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Foreword

It is a great pleasure and privilege to introduce this book on the Algebra of Program-
ming as the hundredth book in the Prentice Hall International Series in Computing
Science. It develops and consolidates one of the abiding and central themes of the
series: it codifies the basic laws of algorithmics, and shows how they can be used
to classify many ingenious and important programs into families related by the
algebraic properties of their specifications. The formulae and equations that you
will see here share the elegance of those which underlie physics or chemistry or any
other branch of basic science; and like them, they inspire our interest, enlarge our
understanding, and hold out promise of enduring benefits in application.

Tony Hoare






Preface

Our purpose in this book is to show how to calculate programs. We describe an
algebraic approach to programming, suitable both for the derivation of individual
programs and for the study of programming principles in general. The program-
ming principles we have in mind are those paradigms and strategies of program con-
struction that form the core of the subject known as Algorithm Design. Examples
of such principles include: dynamic programming, greedy algorithms, exhaustive
search, and divide and conquer.

The main ideas of the algebraic approach are illustrated by an extensive study of
optimisation problems, conducted in Chapters 7-10. These are problems that in-
volve finding a largest, smallest, cheapest, and so on, member of a set of possible
solutions satisfying some given constraints. It is surprising how many computa-
tional problems can be specified in terms of optimising some suitable measure, even
problems that do not at first sight fall into the traditional areas of combinatorial
optimisation. However, the book is not primarily about optimisation problems,
rather it is about one approach to solving programming problems in general.

Our mathematical framework is a categorical calculus of relations. The calculus is
categorical because we want to formulate algorithmic strategies without reference to
specific datatypes, and relational because we need a degree of freedom in specifica-
tion and proof that a calculus of functions alone would not provide. With the help
of this calculus, the standard principles of algorithm design can be formulated as
theorems about classes of problems whose specifications possess a particular struc-
ture. The problems are abstract in the sense that they are parameterised by one or
more datatypes. These theorems say that, under appropriate conditions, a certain
strategy works and leads to a particular form of abstract solution.

Specific algorithms for specific problems are obtained by checking that the con-
ditions hold and instantiating the results. The solution may take the form of a
function, but more usually a relation, characterised as the solution to a certain
recursive equation. The recursive equation is then refined to a recursive program
that delivers a function, and the result is translated into a functional programming



xii Preface

language. All the programs derived in Chapters 7-10 follow this pattern, and the
popular language Gofer (Jones 1994) is used to implement the results.

A categorical calculus provides not only a means for formulating algorithmic strate-
gies abstractly, but also a smooth and integrated framework for conducting proofs.
The style employed throughout the book is one of equational and inequational
point-free reasoning with functions and relations. A point-free calculation is one in
which the expressions under manipulation denote functions or relations, built using
functional and relational composition as the basic combining form. In contrast,
pointwise reasoning is reasoning conducted at the level of functional or relational
application and expressed in a formalism such as the predicate calculus.

The point-free style is intrinsic to a categorical approach, but is less common in
proofs about programs. One of the advantages of a point-free style is that one is
unencumbered by many of the complications involved in manipulating formula deal-
ing with bound variables introduced by explicit quantifications. Point-free reason-
ing is therefore well suited to mechanisation, though none of the many calculations
recorded in this book were in fact produced with the help of a mechanical proof
assistant.

Audience

The book is addressed primarily to the mathematically inclined functional program-
mer, though the non-functional — but still mathematically inclined — programmer is
not excluded. Although we have taken pains to make the book as self-contained as
possible, and have provided lots of exercises for self-study, the reader will need some
mathematical background to appreciate and master the more abstract material.

A first course in functional programming will help quite a lot, since many of the
ideas we describe can be found there in more concrete clothing. Prior exposure to
the basic ideas of set theory would be a significant bonus, as would some familiarity
with relations and equational reasoning in a logical calculus. The bibliographical
remarks at the end of each chapter describe where appropriate background material
can be found.

Outline

Roughly speaking, the first half of the book (Chapters 1-6) is devoted to basic
theory, while the second half (Chapters 7-10) pursues the theme of finding efficient
solutions for various kinds of optimisation problem. But most of the early chapters
contain some applications of the theory to programming problems.

Chapter 1 reviews some basic concepts and techniques in functional programming,
and the same ideas are presented again in categorical terms in Chapter 2. This
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material is followed in Chapter 3 with one or two simple applications to program
derivation, as well as a discussion of additional categorical ideas. Building on this
material, Chapters 4 and 5 present a categorical calculus of relations, and Chapter 6
contains a treatment of recursion in a relational setting. This chapter also contains
discussions of various problems, including sorting and breadth-first search.

The methods explored in Chapters 7-10 fall into two basic kinds, depending on
whether a solution to an optimisation problem is viewed as being composed out
of smaller ones, or decomposed into smaller ones. The two views are complemen-
tary and individual problems can fall into both classes. Chapter 7 discusses greedy
algorithms that assemble a solution to a problem by a bottom-up process of con-
structing solutions to smaller problems, while Chapter 10 studies another class of
greedy algorithm that chooses an optimal decomposition at each stage.

The remaining chapters, Chapter 8 and Chapter 9, deal with similar views of dy-
namic programming. Each of these four chapters contains three or four case studies
of non-trivial problems, most of which have been taken from textbooks on algorithm
design, general programming, and combinatorial optimisation.

The chapters are intended to be read in sequence. Bibliographical remarks are
included at the end of each chapter, and the majority of individual sections contain
a selection of exercises. Answers to all the exercises in the first six chapters can be
obtained from the World-wide Web: see the URL

http://www.comlab.ox.ac.uk/oucl/publications/books/algebra/

Acknowledgements

Many people have had a significant impact on the work, and detailed acknowledge-
ments about who did what can be found at the end of each chapter. We owe a
particular debt of gratitude to the following people, who took time to comment on
an earlier draft, and to make many constructive suggestions: Roland Backhouse,
Sharon Curtis, Jeremy Gibbons, Martin Henson, Tony Hoare, Guy LaPalme, Bern-
hard Moller, Jesus Ravelo, and Philip Wadler.

We would like to thank Jim Davies for knocking our XTEX into shape, and Jackie
Harbor, our editor at Prentice Hall, for enthusiasm, moral support, and a number
of lunches.

The diagrams in this book were drawn using Paul Taylor’s package (Taylor 1994).

Richard Bird would like to record a special debt of gratitude to Lambert Meertens
for his friendship and collaboration over many years. Oege de Moor would like to
thank the Dutch STOP project and British Petroleum for the financial assistance
that enabled him to come and work in Oxford. The first part of this book was



Xiv Preface

written at the University of Tokyo, while visiting Professors Masato Takeichi and
Hidchiko Tanaka. Their hospitality and the generosity of Fujitsu, which made the
visit possible, are gratefully acknowledged.

We would be pleased to hear of any errors, oversights and comments.
Richard Bird (bird@comlab.ox.ac.uk)
Oege de Moor (oege@comlab. ox.ac.uk)
April, 1996



‘Now, then,’ she said, somewhat calmer. ‘An explanation,

if you please, and a categorical one. What’s the idea?
What'’s it all about? Who the devil’s that inside the winding-sheet?’

P.G. Wodehouse, The Code of the Woosters






Chapter 1

Programs

Most of the derivations recorded in this book end with a program, more specifically,
a functional program. In this opening chapter we settle notation for expressing
functional programs and review those features of functional languages that will
emerge again in a more general setting later on. Many aspects of modern functional
languages (of which there is an abundance, e.g. Gofer, Haskell, Hope, Miranda™,
Orwell, SML) are not covered. For example, we will not go into questions of strict
versus non-strict semantics, infinite values, evaluation strategies, cost models, or
operating environments. For fuller information we refer the reader to the standard
texts on the subject, some of which are mentioned in the bibliographical remarks
at the end of the chapter. Our main purpose is to identify familiar landmarks that
will help readers to navigate through the abstract material to come.

1.1 Datatypes

At the heart of functional programming is the ability to introduce new datatypes
and to define functions that manipulate their values. Datatypes can be introduced
by simple enumeration of their elements; for example:

Bool := false | true
Char := ascii0 | asciil |---| asciil27.

The type Bool consists of two values and Char consists of 128. It would be painful
to refer to characters only by their ASCII numbers, so most languages provide
an alternative syntax, allowing one to write ‘A’ for ascii65, ‘a’ for ascii97, ‘\n’
for asciil0, and so on. The various identifiers, ascii0, true, and so on, are called
constructors and the vertical bar | is interpreted as the operation of disjoint union.
Thus, distinct constructors are associated with distinct values.

Datatypes can be defined in terms of other datatypes; for example:

FEither := bool Bool | char Char
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Both := tuple(Bool, Char).

The type Either consists of 130 values: bool false, bool true, char ascii0, and so on.
The type Both consists of 256 values, one for each combination of a value in Bool
with a value in Char. In these datatypes the constructors bool, char and tuple
denote functions; for example, char produces a value of type FElither given a value
of type Char.

