MEMS 真空熔焊封装工艺研究

关荣锋

(苏州科技学院电子与信息工程学院 苏州 215011)

Packaging Technology of Micro-Electro-Mechanical System by Vacuum Welding

Guan Rongfeng

(Department of Electronics and Information Engineering, Suzhou University of Science and Technology, Suzhou 215011, China)

Abstract Packaging technology of micro-electro-mechanical system (MEMS) devices by vacuum welding was experimentally studied ,under different conditions ,including Au or Ni surface-plated metal houses ,bases and lids. The results show that vacuum welding works well in MEMS packaging , and that the surface modification of the metallic houses , the bases and the lids by plating gold and/or nickel significantly improves the air tightness and reliability of the packaged devices ,such as the accelerators ,resonators and gyroscope. For example ,after a nickel plated lid was vacuum welded onto an Au (or Ni)-plated house and base ,the air tightness reaches 5 ×10⁻⁹ Pa m³/s and the pressure of the gyroscope packaged can be maintained at 5 Pa ~ 15 Pa after the high-low temperature shock test.

Keywords MEMS, Metal house, Packaging processing, Vacuum fusion welding, Vacuum maintenance

摘要 MEMS 真空封装是提高 MEMS 惯性器件性能的主要手段。本文应用实验方法,在真空熔焊工艺设备上研究了 MEMS 器件金属外壳真空封装工艺。对不同镀层结构的外壳进行了封装实验比较和气密性测试,结果发现,金属外壳表面镀 Ni 和镀 Au 或管座表面镀 Ni 和 Au、管帽表面镀 Ni 可有效的提高真空封装的气密性和可靠性,其气密性优于 5 ×10⁻⁹ Pa m³/s。 封装样品的高低温循环实验和真空保持特性的测量结果说明,金属外壳真空熔焊工艺可基本满足 MEMS 器件真空封装工艺 的要求,并测得真空度为 5 Pa ~ 15 Pa 左右。MEMS 陀螺仪的封装应用也说明了工艺的可行性。

 关键词 MEMS 金属外壳 封装工艺 真空熔焊 真空保持性

 中图分类号:TN1
 文献标识码:A
 文章编号:1672-7126(2008)03-275-05

MEMS 真空封装是许多 MEMS 器件,如加速度 计、谐振器、陀螺仪等走向实用化的关键,也是 MEMS 封装工艺研究中的一个突出的难题^[1-4]。目 前真空封装中急需解决的几个问题是:真空封装工 艺的可靠性和有效性,真空封装壳体内真空度的测 量,真空的长期保持性等。真空封装密封方法有多 种,如回流焊、玻璃焊、熔融焊等^[5-7]。国外对真空 回流焊、玻璃焊工艺研究较多,但存在封装成品率不 高、可靠性也有待进一步提高等问题,且封装之后也 没有有效的方法测量壳体内的真空度。此外,由于 目前对超灵敏度检漏(优于 10⁻¹⁰ Pa m³/s)未做到实 时校准和标准化,这给开发圆片级小型真空封装外 壳和工艺研究带来了不小的困难^[8-9]。本文采用实 验方法研究了金属外壳真空熔焊的基本工艺。论文 首先用气密实验方法分析了外壳镀层结构对焊接质 量的影响,优化了金属外壳的镀层结构;接着应用高 低温循环试验方法测试了真空封装样品的可靠性和 有效性,建立了真空熔焊工艺质量的有效控制方法; 最后讨论了影响真空封装性能的各种因素和气密性 评价标准。

1 封装原理与设备

常规的电阻熔焊机主要用于金属外壳的气密封 装工艺,仅能提供气密环境,不能进行真空环境下的

收稿日期:2007-04-24

基金项目:国家"863 "高科技研究与发展计划的支持(No. 2004AA404221, No. 2005AA404260) *联系人:Tel:15995740133, E-mail:rongfengg @163.com 气密熔焊工艺。为此,我们开发了一台真空熔焊工 艺设备,如图1所示。该设备由真空腔体、真空机组 及电子控制系统组成。设备的主要性能指标:极限 真空度:10⁻³Pa,键合能量:6000J,键合压力:6kg, 最大焊筋长度:75mm。焊接外壳采用常见的金属 外壳,其材料为可伐合金,表面有金属镀层。用于气

