仪,显示所有谱线,定性 分析时间长,1-20分钟时间才完成。	同时显示所有谱线,定性分析速度快,几十秒时 间可完成。
分析范围	分析范围小(最大可100um²),不宜作大面 积内的平均成分分析。	分析范围大(最大可至5mm²左右)
定量分析	精度高,能作"痕量"元素、轻元素及有重叠峰 存在时的分析。	对中等浓度的元素可得到良好的分析精度。但对 "痕量"元素、轻元素及有重叠峰存在时的分析, 精度不高。
定性分析	擅长作"线分析"和"面分析"图,因成谱速度 慢,对未知成分的点分析不太好。	获得全谱的速度快,作点分析方便。作"线分析" 和"面分析"图不太好。
其他	<mark>有复杂的机械系统。操作麻烦复杂,不易掌</mark> 握,售价贵。	基本无可动部件操作,简单易操作,售价便宜。

6、电子探针EPMA1600功能特点及其应用

- 二次电子表面形貌观察(SEM):主要可用于起伏不大的断口形貌观察,亚微米级颗粒大小测量以及较高倍的显微形貌观察。
- 高分辨的背散射电子像(COMPO):可用于金相学的观察,夹杂物 分析,异质点分析,镀层厚度测量,确定微区成分定性和定量分析的 选点。
- 凹凸像(TOPO):可作为背散射电子像的补充,反映一定的表面形貌。
- 特征X射线像:单个元素特定波长的电子图像,可做镀层的测量和元素分布图。
- 线分析(line analysis):常用于膜层、镀层及复合镀层、晶界等界面 上不同元素的一直线上的分布情况。
- 面分析(mapping analysis):常用于某一区域各个元素的偏聚、偏析 分布情况,
- 状态分析 (state analysis): 可用于氧化物等化合物的价态分析。

5.1 二次电子形貌像(SEM) 左图:氢脆断口; 右上:SEM像;右下:相对应的BSE像

E 📖 70um

5.2 左图:背散射像(COMPO);右图:相对应的凹凸像(TOPO)

5.3 X射线像 (左: 含Cr 层和右: 含N层)

5.4 WDS点分析(定性和标样定量分析)。用于材料晶界、 夹杂、析出相、沉淀物、奇异相等研究。

(含B元素合金)

5.5<mark>线分析:将电子束沿试样表面一直线扫描,根据X射线的强度变化分析各元</mark>素在该直线上的浓度变化,分析时各元素分别测量。或者使试样做直线运动, 或者利用偏转线圈使电子束做直线扫描。可用于镀层、扩散相图等研究。

左图: 做线分析用的BSE像; 右图C、Ca、P、Sr、Ti、BEI的线分析图

线分析

5.6 面分析:用电子束在试样表面某一区域进行面的扫描,将该区域内所含元素及 其分布状况分别用扫描图像显示出来,每一元素有一幅面分布图。可用于材料中杂 质、相的分布和元素偏析等研究。

Ni、Cu、 Mo、C 、 BSE面分布图

面分析举例Rh、La、Al、Zr、Pd、Pt、Ce、BEI面分布图

EPMA不只是元素分析,也可以进行状态分析。 下图显示CuO与Cu₂O的Ok α 谱线的差别。

6、样品要求及制备 (一)

样品范围:样品一般只限于固体样品,包括金属、矿物、陶瓷、生物样品等等,要求这类固体绝对不能放出蒸汽或气体之类的东西。当然,对与金属一起形成化合物或者样品吸附的非游离气体来说,也可以作为分析对象来进行测量。

样品大小:分析样品大小的最大限度,是由仪器尤其由样品室及样品座的大小来决定。从分析操作的角度来讲,表面要求平整为好,圆柱形样品以 \$ 7~8mm、方形样品5mm×10mm 左右作为最大面积为好,厚度最好不要超过≤10mm,2mm厚适宜。

标记: EPMA1600通过记取分析点的坐标值(X,Y)来确定 分析位置范围,可以用维氏显微硬度计的压痕、画线或用适当 的覆盖等来指明分析部位。

6、样品要求及制备 (二)

- WDS分析样品表面要求:一般来讲,样品必须研 磨到完全能够用来作光学显微镜观察那种程度。表面凹 凸对入射电子在样品内的行径及特征X射线的产生有着极 大的影响,使得分析结果的可靠性降低,因而将样品表 面尽可能平整是很必要的。
- 对作过表面处理(电镀、渗碳、表面氧化等)样品的横断面样品边沿部分进行分析时,必须使用包埋材料。不论样品大小,如果不嵌入包埋材料中就进行研磨、抛光时,必然会使表面附近变圆或造成倾斜,致使分析结果不准确。

6、样品要求及制备(三)

- 样品的导电性和喷镀
- 电子探针分析用样品,要求必须接地,因而必须使 用良导体以某种方式把样品和样品座连接起来,利 用双面碳导电胶带或低熔点合金(焊锡等)将样品 固定在样品座中都是常用的方法。
- 当样品本身导电性不好时,如果不经特别处理,就 会使入射电子束在由于样品带电所产生的电场中出 现混乱,或者导致电子束照射点在分析过程中变动 (漂移),以及造成吸收电流的极大变化(放电),从 而使分析无法进行。为了使这些非导体样品也带上 导电性,采用了将金(Au)、铂(Pt)、碳(C)或轻金 属(AI)在真空中喷镀在样品表面的办法。

6、样品要求及制备(四)

- 粉末样品及薄膜样品的制备
- 通常采用的方法有:1)将粉末样品粘在导电 胶上;2)将样品混入导电的包埋树脂等材料 中,然后使其硬化而将样品固定等方法。
- 对于粉末样品,如果样品量足够多,每个颗粒又都一样,而且只想了解其成分的时候, 便可用压制成型及烧结等办法把粉末样品压在一起,然后和块状样品一样地进行处理。

6、样品要求及制备(五)

■ 强磁性样品

在对强磁性样品进行分析时,由于电子束 会受到磁场的影响,所以使分析位置保持 不变是困难的。如果可能,要去磁方能上 机分析。

7、结束语

- 电子探针EPMA1600集波谱WDS和能谱EDS分析于一体,在微区分析尤其是微区成分分析中具有无与伦比的优越性。
- 该仪器已开展的校内服务工作主要有:1)背散射像等形貌 观察;2)能谱EDS的快速无标样定量分析;3)波谱WDS的 点、线、面分析;4)B、C、N等轻元素的波谱定量分析等; 5)扩散层扩散系数的测定。
- 基于测试分析人员的专业素质,该仪器已开展的校外服务 工作主要有:1)金相分析、合金析出相和夹杂物的成分鉴 定等;2)零部件等失效分析;3)未知物或复杂体系的解 剖;4)金属材料等成分分析。
- 实践出真知,发挥EPMA巨大的分析功能,EPMA创造的学术 价值、社会价值、经济价值会越来越受到关注!