As a departure from tradition, we write f : A« B rather than f : B — A to indicate
the source and target types associated with a function f. Thus

char : Either + Char
tuple : Both < (Bool x Char).

The reason for this choice has to do with functional composition, whose definition
now takes the smooth form: if f: A« Band g: B+ C,thenf-g: A« C is
defined by (f - g9)r = f(gz). Writing the target type on the left and the source
type on the right is also consistent with the normal notation for application, in
which functions are applied to arguments on the right. In the alternative, so-called
diagrammatic forms, one writes z f for application and f; g for composition, where
z(f;9) = (zf)g- The conventional order is consistent with adjectival order in
English, in which adjectives are functions taking noun phrases to noun phrases.

Given the assurance about different constructors producing different values, we can
define functions on datatypes by pattern matching; for example,

not false = true
not true = false

defines the negation operator not : Bool + Bool , and
switch (tuple (b,c)) = tuple (not b, c)
defines a function switch : Both < Both.

Functions of more than one argument can be defined in one of two basic styles:
either by pairing the arguments, as in

and (false,b) = false
and (true,b) = b

or by currying, as in

cand false b = false
cand trueb = b.
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The difference between and and cand is just one of type:

and : Bool + (Bool x Bool)
cand : (Bool + Bool) + Bool.

More generally, we can define a function f of two arguments by choosing any of the
types

f:A+<(Bx ()
f:(A«<B)«C
f: (A« C)+ B.

With the first type we would write f (b, ¢); with the second, f ¢ b; and with the
third, f b c. For obvious reasons, the first and third seem more natural companions.
The function curry, with type

curry : (A+ C)+ B) « (A« (B x 0)),
converts a non-curried function into a curried one:
curryfbe = f(b,c).
One can also define a function uncurry that goes the other way.

Functional programmers prefer to curry their functions as a matter of course, one
reason being that it usually leads to fewer brackets. However, we will be more
sparing with currying, reserving its use for those situations that really need it. The
reason is that the product type A x B is a simpler object than the function space
type C + D in an abstract setting. We will see some examples of curried functions
below, but functional programmers are warned at this point that some familiar
functions will make their appearance in non-curried form.

To return to datatypes, we can parameterise datatypes with other types; for exam-
ple, the definition

maybe A ::= nothing | just A

introduces a type maybe A in terms of a parameter type A. For example, just true
has type maybe Bool, while just ascii0 has type maybe Char. We will write non-
parameterised datatypes using a capital initial letter, and parameterised datatypes
using lower case letters only. The reason, as we shall explain later on, is that the
name of a parameterised datatype will also be used for a certain function associated
with the datatype, and we write the names of functions using lower case letters.
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1.2 Natural numbers

Datatypes can also be defined recursively; for example,
Nat := zero| succ Nat

introduces the type of natural numbers. Nat is the union of an infinite number
of distinct values: zero, succ zero, succ (succ zero), and so on. If two distinct
expressions of Nat denoted the same value, we could show, for some element n of
Nat, that both zéro and succn denoted the same value, contradicting the basic
assumption that different constructors produce different values.

Functions over Nat can be defined by recursion; for example,

plus (m,zero) = m
plus (m, succn) = succ (plus (m, n))
and
mult (m, zero) = zero
mult (m, succn) = plus (m, mult (m, n)).

Forcing the programmer to write succ (succ (succ zero)) instead of 3, and to re-create
all of arithmetic from scratch, would be a curious decision, to say the least, by the
designers of a programming language, so a standard syntax for numbers is usually
provided, as well as the basic arithmetic operations. In particular, zero is written
0 and succn is written n 4+ 1. With these conventions, we can write definitions in
a more perspicuous form; for example,

factd = 1
fact (n+ 1) (n+1) X factn

defines the factorial function, and

fb0 = 0
fibl =1
fiv(n+2) = fibn+fib(n+1)

defines the Fibonacci function. The expression n + 2 corresponds to the pattern
succ (succ n), which is disjoint from the patterns zero and succ zero.

Some systems of recursive equations do not define functions; for example,
fn = f(n+1).

Every constant function satisfies the equation for f, but none is defined by it. On
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the other hand, the two equations

fo = ¢
f(n+1) = h(fn)

do define a unique function f for every constant ¢ and function h of appropriate
types. More precisely, if ¢ has type A for some A, and if h has type h : A+ A, then
f is defined uniquely for every natural number and has type f : A+ Nat. The above
scheme is called definition by structural recursion over the natural numbers, and is
an instance of a slightly more general scheme called primitive recursion. Much of
this book is devoted to understanding and exploiting the idea of defining a function
(or, more generally, a relation) by structural recursion over a datatype.

The two equations given above can be captured in terms of a single function foldn
that takes the constant ¢ and function h as arguments; thus f = foldn (¢, h). The
function foldn is called the fold operator for the type Nat. Observe that foldn (c, h)
works by taking a natural number expressed in terms of zero and succ, replacing
zero by ¢ and succ by h, and then evaluating the result. In other words, foldn (¢, h)
describes a homomorphism of Nat.

It is a fact that not every computable function over the natural numbers can be
described using structural recursion, so certainly some functional programs are inac-
cessible if only structural recursion is allowed. However, in the presence of currying
and other bits and pieces, structural recursion is both a flexible and powerful tool
(see Exercise 1.6). For example,

plusm = foldn (m, succ)
multm = foldn (0, plus m)
ecpnm = foldn (1, mult m)

define curried versions of addition, multiplication and exponentiation. In these
definitions currying plays an essential role since foldn gives us no way of defining
recursive functions on pairs of numbers.

As two more examples, the factorial function can be computed by

fact = outr- foldn ((0,1),f)
outr (m,n) = n )
f(man) = (m+lv(m+1)xn)’

and the Fibonacci function can be computed by
fib = outl- foldn ((0,1),f)

outl(m,n) = m
f(myn) = (n,m+n).
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The two functions outl (short for ‘out-left’) and outr (‘out-right’) are projection
functions that select the left and right elements of a pair of values. These programs
for fact and fib can be regarded as implementations of the recursive definitions.
The program for fib has the advantage that values of fib are computed in linear
time, while the recursive definition, if implemented directly, would require expo-
nential time. The program for fib illustrates an important idea, called tabulation,
in which function values are stored for subsequent use rather than being calculated
afresh each time. Here, the table is very simple, consisting of just a pair of values:
foldn ((0,1),f) n returns the pair (fibn, fib (n + 1)). The theme of tabulation will
emerge again in Chapter 9 on dynamic programming.

Further examples of recursive datatypes appear in subsequent sections.

Exercises

1.1 Give an example of a recursion equation that is not satisfied by any function.
1.2 Consider the recursion equation

m(z,y) = y+1, fz=y
= m(z,m(z—1,y+1)), otherwise.

Does this determine a unique function m?

1.3 Construct a datatype Nat* for representing the integers > 0, together with an
operator foldn™ for iterating over such numbers. Give functions f : Natt < Nat
and g : Nat < Nat* such that f - g is the identity function on Nat* and g - f is the
identity function on Nat.

1.4 Express the squaring function sgr : Nat «+ Nat in the form sqr = f - foldn (c, h)
for suitable f, ¢ and h.

1.5 Consider the function last p : Nat + Nat such that last p n returns the largest
natural number m < n satisfying p : Bool«+ Nat. Assuming that p 0 holds, construct
suitable f, ¢ and h so that last p = f - foldn (c, ).

1.6 Ackermann’s function ack : Nat < Nat x Nat is defined by the equations

ack(0,y) = y+1
ack(z +1,0) = ack(z,1)
ack(t+1,y+1) = ack(z,ack(z +1,y)).

The function curry ack can be expressed as foldn(succ,f) for an appropriate f.
What is f? (Remark: this shows that, in the presence of currying, functions which
are not primitive recursive can be expressed in terms of foldn.)
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1.3 Lists

The datatype of lists dominates functional programming; much of the subject is
taken up with notation for lists, and the names and properties of useful functions
for manipulating them. The Appendix contains a summary of the more important
list-processing functions, together with other combinators we will use throughout
the book.

There are two basic views of lists, given by the type declarations

listr A == nil | cons (A, listr A)
listt A == nil | snoc (listl A, A).

The former describes the type of cons-lists, in which elements are added to the front
of a list; the latter describes the type of snoc-lists, in which elements are added to
the rear. Thus listr builds lists from the right, while listl builds lists from the left.
The constructor nil is overloaded in that it denotes both the empty cons-list and
the empty snoc-list; in any program making use of both forms of list, distinct names
would have to be chosen.

The two types of list are different, though isomorphic to one another. For example,
the function convert : listr A « listl A that converts a snoc-list into a cons-list can
be defined recursively by

convertnil = mnil
convert (snoc (z,a)) = snocr (convert z, a)
snocr (nil,b) = cons (b, nil)
snocr (cons (a,z),b) = cons(a,snocr (z,b)).