密封装的金属外壳有多种结构形式。如图 2 所示为

图 1 真空熔焊焊接设备 Fig. 1 The equipment for vacuum welding packaging

用于真空封装的金属外壳。管座上焊有晶振,即晶 振振荡器,用于测量焊接后壳体内的真空度。

2 封装实验

为了检验外壳镀层结构对焊缝质量的影响和对 管腿泄漏质量的要求,我们设计了四种外壳结构 (A、B、C、D)进行封装工艺试验,如表1所示,并对封 装壳体管腿的气密性也进行了测试(E组)。表1给 出所设计的封装外壳镀层结构、封装管座的结构形 式。管座设计成盲板是为了排除管腿泄漏的影响, 直接测量焊缝的泄漏率,设计不同的镀层方案是为 了选择合理的镀层结构,测量管腿的泄漏情况是为 了掌握管腿泄漏对壳体气密性的影响程度。

表1 真空封装焊接实验方案

Tab. 1 The welding experimental scheme for vacuum packaging

编号	А	В	С	D	Е
管座结构	管座为盲板	管座为盲板	管座有管腿	管座有管腿	管腿处泄漏
镀层结构	管座镀 Ni 、Au ,管帽镀 Ni	管座镀 Ni 、Au ,管帽镀 Ni ,Au	管座镀 Ni 、Au ,管帽镀 Ni	管座镀 Ni ,管帽镀 Ni	管座镀 Ni、Au

根据上面所设计的实验方案进行了真空封装实 验。真空封装的工艺过程为:首先调整好设备工艺 参数,主要是焊接能量和焊接压力,这通常需要在封

图 3 有管腿的真空封装样品 Fig. 3 The vacuum packaging samples with pins

装前做几次试验来确定;然后将外壳装夹,合上真空 腔体,抽真空至10⁻³ Pa,加压并进行焊接。如图3和 图4所示为部分焊接试验样品。封装完成之后用氦

图 4 盲板封装的真空封装样品 Fig. 4 The vacuum packgaing samples without pins

质谱检漏仪对封装样品的气密性进行了测量。

在上面实验的基础上又进行了真空封装壳内真 空度测量和可靠性测试实验,试验用的封装外壳的镀 层结构与表1中C种情况一样。目前,对于真空封装 壳内的真空度还没有有效的测量方法,为此,我们开 发了用晶振作为敏感元件测量壳内真空度的仪器。 晶振测量真空度的原理是利用晶振的阻抗随真空度 的变化而变化^[10]。实验时将晶振焊接在管座上(图 2 所示),在真空环境下封装在壳内,通过电路测量晶振 阻抗值的变化即可测得壳内的真空度,这种测量方法 具有实时测量的优点,图 5 给出了不同晶振的标定曲 线,即输出信号电压与真空度的对应关系。

图 5 不同晶振的标定曲线

3 实验测试与应用

3.1 泄漏率测试

表 2 给出了 A、B、C、D、E 五种样品泄漏率的测 试结果。测试结果表明: A 组和 B 组焊接样品的泄 漏率差别很小,这说明管帽仅镀Ni或先镀Ni后镀

表 2 金属外壳真空焊接泄漏率测试数据(单位:Pa·m³/s)

Tab. 2 The leak rates of the metal house

vacuum packaging(Unit	:Pa	-m'/	s)
-----------------------	-----	------	----

样品 编号	A(压 He)	B(压 He)	C(压 He)	D(压 He)	E(喷 He)
1	2.87 ×10 ⁻⁹	2.28 ×10 ⁻⁹	3.85 ×10 ⁻⁹	1.50 ×10 ⁻⁴	4.35 ×10 ⁻⁹
2	3.02 ×10 ⁻⁹	2.40×10^{-9}	4.40×10^{-9}	1.48×10^{-6}	2.54×10^{-9}
3	2.70 ×10 ⁻⁹	2.25 ×10 ⁻⁹	3.70×10^{-9}	1.82×10^{-7}	2.60×10^{-9}
4	2.50 ×10 ⁻⁹	2.49 ×10 ⁻⁹	3.85 ×10 ⁻⁹	6.45×10^{-8}	2.80×10^{-9}
5	2.42 ×10 ⁻⁹	2.37 ×10 ⁻⁹	3.70×10^{-9}	9.20×10^{-5}	3.35×10^{-9}
6	2.36 ×10 ⁻⁹	2.36 ×10 ⁻⁹	4.40×10^{-9}	3.82×10^{-6}	4.10×10^{-9}
7	2.30 ×10 ⁻⁹	2.22 ×10 ⁻⁹	3.50×10^{-9}	5.40×10^{-7}	2.40×10^{-9}
8	2.42 ×10 ⁻⁹	2.25 ×10 ⁻⁹	4.50×10^{-9}	7.20×10^{-8}	3.75×10^{-9}
9	2.19 ×10 ⁻⁹	2.28 ×10 ⁻⁹	3.00 ×10 ⁻⁹	4.85×10^{-7}	4.62×10^{-9}
10	2.25 ×10 ⁻⁹	2.15 ×10 ⁻⁹	3.05 ×10 ⁻⁹	6.20 ×10 ⁻⁸	3.82 ×10 ⁻⁹