The function snocr : listr A « (listr A x A) appends an element to the end of a
cons-list. This function takes O(n) steps on a list of length n, so convert takes
O(n?) steps to convert a list of length n. The number of steps can be brought down
to O(n) using a technique known as an accumulation parameter (see the exercises).

It is inconvenient to have to manipulate two versions of what is essentially the same
datatype, so functional languages have traditionally given privileged status to just
one of them. (The alternative, explored in (Wadler 1987), is to regard both types
as different views of one and the same type, and to create a mechanism for moving
from one view to the other, quietly and efficiently, as occasion demands.) Cons-lists
are taken as the basic view, and special syntax is provided for nil and cons. The
empty list is written [], and cons (a, z) is written a : z. In addition, [a] can be used
for a : [], [a,b] for @ : b : [], and so on. However, since we want to treat both
types of list on an equal footing, we will not use the syntax a : z; for now we stick
with the slightly cumbersome forms nil, cons (a,z) and snoc (z, a).
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The concatenation of two lists £ and y is denoted by z # y. For example,
(1,2,3] + [4,5] = [1,23,4,5].
In particular,

cons(a,z) = [e]H =z

snoc (z,a) = z+[a].
Later on, but not just yet, we will use the expressions on the right as alternatives
for those on the left; this is an extension of a similar convention for Nat, in which

we wrote n + 1 for succ n, thereby harnessing the operation + for a more primitive
purpose.

The type and definition of concatenation depends on the version of lists under
consideration. For example, taking

(4) : listl A + listl A x listl A,
so that = + y abbreviates H(z, y), we can define + by

zHnl = =z
z H snoc (y,a) = snoc(zH y,a).

Using this definition, we can show that H is an associative operation, and that nil
is a left unit as well as a right one. The proof that

cH(yHz2) = (zHy) H=z
proceeds by induction on z. The base case is
T H (y + nil)
{first equation defining +}
THY

=  {first equation defining +}
(z H y) H nil.

The induction step is

z H (y H snoc (2, a))

= {second equation defining +}
z H snoc(y -+ z,a)

= {second equation defining +}
snoc (z H (y # 2), a)
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=  {induction hypothesis}
snoc ((z H y) # 2, a)

=  {second equation defining H# (backwards)}
(z Hy) H snoc (z, a).

We leave the proof that nil is the unit of + as an exercise. The above style and
format for calculations will be adopted throughout the book.

A most useful operation on lists is the function that applies a function to every
element of a list. Traditionally, this operation is called map f. If f : A «+ B, then
map f : list A « list B is defined informally by

,’na’pf[al,afb---van] = [fa'lvfaav--',fan]-

We will not, however, use the traditional name, preferring to use listr f for the map
operation on cons-lists, and listl f for the same operation on snoc-lists. Thus the
name of the type plays a dual role, signifying the type in type expressions, and
the map operation in value expressions. The same convention is extended to other
parameterised types. The reason for this choice will emerge in the next chapter.

The function listr f can be defined recursively:

listrfnil = il
listr f (cons (a,z)) = cons(f a,listr f z).
There is a similar definition for listl f. Instead of writing down recursion equations

we can appeal to a standard recipe similar to that introduced for Nat. Consider
the scheme

fnil = ¢
f (cons (a,2)) = h(a,fz)
for defining a recursive function f with source type listr A for some A. We encapsu-

late this pattern of recursion by a function foldr, so that f = foldr (c, k). In other
words,

foldr (¢, h)nil = ¢
foldr (¢, h) (cons (a,z)) h(a, foldr (c, h) z).

Given h: B+ A x B and c: B, we have foldr (c, h) : B + listr A. In particular,

listrf = foldr (nil,h) where h(a,z)= cons(f a,z).
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In a similar spirit, we define

foldl (¢, h) nil c
foldl (¢, h) (snoc (z,a)) = h(foldl(c,h) z, a),

so that foldl (c,h) : B « listl A provided h : B+ B x A and ¢ : B. Now we have
listtf = foldl(nil,h) where h(z,a) = snoc(z,fa).

The functions foldr (¢, h) and foldl (¢, k) work in a similar fashion to foldn (¢, h) of
the preceding section: foldr (c, h) transforms a list by systematically replacing nil
by ¢ and cons by h; similarly, foldl (c, h) replaces nil by ¢ and snoc by h. Like
foldn on the natural numbers, these two functions embody structural recursion on
their respective datatypes and can be used to define many useful functions. For
example, on snoc-lists we can define a curried version of concatenation by

catz = foldl(z,snoc).

We have cat ¢ y = £ + y. This definition mirrors the earlier definition of addition:
plus m = foldn (m, succ). We leave it as an exercise to define a version of cat over
cons-lists.

Other examples on cons-lists include

sum foldr (0, plus)
product = foldr (1, mult)
concat = foldr (nil, cat)

length = sum - listr one, where onea =1.

The function concat : listr A« listr (listr A) concatenates a list of lists into one long
list, and length returns the length of a list. The length function can also be defined
in terms of a single foldr:

length = foldr (0, k), where h(a,n)=n+1.

This is an example of a general phenomenon: any function which can be expressed
as a fold after a mapping operation can also be expressed as a single fold. We will
state and prove a suitably general version of this result in the next chapter.

Another example is provided by the function filter p : listr A < listr A, where p has
type p : Bool + A. This function filters a list, retaining only those elements that
satisfy p. It can be defined as follows:

filterp = concat - listr (p = wrap, nilp)

B fa, ifpa
(P—)f7g)a - {ga,, otherwise
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wrapa = cons (a, nil)
nilpa = mnil.
The McCarthy conditional form (p — f, g) is used to describe conditional expres-
sions, wrap turns its argument into a singleton list, and nilp is a constant function
that returns the empty list for each argument. The function filter p works by turn-

ing an clement that satisfies p into a singleton list, and an element that doesn’t
satisfy p into the empty list, and concatenating the results.

We can express filter as a single foldr:
filterp = foldr (nil, (p - outl — cons, outr)).

The projection functions outl and outr were introduced earlier. Applied to (a,z),
the function (p-outl — cons, outr) returns cons (a, z) if pa is true, and z otherwise.
Yet another way to express filter is given in the last section of this chapter.

Finally, let us consider an example where the difference between cons-lists and
snoc-lists plays an essential role. Consider tne problem of converting some suitable
representation of a decimal value into the real number it represents. Suppose the
number is

dndm_1...dg.€162... €y,
which represents the number w + f, where

10™d,, + 10™ Ydp,_1 + - -- 10%,

w =
f = e/10' 4+ e/10% 4 --- e, /10™.
Observing that

w = 10X ((...(10 x (10 X 0+ dp) + dm—1)...)) + do
f = (er+---(en-1+ €,/10)/10---)/10,

we can see that one sensible way to represent decimal numbers is by a pair of lists
listl Digit x listr Digit. We can then define the evaluating function eval by

eval : Real « (listl Digit x listr Digit)
eval(z,y) = foldl(0,f)z + foldr (0,9) y
f(n,d) = 10xn+d
g(e,r) = (e+r)/10.

It is appropriate to represent the whole number part by a snoc-list because it is
evaluated more conveniently by processing the digits from left to right; on the other
hand, the fractional part is more appropriately represented by a cons-list since the
processing is from right to left.
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Lists in functional programming

In traditional functional programming, the functions foldr (¢, k) and foldl (¢, h) are
defined a little differently. There are two minor differences and one major one. First,
foldr and foldl are usually defined as curried functions, writing foldr h c instead of
foldr (¢, h), and similarly for foldl. One small advantage of the switch of arguments
is that some functions can be defined more succinctly; for example, the curried
function cat on snoc-lists can now be defined by

cat = foldl snoc.

The second minor difference is that the argument h in foldr h ¢ is also curried
because cons is usually introduced as a curried function. Since we have introduced
cons to have type listr A + (A x listr A), it is appropriate to take the type of h to
be B + (A x B).

The more important difference is that in traditional functional programming the
basic view of lists is cons-lists and, because foldl is a useful operation to have, the
type assigned to foldl (¢, h) is B « listr A, for some A and B. This means that foldl
is given a different definition, namely,

foldl (¢, B)nil = ¢
foldl (c, k) (cons (a,z)) = foldl (h(c,a),h)z.

This is essentially an iterative definition and corresponds to a loop in imperative
programming. The first component of the first argument of foldl is treated as an
accumulation parameter, and models the state of an imperative program. We leave
it as an exercise to show that the two definitions are equivalent, and to discover a
way of expressing this version of foldl in terms of foldr.

This definition of foldl as an operation on cons-lists can be used to good effect.
Consider, for example, the function reverse that reverses the elements of a list. As
a function on cons-lists, we can define

reverse = foldr (nil, append)
append (a,z) = snocr (z, a),
where snocr was defined earlier. As a function on snoc-lists, we can define
reverse = foldl (nil, prepend)
prepend (z,a) = cons(a,z).

As an implementation of reverse on cons-lists, the first definition takes O(n?) steps
to reverse a list of length n, the reason being that snocr requires linear time. How-
ever, interpreting foldl as an operation on cons-lists, the second definition of reverse
takes linear time because cons takes constant time.
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Non-empty lists

Having the empty list around sometimes causes more trouble than it is worth.
Fortunately, we can always introduce the types

listrt A = wrap A | cons (4, listrt A)
listi* A = wrap A | snoc (listl* A, A)

of non-empty cons-lists and snoc-lists. Here, wrap returns a singleton list and the
generic fold operation replaces the function wrap by a function f and cons by a
function g:

foldr™ (f,g) (wrapa) = fa
foldr™ (f, g) (cons (a,z)) = g/(a,foldr* (f,g)z).

In particular, the function head : A « listrt A that returns the first element of a
non-empty list can be defined by

head = foldr™ (id, outl).

In some functional languages the fold operator on non-empty cons-lists is denoted
by foldrl, with the definition

foldrlf = foldr™ (id,f).

So foldrl cannot express the general fold operator on non-empty cons-lists, but
only the special case (admittedly the most frequent in practice) in which the first
argument is the identity function.

List comprehensions

Finally, we introduce a useful piece of syntax that can be used as an alternative to
many expressions involving listr and filter. An expression of the form

[ezpr0 | var « exprl; expr2]

is called a list comprehension and produces a list of values of the form ezpr0 for val-
ues var drawn from the list expression ezprl and satisfying the boolean expression
erpr2. For example,

[nxn|n+[1..10]; even n]

produces, in order, the list of squares of even numbers 7 in the range 1 < n < 10.
In particular, we have

listrft = [fa|a+ 1]
filterpz = [a]|a<+ z;pal.
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There is a more general form of list comprehension, but we will not need it; indeed,
list comprehensions are used only occasionally in what follows.

Exercises

1.7 Construct the function convert : listr A « listl A in the form foldl (¢, h) for
suitable ¢ and h.

1.8 Consider the curried function catconv : (listr A + listl A) « listr A defined by
catconv z y = convertz H y. Express catconv in the form foldl (¢, h) and hence
show how convert can be carried out in linear time.

1.9 Prove that nil is a left unit of H-.
1.10 Construct cat : (listr A « listr A) « listr A.
1.11 Construct the iterative function foldl over cons-lists in terms of foldr.

1.12 The function take n : listr A « listr A takes the first n items of a list, or the
whole list if its length is no larger than n. Construct suitable & and ¢ for which
take nz = foldr (c, h) z n. Similarly, define the function dropn (which drops the
first n items from a list) in terms of foldr.

1.4 'Trees

We will briefly consider two more examples of recursive datatypes to drive home
the points made in preceding sections. First, consider the type

tree A == tip A | bin (tree A, tree A)

of binary trees with elements from A in the tips. In particular, the expression
bin (tip 0, bin (tip 1, tip 2))

denotes an element of tree Nat, while
bin (tip ‘A, bin (tip ‘B’, tip ‘C’))

denotes an element of tree Char.

The generic form of the fold operator for binary trees is foldt (f, g), defined by

foldt (f,g) (tipa) = fa
foldt (f,g) (bin (z,y)) = g (foldt(f,g)z,foldt(f,9)y).
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Here, foldt (f,g) : B+ tree Aif f : B+ A and g : B+ B x B. In particular, the
map function for trees is given by

treef = foldt (tip - f, bin).

The functions size and depth for determining the size and the depth of a tree are
given by
size = foldt (one, plus), where onea =1
depth = foldt (zero, succ - bmaz), where zeroa =0.
Here, bmaz (z,y) (short for ‘binary maximum’) returns the greater of = and y; the

depth of the tree bin (z,y) is one more than the greater of the depths of trees z
and y.

The final example is of two mutually recursive datatypes. Consider the types

tree A = fork (A, forest A)
forest A = null | grow (tree A, forest A),
defining trees and forests in terms of each other. The type forest A is in fact

isomorphic to listr (tree A), so we could also have introduced trees using lists rather
than forests.

The generic fold operation for this kind of tree is not defined by a single recur-
sion, but as the first of a pair of functions, foldt (g, ¢, h) and foldf (g, c, h), defined
simultaneously by mutual recursion:

foldt (g, ¢, h) (fork (a,zs)) = g(a,foldf (g,c,h)zs)
foldf (g, ¢, h) null c

foldf (g, c, h) (grow (z, z5)) h (foldt (g, ¢, h) z, foldf (g, c, h) zs).

For example, the size of a tree is defined by

size = foldt (succ - outr, 0, plus).

We have now seen enough examples to get the general idea: when introducing
a new datatype, also define the generic fold operation for that datatype. When
the datatype is parameterised, also introduce the appropriate mapping operation.
Given these functions, a number of other useful functions can be quickly defined.

It would be nice if we could give, once and for all, a single completely generic defi-
nition of the fold operator, parameterised by the structure of the datatype being
defined. Indeed, we shall do just this in the next chapter. But in most functional lan-
guages currently available, this is not possible: we can parameterise functions with
abstract operators, but we cannot parameterise functions with abstract datatypes.
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Recently, several authors have proposed new languages that overcome this restric-
tion, and some references can be found in the bibliographical remarks at the end of
this chapter.

Exercises

1.13 Consider the type
gtree A = mnode (A, listl (gtree A))

of general trees with nodes labelled with elements from A. Define the generic foldg
function for this kind of tree, and hence construct functions size and depth for
computing the size and depth of a tree.

1.14 Continuing on from the preceding exercise, represent the expression

f (9 (a,d),h(c), d)

as an element of gtree Char. Convert this expression to curried form, and represent
the result as an element of tree Char. Using this translation as a guide, construct
functions

curry : tree A + gtree A
uncurry : gtree A « tree A

for converting from general trees to binary trees and vice-versa.

1.5 Inverses

Another theme that will emerge in subsequent chapters is the use of inverses in
program specification and synthesis. Some functions are best specified as inverses
to other functions. Consider, for example, the function zip with type

zip : listr (A x B) « (listr A x listr B),
which is defined informally by

zip ([a1, ap, . . ., @n), [b1, b2, ..., bn]) = [(a1,b1), (a2, B), ..., (an, b))
One way of specifying zip is as the inverse of a function

unzip : listr A X listr B « listr (A x B),
defined by

unzip = pair (listr outl, listr outr),
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where pair (f,9)z = (f z,9 z). Thus, unzip takes a list of pairs and returns a pair
of lists consisting of the first components (listr outl) and the second components
(listr outr). The function unzip can also be expressed in terms of a single fold:

unzip = foldr (nils, conss)
nils = (nil, nil)
conss ((a,b), (z,4)) = (cons (a,z), cons (b, y)).

This is another example of a general result that we will give later in the book: a
pair of folds can always be expressed as a single fold.

Now, unzip is an injective function, which means that we can specify zip by the
condition

zip - unzip = 1id.
Using this specification, we can synthesise a direct recursive definition of zip:

zip (nil,nil) = il
zip (cons (a, z),cons (b,y)) = cons((a,b), zip (z,y)).
Note that zip is a partial function, defined only on lists of equal length. This is

because unzip is not surjective. In functional programming, 2ip is made total by
extending its recursive definition to read

zip(nil,y) = mnil
zip (cons (a, z),nil) = mnil
zip (cons (a, z),cons (b,y)) = cons((a,b),zip (z,y)).

This version of zip works for two lists of different lengths, stopping when either list
is exhausted.

As another example, consider the function decimal : listl Digit + Nat that converts
a natural number to the decimal numeral that represents it. The inverse function
in this case is eval : Nat « listl Digit defined by

eval = foldl (0,f)
f(n,d) = 10xn+d.

However, eval is not an injective function, so we cannot specify decimal simply
by the equation decimal - eval = id. There are two ways out of this problem:
either we can define a type Decimal, replacing listl Digit, so that eval is an injective
function on Decimal; or else specify decimaln to be, say, a shortest member of
the set {z | eval z = n}. Both methods will be examined in due course, so we
will not go into details at this stage. The main point we want to make here is
that definition by inverse is a useful method of specification, but one that involves
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difficulties when working exclusively with functions. The solution, as we shall see, is
to move to relations: all relations possess a unique converse, so there is no problem
in specifying one relation as the converse of another. If we want to specify a function
in this way, then we have to find some functional refinement of the converse. We
shall also study methods for doing just this.

Exercises

1.15 Construct the curried version zip : (listr (A x B) <« listr B) + listr A in the
form foldr (¢, h) for suitable h and c.

1.16 Define a datatype Digits that represents non-empty lists of digits, not begin-
ning with zero. Define the generic fold function for Digits, and use it to construct
the evaluating function eval : Natt < Digits, where Natt is the type of positive
integers. Can you specify decimal : Digits <+ Natt as the inverse of eval?