Au 对焊缝质量的影响不大,与仅镀 Ni 的样品 D 组 相比还有一个重要的优点是焊接的气密性、成品率 和高低温循环后其真空保持性也得到很大提高。由 于 A 组和 B 组焊接质量相近,因此,实验研究中管 帽的镀层可以只镀 Ni 不镀 Au,而管座需镀 Ni 和镀 Au.这样即可以降低实验成本和以后的生产成本。 又能满足实验要求。C组为有管腿外壳的泄漏率, 由于管腿泄漏的影响,有管腿外壳焊接后的泄漏率 比B组略有增加。D组仅为镀Ni的封装样品,与C 组相比.D组样品的焊接成品率不高.且焊好的样品 的泄漏率比较大,真空度难以长期保持,经高低温循 环后,很容易泄漏,这说明管座和管帽仅镀 Ni 时,其 焊接质量难以满足真空封装的应用要求。E组给出 了管腿处的泄漏率,可见管腿处的泄漏率与焊缝的 泄漏率在同一量级,由于管腿处的泄漏无法用压 He 方法进行检漏 .只能用喷 He 方法检漏 .这给检漏结 果的比较带来困难,但还是可以说明管腿处的泄漏 对真空封装外壳的气密性有明显的影响,且与焊缝 处的泄漏率处于同一量级,因此,在真空封装中进一

图 6 镀镍壳体封装后的焊缝图 Fig. 6 The photo of the plating Ni sealing line

步提高管腿处的焊接质量也是非常重要的。

图 6 和图 7 给出了镀镍管壳焊缝的显微结构 图,显然其焊缝存在明显的缺陷。图 8 和图 9 是镀 金管壳焊缝的显微结构图,与图 6 图 7 进行比较其 焊缝的致密性和均匀性均要好得多。

图 8 焊缝镀层结构图

Fig. 8 The photos of the plating layer structure of sealing line

图 9 焊筋与管座的结合面放大图 Fig. 9 The photos of the plating layer microstructure of sealing line

3.2 真空度保持测量

真空保持测量是检验真空封装质量最重要和最 直接的方法。图 10 给出了一次真空封装样品(7 个)真空度测试与跟踪测试结果,跟踪时间约一个 月,所用外壳镀层结构与C组相同。样品在焊接完 成之后,应用所开发的仪器对晶振进行了标定,并由 此测得7个真空封装样品壳体内的初始真空度在2 Pa~12 Pa范围。为了考核封装样品的焊缝质量,对 样品进行了高低温循环试验,在一个月内的循环次 数约为 324 次,在循环实验中每天取出样品测量一 次壳体内的真空度。测量时发现在高低温循环试验 的开始几天里,所有样品的真空度都有所下降,大部 分样品(2、3、4、5、6)随后就趋于稳定,且真空度在实验过程中基本保持在5Pa~15Pa范围内,这表明封装样品的焊接质量是很可靠的,可初步应用于MEMS器件的封装,但样品1(25Pa)和样品7(200Pa)的真空度下降较多,且上下波动,在下降到一定的真空度后,基本处于一个稳定状态,这说明真空封装壳内存在气体释放和极微小量的泄漏等问题,其封装工艺必须进一步优化,封装的成品率和可靠性有待进一步提高。

图 10 真空封装外壳保持性测量

Fig. 10 The maintenance performance measurement of the vacuum packaging samples

3.3 泄漏原因分析

通过大量的实验和对封装外壳内真空度的长期 跟踪测量,发现造成壳内真空泄漏和影响真空度不 稳定的因素有几点:(a)焊缝处微细孔泄漏,(b)管腿 处泄漏,(c)材料对气体的吸附。在前面表2中的气 密性测试结果告诉我们,真空封装外壳的气密性已 比气密封装外壳的气密性质量检验标准高出近一个 量级,但要维持一个长期稳定的高真空仍然是很难 的。除了器件和工艺质量(如管壳焊筋加工质量、表 面镀层厚度和镀层质量、焊接工装质量、焊接工艺参 数及壳体表面污染等)外,真空封装本身对气密性要 求更高,特别是1Pa以下真空的气密封装。