1.6 Polymorphic functions

Some of the list-processing functions defined above are polymorphic in that they
do not depend in any essential way on the particular type of lists being considered.
For example, concat : listr A + listr (listr A) does not depend in any essential way
on the type A. Such functions satisfy certain identities appropriate to their type.
For example, we have

listr f - concat = concat - listr (listr f).

This equation can be interpreted as the assertion that the recipe of concatenating
a list of lists, and then renaming the elements, has the same outcome as renaming
each element in the list of lists, and then concatenating. Thus, concat does not
depend on the structure of the elements of the lists being concatenated. A formal
proof of the equation above is left as an exercise.

As another example, consider the function inits : listl (listl A) + listl A that returns
a list of all prefixes of a list:

inits = foldl ([nil), f)

f (snoc (zs,z),a) = snoc (snoc(zs, ), snoc (z, a)).

For example,

inits (a1, a2, a3) = [[],[a1], [a1, a2], [a1, a2, ag]].

Like concat, the function inits does not depend in any essential way on the nature
of elements in the list; the result is the same whether we take the prefixes and
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then process each element in each list, or first process each element and then take
prefixes. We therefore have the identity

listl (listl f) - inits = inits - listl f.

In a similar fashion, the function reverse : listr A + listr A satisfies the identity
listr f - reverse = reverse - listr f.

Finally, the function zip : listr (A x B) + (listr A x listr B) satisfies the identity
listr (cross (f,g)) - zip = zip- cross (listr f, listr g),

where cross (f, g) (a, b) = (f a, g b). Functions, like concat, inits, reverse, zip, and
so on, which do not depend in any essential way on the structure of the elements in
their arguments, will be studied in a general setting later on, where they are called
natural transformations.

Exercises

1.17 Give proofs by induction of the various identities cited in this section.
1.18 Suppose you are given a polymorphic function foo with type
foo : tree (A x B) + (listr A x B).
What identity would you expect foo to satisfy?
1.19 Similarly to the preceding exercise, guess the identity for

foo : listl A + gtree A.

1.7 Pointwise and point-free

There are two basic styles for expressing functions, the pointwise style and the point-
free style. In the pointwise style we describe a function by describing its application
to arguments. Many of the examples above are expressed in the pointwise style.
In the point-free style we describe a function exclusively in terms of functional
composition; we have also seen some examples in this style too. In this section we
want to illustrate with the aid of a small example how a point-free style leads to a
very simple method for reasoning about functions.

Recall that the function filter p can be defined on lists by the equation
filterp = concat - listr (p — wrap, nilp).

The function wrap takes a value and returns a singleton list; thus wrap a = [a]. The
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function nilp takes a value and returns the empty list; thus, nidp a = nil. Our aim
in this section is to prove the identity

filterp = listr outl - filter outr - zip - pair (id, listr p).

The operational reading of the right-hand side is that each element of a list is
paired with its boolean value under p, and then those elements paired with true
are selected. Although we won’t go into details, the identity is useful in optimising
computations of filter p when the structure of the predicate p enables listr p to be
computed efficiently.

For the proof we will need a number of identities concerning the functions that
appear in the two expressions for filter. The first group concerns the following
combinators for expressing pairing:

pair (f,g)e = (fa,9a)
outl (a,b) =
outr (a,b) = b.

These functions are related by the properties

outl - pair (f,9) = f (1.1)
outr - pair (f,9) = g. (1.2)

As we shall see in the next chapter, these properties characterise the notion of a
categorical product.

For the function nilp we have two rules:

nip-f = mnilp (1.3)
listrf -milp = nilp. (14)

The first rule states that nilp is a constant function, and the second rule states that
this constant is the empty list.

For wrap and concat we have the rules

listrf -wrap = wrap-f (1.5)
listr f - concat = concat - listr (listr f). (1.6)

These state that wrap and concat are natural transformations.
For the function zip we use a similar rule:
zip - pair (listr f, listr g) = listr (pair (f, g)). (1.7

This states that zip is a natural transformation taking pairs of lists to lists of pairs.
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For listr we have two rules:

listr(f-9) = lstrf-listrg (1.8)
listrid = id. (1.9)

As we will see in the next chapter, these rules say that listr is what is known as a
functor.

For conditionals we will use the following rules:

(p—>f9)-h = (p-h—>f-hg-h) (1.10)
h-p—>f9) = (p>h-fih-g). (1.11)

These rules say how composition distributes over conditionals.

Finally, the identity function ¢d satisfies two properties, namely

fid = f (1.12)
id-f = f. (1.13)

The two occurrences of id denote different instances of the identity function, one
on the source type of f, and one on its target type.

It might appear that these dozen or so rules have been plucked out of thin air but,
as we have hinted, they form coherent groups based on a small number of concepts
(products, functors, natural transformations, and so on) to be studied in the next
chapter. For now we just accept them.

Having armed ourselves with sufficient tools, we calculate:

listr outl - filter outr - zip - pair (id, listr p)
= {definition of filter}

listr outl - concat - listr (outr — wrap, nil) - zip - pair (id, listr p)
= {equation (1.6)}

concat - listr (listr outl) - listr (outr — wrap, nil) - zip - pair (id, listr p)
= {equation (1.8) (backwards)}

concat - listr (listr outl - (outr — wrap, nil) - zip - pair (id, listr p)
= {equations (1.11), (1.5), and (1.4)}

concat - listr (outr — wrap - outl, nil) - zip - pair (id, listr p)
=  {equation (1.9) (backwards)}

concat - listr (outr — wrap - outl, nil) - zip - pair (listr id, listr p)
= {equation (1.7)}

concat - listr (outr — wrap - outl, nil) - listr (pair (id, p))
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= {equation (1.8) (backwards)}
concat - listr (outr — wrap - outl, nil) - pair (id, p)
= {equations (1.10), (1.1), and (1.3)}
concat - listr (p — wrap - id, nil)
= {equation (1.12)} .
concat - listr (p — wrap, nil)
= {definition of filter}
filter p.

Although this calculation is fairly long — and would have been twice the length if
we had not combined steps — it is very simple. Some slight variations in the order
of the steps is possible; for example, we could have simplified zip - pair (id, listr p)
to listr (pair (id, p)) earlier in the calculation. Apart from this, almost every step is
forced. Indeed, when some students were set the problem in an examination, almost
nobody had difficulties solving it. The problem was also given as a test example to
a graduate student who had designed a simple proof editor, including a ‘go’ button
that automatically applied identities from a given set from left to right until no
more rules in the set were applicable. Apart from expressing rules (1.8) and (1.9)
in reverse form, the calculation proceeded quickly and automatically to the desired
conclusion, somewhat to the student’s surprise.

With this single exercise we hope to have convinced the reader that point-free
reasoning can be effective reasoning. Indeed, most of the many calculations to
come are done in a point-free style. However, while calculations — whether point-
free or pointwise — are satisfying to do, they are far less satisfying to read. It has
been said that calculating is not a spectator sport. Therefore, our advice to the
reader in studying a calculation is first to try and do it for oneself. Only when
difficulties arise should the text be consulted. Although we have strived to present
calculations in the best possible way, there will no doubt be occasions when the
diligent reader can find a shorter or clearer route to the desired conclusion.

Bibliographical remarks

There are numerous introductory textbooks on functional programming; probably
the best background for the material presented here is (Bird and Wadler 1988). A
more modern text that is based on Haskell is (Davie 1992). Both of these books
take non-strict semantics as the point of departure; a good introduction to strict
functional programming can be found in (Paulson 1991). Other recommended books
on functional programming are (Field and Harrison 1988; Henson 1987; Reade 1988;
Wickstrém 1987). There is an archive for functional programming on the world-wide
web which contains a wealth of articles describing the latest developments:
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http://www.lpac.ac.uk/SEL-HPC/Articles/FuncArchive.html

Readers who wish to experiment with the programs presented in this book might
consider the Gofer system (Jones 1994), which is freely available from

ftp://ftp.cs.nott.ac.uk/nott-fp/languages/gofer/

In fact, in later chapters, when we come to study some non-trivial programming
examples, we shall present the result of our derivations as Gofer programs.

The realisation that functional programs are good for equational reasoning is as
old as the subject itself. Two landmark papers are (Backus 1978; Burstall and
Darlington 1977). More recent work on an algebraic approach to the derivation of
functional programs, in which we were involved ourselves, is described in e.g. (Bird
1986, 1987; Bird and Meertens 1987; Bird, Gibbons, and Jones 1989; Bird 1989a,
1989b, 1990; Bird and De Moor 1993b; Jeuring 1989, 1990, 1994; Meertens 1987,
1989). The material of this book evolved from all these works. Quite similar in
spirit, but slightly different in notation and style are (Backus 1981, 1985; Harri-
son and Khoshnevisan 1988; Harrison 1988; Williams 1982), and (Pettorossi and
Burstall 1983; Pettorossi 1985).

Recently there has been a surge of interest in functional languages that, given the
definition of a datatype, automatically provide the user with the associated fold.
One approach, which is quite transparent to the naive user, can be found in (Fegaras,
Sheard, and Stemple 1992; Sheard and Fegaras 1993; Kieburtz and Lewis 1995).
Another approach, which is more elegant but also requires more understanding on
the user’s part, is the use of constructor classes in (Jeuring 1995; Jones 1995; Meijer
and Hutton 1995).






Chapter 2

Functions and Categories

This chapter provides a brief introduction to the elements of category theory that are
necessary for understanding the rest of the book. In particular, it emphasises ways
in which category theory offers economy in definitions and proofs. Subsequently, it
is shown how category theory can be used in defining the basic building blocks of
datatypes, and how these definitions give rise to a set of combinators that unify the
operators found in functional programming and program derivation. In Chapter 3
these combinators, and the associated theory, are illustrated in a number of small
but representative programming examples.

One does not so much learn category theory as absorb it over a period of time. It is
difficult, at a first or second reading, to appreciate the point of many definitions and
the reasons for the subject’s abstract nature. We have tried to take this into account
in two ways: first, by adopting a strictly minimalist style, leaving out anything that
is not germane to our purpose; and second, by confining attention to a small range
of examples, all drawn from the area of program specification and derivation, which
is, after all, our main topic.

2.1 Categories

A category C is an algebraic structure consisting of a class of objects, denoted by
A,B,C,..., and so on, and a class of arrows, denoted by f,g,h,..., and so on,
together with three total operations and one partial operation.

The first two total operations are called target and source; both assign an object
to an arrow. We write f : A+ B (pronounced ‘f is of type A from B’) to indicate
that the target of the arrow f is A and the source of f is B.

The third total operation takes an object A to an arrow id4 : A « A, called the
identity arrow on A.

The partial operation is called composition and takes two arrows to another one.
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The composition f - g (pronounced ‘f after ¢’) is defined if and only if f : A+ B
and g : B « C for some objects A, B, and C, in which case f-g : A« C. In other
words, if the source of f is the target of g, then f - g is an arrow whose target is the
target of f and whose source is the source of g.

Composition is required to be associative and to have identity arrows as units:
f-(g-h) = (f-9)-h

forall f: A« B,g: B+ Cand h: C+ D, and
ida-f=f=f-idp

forall f: A« B.

Examples of categories

The motivating example of a category is Fun, the category of sets and total func-
tions. In this category the objects are sets and the arrows are typed functions.
More precisely, an arrow is a triple (f, A, B) in which the set A contains the range
of f and the set B is the domain of f. By definition, A is the target and B the
source of (f,A, B). The identity arrow id4 : A « A is the identity function on A4,
and the composition of two arrows (f, A, B) and (g, C, D) is defined if and only if
B = C, in which case

(va,B) : (g’B’D) = (f 9 A,D)1
where, on the right, f - ¢ denotes the usual composition of functions f and g.

Another example of a category is Par, the category of sets and partial functions.
The definition is similar to Fun except that, now, the triple (f, A, B) is an arrow if
A contains the range of f and B contains the domain of f. Since a total function is
a special case of a partial function, Fun is a subcategory of Par.

Generalising still further, a third example of a category is Rel, the category of sets
and relations. This time the arrows are triples (R, A, B), where R is a subset of the
cartesian product A x B. Again, the target of (R, A, B) is A and the source B. The
identity arrow ida : A + A is the relation

ida = {(a,a)]| a€A}

and the composition of arrows (R, 4, B) and (S, B, C) is the arrow (T, A, C), where,
writing aRb for (a, b) € R, we have

aTc = (3b:aRbA bSc).
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We can also combine two categories A and B to form another category A x B,
called the product category of A and B. The product category has, as objects,
pairs (4, B), where A is an object of A and B is an object of B. The arrows are
pairs (f, g), where f is an arrow of A and g is an arrow of B. Composition is defined
component-wise:

(f,9)-(hk) = (f-h,g-k)
The identity arrow id4x s is, of course, (ida, idp).

Although we shall see a number of other examples of categories in due course, Fun,
Par and Rel - and especially Fun and Rel — will be our main focus of interest.

Diagrams .

As illustrated by the above examples, the requirement that each arrow has a unique
target and source can be something of a burden when it comes to spelling out the
details of an expression or equation. For this reason it is quite common to refer to an
arrow f : A « B simply by the identifier f, leaving A and B implicit. Furthermore,
whenever one writes a composition it is implicitly assumed to be well defined. For
these abbreviations to be legitimate, the type information should always be clear
from the context.

A useful device for recording type information is a diagram. In a diagram an arrow
f : A« B is represented as A S B, and its composition with an arrow g : B« C'is

represented as A J g C. For example, one can depict the type information
in the equation id, - f = f as

A f B
N

This diagram has the property that any two paths between the same pair of objects
depicts the same arrow: in such cases, a diagram is said to commute. As another
example, here is the diagram that illustrates one of the laws of the last chapter,
namely, listr f - wrap = wrap - f:

listr A << 4

listr f\ [f
listr B«—— B
wrap
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It is possible to phrase precise rules about reasoning with diagrams, giving them the
same formal status as, say, formulae in predicate calculus (Freyd and Séedrov 1990).
However, in what follows we shall use diagrams mainly for the simple purpose of
supplying necessary type information. Just occasionally we will use a diagram in
place of a calculational proof.

Reasoning with arrows

As a model for the algebra of functions a category is rather a simple structure, and
one has to interpret familiar ideas about functions in terms of composition alone. As
a typical example, consider how the notion of an injective function can be rendered
in an arbitrary category. An arrow m : A « B is said to be monic if

f=9 = m-f=m-g

for all f, g : B+ C. In the particular case of Fun, an arrow is monic if and only if it
is injective. To appreciate the calculational advantage of the above definition over
the usual set-theoretic one, let us prove that the composition of two monic arrows
is again monic. Suppose m : A « B and n : B «+ C are monic. Then we have

= {since m is monic}
nf=n-g
= {since n is monic}

f=g’

and so m - n : A « C is monic.

We can model the notion of a surjective function in an arbitrary category in a
similar fashion. An arrow e : B + C is said to be epic if

f=9 = f-e=g-e

for all f,g : A« B. In the particular case of Fun, an arrow is epic if and only if
it is surjective. A symmetrical proof to the one given above for monics shows that
the composition of two epics is again epic.

Duality

The exploitation of symmetry is very common in category theory and leads to
substantial economy in proof. It is worth while, therefore, to consider it in a bit
more detail. For any category C the opposite category C°? is defined to have the
same objects and arrows as C, but the source and target operators are interchanged
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and composition is defined by swapping arguments:
f-ginC®? = g-fin C.

The category C°P may be thought of as being obtained from C by reversing all
arrows. Reversing the arrows twice does not change anything, so (C°?)°? = C.

Now, let S(C) be a statement about the objects and arrows of a category C. By
reversing the direction of all arrows in §(C), we obtain another statement S°?(C) =
S(C°P) about C. If §(C) holds for each category C, it follows that §°?(C) also
holds for each category C. The converse implication is also true, because (C°P)°P =
C. We have thus proved the equivalence

(VC:S(C)) = (VC:S§°P((C)).
This special case of symmetry is called duality.

To illustrate, recall that above we proved that for any category C, the statement
S(C) =‘the composition of two monics in C is monic’ is true. Reversing the arrows
in the definition of monic gives precisely the definition of epic, and therefore the
statement S°P(C) = ‘the composition of two epics in C is epic’ is also true for any
category C. This argument is summarised by sayiflg that epics are dual to monics.

Some definitions do not change when the arrows are reversed, and a typical example
is the notion of an isomorphism. An isomorphism is an arrow i : A + B such that
there exists an arrow in the opposite direction, say j : B «+ A, such that

j-i=1idg and i-j=ida.

It is easy to show that there exists at most one j satisfying this condition, and this
unique arrow is called the inverse i~! of i. If there exists an isomorphism i : A« B,
then the objects A and B are said to be isomorphic, and we write A & B. In Fun
an arrow is an isomorphism if and only if it is a bijective function, and two objects
are isomorphic whenever they have the same cardinality. When an arrow in Fun is
both monic and epic it is also an isomorphism, but this is a particular property of
Fun that does not hold in every category (see Exercise 2.6 below).

Exercises

2.1 Given is an arrow u : A + A such that f-u = f for all B and f : B + A. Prove
that v = id4. It follows that identity arrows are unique.

2.2 Suppose we have four arrows f : A« B, g: C+— A, h: B+ A,and k: C « B.
Which of the following compositions are well defined:

k-h-f-h g-k-h?

(Drawing a diagram will make this book-keeping exercise very easy.)
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2.3 An arrow 7 : A« B is a retraction if there exists an arrow 7’ : B + A such that
r- 1/ = idg. Show that if r : A « B is a retraction, then for any arrow f : A« C
there exists an arrow g : B+ C such that r-g = f. What is the dual of a retraction?
Give the dual statement of the above property of retractions.