对管腿焊接质量要求更严。管腿是用玻璃焊料 焊接在管座上的,管腿玻璃烧结质量的好坏直接影 响着管腿处的气密性,与气密封装相比,真空封装对 管腿处的密封质量要求更高。造成管腿泄漏的主要 原因是玻璃中存在的气泡,气泡可以用 X 射线进行 测量。通过测试与分析,要满足真空封装的气密性 要求,必须对管腿的气密性提出更高的要求,在国标 中确定管腿气密性标准为 10⁻⁸ Pa m³/s,但在真空 封装中,特别是 10 Pa 以下真空度的真空封装中这 个标准是不能满足应用要求的,试验中我们提出的 管腿气密质量检验标准为 <4 ×10⁻⁹ Pa m³/s,在这 样的气密条件下,用于真空封装才能保证真空封装 器件有稳定的真空保持性能。

3.4 封装应用

应用所开发的真空封装设备和工艺对南京理工 大学研制的 MEMS 陀螺仪进行了真空封装实验。如 图 11 所示为真空封装的样品。如图 12 所示为陀螺 仪的幅频曲线,真空封装后陀螺仪的幅频曲线,与大 气中的幅频曲线相比,真空封装后陀螺仪的Q值提 高了 6~12 倍。真空封装后的陀螺仪在 60 天内的 较长时间内驱动输出检测电压保持在一个较为稳定 的输出值。这说明真空封装工艺是可行的。

Fig. 11 Vacuum packaged micromachined gyroscopes

Fig. 12 Q factor of vacuum packaged

micromachined gyroscopes

4 结论

本文选择金属外壳,从外壳镀层结构、真空封装 保持性以及影响真空封装气密性的原因进行了系统 研究,获得了一些结论。金属外壳表面镀 Ni 和镀 Au 或管座表面镀 Ni 和 Au、管帽表面镀 Ni 可有效的 提高真空封装的气密性和可靠性。高低温循环实验 和真空保持特性的测量结果说明金属外壳结构和封 装工艺可基本满足 MEMS 器件真空封装工艺的要 求,金属外壳真空熔焊工艺是实现 MEMS 器件真空 封装的一个有效方法,用石英晶振测得真空封装器 件的真空度为 5 Pa~15 Pa 左右。MEMS 陀螺仪封 装应用也说明了工艺的可行性。与气密封装相比, 要获得高真空封装器件和真空长期保持特性,需对 真空焊接材料、封装外壳结构、焊接工艺和焊接气密 性质量检验标准提出更高的要求。

参考文献

- Choa S H. Reliability of vacuum packaged MEMS gyroscopes, Microelectronics Reliability ,2005 , (45) :361 - 369
- [2] Byeungleul Lee ,Seonho Seok , Kukjin Chun. A study on wafer level vacuum packaging for MEMS devices J. Micromech. Microeng. Proceeding of 5th , (13) :663 - 669
- [3] Jin Y, Wang Z F, Lim P C, et al. MEMS vacuum packaging technology and applications. Proceeding of 5th Electronics Packaging Technology Conference (EPTC 2003);2003,11 -12:301 - 306
- [4] Chiao Mu, Lin Liwei. Vacuum packaging of microresonators by rapid thermal processes, Proceedings of SPIE 2002, 4700:274 - 278
- [5] Abhijat Goyal, Srinivas Tadigadapa, Rafiqul Islam. Solder bonding for microelectromechanical systems (MEMS) applications. Proceedings of SPIE 2003. 3 August 2003, San Diego, CA, USA., 4980:281 - 288
- [6] Guan Rongfeng, Can Zhiyin, Zhu Fulong, et al. Anodic Bonding Study on Vacuum Micro Sealing Cavity. 7th International Conference on Electronics Packaging Technology, Aug. 26-29, 2006, Shanghai, China. 462 - 465
- [7] Cheng Yu T, Hsu Wan Tai, Clark T. C, et al. Vacuum packaging technology using localized aluminum/silicon-to-glass bonding. Jounal of Microelectronical Systems, 2002, 11 (5): 556 - 565
- [8] 肖立波,陈 旭,黄天斌,等.超灵敏检漏的实时校准. 真空科学与技术学报,2006,26(1):54-56
- [9] 李得天,郭美如,葛 敏,等.固定流导法真空漏孔校准
 装置.真空科学与技术学报,2006,26(5):358-362
- [10] Kobayashi T, Hojo H, Ono M. Pressure measurement from 1 atm to 0. 01 Pa using a quartz oscillator. Vacuum, 1993, 44
 (5):613 - 616