2.4 Show that f - ¢ = id implies that g is monic and f is epic. It follows that
retractions are epic.

2.5 Show that if f - g is epic, then f is epic. What is the dual statement?

2.6 Any preorder (4, <) can be regarded as a category: the objects are the elements
of A, and there exists a unique arrow a « b precisely when a < b. What are the
monic arrows? What are the epic arrows? Is every arrow that is both monic and
epic an isomorphism?

2.7 A relation R : A + B is onto if for all a € A, there exists b € B such that
aRb. Is every onto relation an epic arrow in Rel? If not, are epic arrows in Rel
necessarily partial functions?

2.8 For any category A, it is possible to construct a category Arr(A) whose objects
are the arrows of A. What is a suitable choice for the arrows of Arr(A)? What are
the monic arrows in this category?

2.2 Functors

Abstractly defined, a functor is a homomorphism between categories. Given two
categories A and B, a functor F : A « B consists of two mappings: one maps
objects to objects and the other maps arrows to arrows. Both mappings are usually,
though not always, denoted by the same letter F. (A remark on notation: because
we will need a variety of capital letters to denote relations, single-letter identifiers
for functors will be written using sans serif font. On the other hand, multiple-letter
identifiers for functors will be written in the normal italic font. For example, id
denotes both the identity functor and the identity arrow.)

The two component mappings of a functor F are required to satisfy the property
Ff:FA+FB whenever f:A+ B.

They are also required to preserve identities and composition:
F(ida) = idea and F(f-g) =Ff -Fyg.

Together, these properties mean that functors take diagrams to diagrams.

Some examples of functors are given below. In the literature, the definition of a
functor is often indicated by its action on objects alone. Although we will sometimes
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take advantage of this convention, it is not without ambiguity, since there may be
many functors that have the same action on objects. In such cases we will, of course,
specify both parts of a functor.

Functors can be composed in the obvious way: (F - G)f = F(Gf), and for every
category C there exists an identity functor id : C « C. It follows that functors are
the arrows of a category in which the objects are themselves categories. Admittedly,
the construction of such large categories can lead to paradoxes similar to those
found in set theory; the interested reader is referred to (Lawvere 1966; Feferman
1969) for a detailed discussion. In the sequel, we will suppose that application of
functors associates to the right, so FGA = F(GA). Accordingly, we will often denote
composition of functors by juxtaposition, writing FG in preference to F - G.

Examples of functors

Let us now look at some examples of functors. As we have already mentioned, there
is an identity functor id : C «+ C for every category C. This functor leaves objects
and arrows unchanged.

An equally trivial functor is the constant functor K4 : A « B that maps each object
B of B to one and the same object A of A, and each arrow f of B to the arrow ida
of A. This functor preserves composition since idj4 - id4 = id4.

Next, consider the squaring functor (_)2 : Fun « Fun defined by
A? = {(a,b)|a€Abe A}
fAa,b) = (fa,fb).

It is easy to check that the squaring functor preserves identities and composition
and we leave details to the reader.

Compare the squaring functor to the product functor (x) : Fun + Fun x Fun. We
will write A x B and f x g in preference to x(A4, B) and x(f,g). This functor is
defined by taking A x B to be the cartesian product of A and B, and

(fx9)(a,b) = (fa,9b).

Again, we leave the proof that x preserves identities and composition to the reader.
We met f X g in a programming context in the last chapter, where it was written
as cross (f, g).

Note that (x) takes two arguments (more precisely, a single argument consisting of
a pair of values); such functors are usually referred to as bifunctors. A bifunctor is
therefore a functor whose source is a product category. When F is a bifunctor, the
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functor laws take the form

F(id,id) = id
F(f-h,g-k) = F(f,g) F(h,k).

Next, consider the functor listr : Fun «+ Fun that takes a set A to the set listr A
of cons-lists over A, and a function f to the function listr f that applies f to each
element of a list. We met listr in the last chapter, where we made use of the
following pair of laws:

listr (f-g) = listrf-listrg
listrid = id.

Now we can see that these laws are simply the defining properties of the action of
a functor on arrows. We can also see why this action is denoted by listr f rather
than the more traditional map f.

Next, the powerset functor P : Fun «+ Fun maps a set A to the powerset P A, which
is defined by

PA = {z|zCA}

and a function f to the function Pf that applies f to all elements of a given set. The
powerset functor is, of course, closely related to the list functor, the only difference
being that it acts on sets rather than lists.

Next, the existential image functor E : Fun+ Rel maps aset A to PA, the powerset
of A, and a relation to its existential image function:

(ER)z = {a |A(E|b:aRb/\b€x)}.

For example, the existential image of a finite set £ : P Nat under the relation
(<) : Nat «+ Nat is the smallest initial segment of Nat containing z. Again, if
€ : A+ PA denotes the membership relation on sets, then E(€) is the function that
takes a set of sets to the union of its members; in symbols, E(€) = union.

Note that E and P are very similar (they both send a set to its powerset), but they
are functors between different categories: E : Fun « Rel while P : Fun «+ Fun.
In fact, as we shall make more precise in a moment, P is the restriction of E to
functions.

Finally, the graph functor J : Rel « Fun goes the other way round to E. This
functor maps every function to the corresponding set of pairs, but leaves the objects
unchanged. The graph functor is an example of an inclusion functor that embeds
a category as a subcategory of a larger one. In particular, we have P = EJ, which
formalises the statement that P is the restriction of E to functions.
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Exercises

2.9 Prove that functors preserve isomorphisms. That is, for any functor F and
isomorphism i, the arrow Fi is again an isomorphism.

2.10 What is a functor between preorders? (See Exercise 2.6 for the treatment of
preorders as categories.)

2.11 For any category C, define

H(A,B) = {f|f:A«<BinC}
H(f,h)g = f-g-h

Between what categories is H a functor?
2.12 Consider the datatype of binary trees:
tree A == tipA | bin(tree A, tree A)

This gives a mapping taking sets to sets. Extend this mapping to a functor, i.e.
define tree on functions. (Later in this chapter we shall see how this can be done
in general.)

2.13 The functor P’ : Fun « Fun is defined by

P4 = PA
P(f:A«B)z {a€cA|(VbeB:fb=a:bex)}.

i

Prove that this does indeed define a functor. Show that P’ is different from P. It
follows that P cannot be defined by merely giving its action on objects.

2.3 Natural transformations

Let F,G : A « B be functors between two categories A and B. By definition, a
transformation to F from G is a collection of arrows ¢g : FB « GB, one for each
object B of B. These arrows are called the components of ¢. A transformation is
called natural if

Fh-¢p = ¢a-Gh

for all arrows h : A + B in B. In a diagram, this equation can be pictured as
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rB 2 gp

o o

FA «— GA
ba

We write ¢ : F «+ G to indicate that a transformation ¢ to F from G is natural. One
can remember the shape of the naturality condition by picturing ¢ above the arrow
+ between F and G and associating it both to the left (Fh - ¢) and to the right

(¢ - Gh).

Examples of natural transformations

In the first chapter we met some natural transformations in the category Fun. For
example, consider again the function inits that returns all prefixes of its argument:

“inits(a, ag, - . . an) = [[], [@1], [@1, a2], - - -, [a1, a2, . . ., @n] ].

For each set A there is an arrow inits, : listr (listr A)  listr A. Since
listr (listr ) - inits = inits - listr f,

we have that inits is a natural transformation inits : listr - listr + listr.

Another example, again in Fun: the function forka : A% « A defined by forka =
(a, a) is a natural transformation fork : ()2 + id. The naturality condition is

f2-fork = fork-f.

A natural transformation is called a natural isomorphism if its components are
bijective. For example, in Fun the arrows swapa,p : A X B + B x A defined by
swap (b, a) = (a, b) form a natural isomorphism, with naturality condition

(g x f)-swap = swap-(f x g).

The above examples are typical: all polymorphic functions in functional program-
ming languages are natural transformations. This informal statement can be made
precise, see, for instance, (Wadler 1989), but to do so here would go beyond the
scope of the book.

Relations, that is, arrows of Rel, can also be natural transformations. For example,
the membership relations € 4 : A+ PA are the components of a natural transforma-
tion: € : id + JE. To see what this means, recall that the existential image functor
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E has type Fun «+ Rel and the inclusion functor J has type Rel + Fun. Thus,
JE : Rel « Rel. The naturality condition, namely,

R-€ = €-JER,

says, in effect, that for any set z and relation R, the process of choosing an element
a of z and then a value b such that bRa, is equivalent to the process of choosing
an element of the set {b | (Ja : bRa A a € z)}. This equivalence holds even when z
is the empty set or R is the empty relation, for in either case both processes fail to
produce a result. This particular natural transformation will be discussed at length
in Chapter 4.

Composition of natural transformations

For any functor F, the identity transformation idg : F «F is given by (idg) 4 = idr 4.
Composition of transformations is also defined componentwise. That is, if ¢ : F« G
and ® : G « H, then the composite transformation ¢ - 1 : F « H is defined by

(@-P)a = da-va.

It can easily be checked that ¢-1 is natural, for one can paste two diagrams together:

Fa 24 Ga YA na

3

GA «— GB «— HB
B VB

The outer rectangle commutes because the inner two squares do. Thus, natural
transformations form the arrows of a category whose objects are functors.

One can compose a functor H with each component of a transformation ¢ : F « G
to obtain a new transformation H¢ : HF «+— HG. The naturality of H¢ follows from

HFh - Hpa = H(Fh - ¢4) = H(¢s - Gh) = Hop - HGh.

Anexample is the natural transformation E(€) : E<~EJE. Aswe have seen, E(€4) =
union 4, the function that returns the union of a collection of sets over A.

In what follows we will omit subscripts when reasoning about the components of
natural transformations whenever they can be inferred from context. This is com-
mon practice when reasoning about polymorphic functions in programming.
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Exercises

2.14 The text did not explicitly state-the functors in the naturality condition of
swap. What are they?

2.15 The function 74 takes an element of A and turns it into a singleton set. Verify
that 7: P « id. Do we also have J7 : JE « id?

2.16 The function cp returns the cartesian product of a sequence of sets. It is
defined by

eplz, @, 2] = {la,a2,...,0,] |Vi:1<i<n:q €1}
Is cp a natural transformation? What are the functors involved?

2.17 Let F,G: A «+ B, and H : B + C be functors. Furthermore, let ¢ : F < G be
a natural transformation. Define a new transformation by (#H)4 = dya. What is
the type of this transformation? Show that ¢H is a natural transformation.

In this book, we follow functional programming practice by writing ¢ instead of ¢H.

2.18 The list functor listr : Fun «+ Fun can be generalised to a functor Par + Par
by stipulating that listr f  is undefined if there exists an element in z that is not
in the domain of f. For each set A, we have an arrow head : A « listr A in Par
that returns the first element of a list. Is head a natural transformation id « listr?

2.19 The category AP has as its objects functors A < B and as its arrows natural
transformations. Take for B the category consisting of two objects, with one arrow
between them. Find a category that is isomorphic to AB, whose description does
not make use of natural transformations or functors.

2.4 Constructing datatypes

Our objective in the next few sections is to show how the basic building blocks of
datatypes can be characterised in a categorical style. We will give properties that
characterise various kinds of datatype, such as products, sums, lists and trees, purely
in terms of composition. These definitions therefore make sense in any category —
although it can happen that, in a particular category, some datatypes do not exist.

When these definitions are interpreted in Fun they describe the datatypes we know
from programming practice. However, as we shall see, interpreting the same defi-
nitions in Par or Rel may yield unexpected results. The discussion of these unex-
pected interpretations serves both to deepen our understanding of the categorical
definitions, and as a motivation for Chapter 5, where datatypes are discussed in a
relational setting.
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The simplest datatype is a datatype with only one element, so we begin with the
categorical abstraction of the notion of a singleton set.

Terminal objects

A terminal object of a category C is an object T such that for each object A of C
there is exactly one arrow T+ A. Any two terminal objects are isomorphic. If 7" is
another terminal object, then there exist unique arrows f : T« T’ and g: T/ « T.
But since the identity idr : T « T is the only arrow of its type, it follows that
f g = idr and, by symmetry, g - f = id7/, so T and T’ are isomorphic. This is
sometimes summarised by saying that ‘terminal objects are unique up to (unique)
isomorphism’.

From now on, 1 will denote some fixed terminal object, and we shall speak of the
terminal object. The unique arrow from A to 1 is written ! 4. The uniqueness of !4
can be expressed as an equivalence:

h=l4 = h:leA (2.1)

Such equivalences are called universal properties and we shall see them in abundance
in the pages to follow.

Taking 1 for A in the universal property of 1, we obtain
h o= id. (2.2)
This identity is known as the reflection law. We have also the fusion law
la-f=!p « f:A+B, (2.3)

because !4 - f : 1 +— B. Note that the fusion law may be restated as saying that
! is a natural transformation K; < id, where K, is the constant functor defined
in Section 2.2. Like universal properties, there will be many examples of other
reflection and fusion laws in due course.

In Fun the terminal object is a singleton set, say {p}. The arrow !4 is the constant
function that maps every element of A to p. The statement that the terminal object
is unique up to unique isomorphism states that all singleton sets are isomorphic in
a unique way. In Par and Rel the terminal object is the empty set; in both cases
the unique arrow { } « A is the empty relation 0.

Initial objects

An initial object of C is a terminal object of C°?. Thus, [ is initial if for each
object A of C there is exactly one arrow of type A « I. By duality, it follows that



38 2 / Functions and Categories

initial objects are unique up to unique isomorphism. A commonly used notation for
the initial object of C is 0, and the unique arrow A + 0 is denoted j,4. In Fun the
initial object is the empty set and j4 is the empty function. Thus, the names 0 and
1 for the initial and terminal objects connote the cardinality of the corresponding
sets in Fun. In Par and Rel the initial object is also the empty set, so in these
categories initial and terminal objects coincide.

Exercises

2.20 An element of A is an arrow e : A+ 1. An arrow ¢ : A «+ B is said to be
constant if for all other arrows f,g : B+ C we have c-f = c¢- g. Prove that
any element is constant. Assuming that B has at least one element, show that any
constant arrow ¢ : A < B can be factored as e - ! g for some element e of A.

2.21 An object A is said to be empty if the only arrows with target A are j4 and
id4. What are the empty objects in Fun? Same question for Rel and Fun x Fun.

2.22 What does it mean to say that a preorder has a terminal object? (See Exercise
2.6 for the interpretation of preorders as categories.)

2.23 Let A and B be categories that have initial and terminal objects. Does A x B
have initial and terminal objects?

2.24 Assuming that A and B have terminal objects, what is the terminal object
in AB? (For the definition of A, see Exercise 2.19.)

2.5 Products and coproducts

New datatypes can be built by tupling existing datatypes or by taking their disjoint
union; the categorical abstractions considered here are the notions of product and
coproduct.

Products

A product of two objects A and B consists of an object and two arrows. The object
is written as A x B and the arrows are written outl : A+~ Ax B and outr : B+A X B.
These three things are required to satisfy the following property: for each pair of
arrows f : A« C and g : B « C there exists an arrow (f, g) : A X B « C such that

h=(f,9) = outl-h=fandoutr-h=g (24)
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for all h : A x B « C. This is another example of a universal property: it states
that (f, g) is the unique arrow satisfying the property on the right. The operator
(f, 9) is pronounced ‘pair f and g’. The following diagram summarises the type
information:

tl
ou Ax B outr B

\ \“%

C

A

The diagram also illustrates the cancellation properties
outl - (f,g) =f and outr-(f,g) =g, (2.5)
which are obtained by taking h = (f, ¢g) in the right-hand side of (2.4).
Taking out! for f and outr for g in (2.4), we obtain the reflection law
id = (outl, outr).
Taking (h, k) - m for h in (2.4) and using (2.5), we obtain the fusion law
(h,k)y - m=(f,g) <« h-m=f and k-m=g.
In other words,
(h,k)-m = (h-mk-m). (2.6)

Use of these rules in subsequent calculations will be signalled simply by the hint
products.

Examples of products

In Fun products are given by pairing. That is, A x B is the cartesian product of A
and B, and outl and outr are the obvious projection functions. In the last chapter
we wrote pair (f, g) for the arrow (f, g), with the definition

pair (f,9)a = (fa,ga).

This construction does not define a product in Par or Rel since, for example,
taking g to be the everywhere undefined partial function ) we obtain (f, ) = @ and
so outl - (f,0) = 0, not f. The discussion of products in Par and Rel is deferred
until we have also discussed coproducts.

Any two categories A and B also have a product. As we have seen, the category
A x B has as its objects pairs (4, B), where A is an object of A and B is an
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object of B. Similarly, the arrows are pairs (f, g) where f is an arrow of A and g
is an arrow of B. Composition is defined component-wise, and outl and outr are
the obvious projection functions. In fact we can turn out! and outr into functors
outl : A «— A x B and outr : B + A x B by defining two mappings:

outl(A,B)=A and outr(4A,B)=B
outl(f,9) =f and outr(f,g) =g.

Spans

There is an alternative definition of a product of A and B in a category C, namely,
as the terminal object in the category Span(A, B) of spans over A and B. A span
over A and B is a pair of arrows (f : A« C, g : B+ C) with a common source. The
objects of Span(A, B) are spans over A and B, and the arrows m : (f, g) « (h, k)
are arrows of C satisfying

f-m=h and g-m=k.

The information is summarised in the following diagram:

Ang

N

Composition in Span(A, B) is the same as that in C. The particular span (out! :
A+ A X B, outr : B+ A x B) is the terminal object in Span(A4, B), and (f, g) is just
another notation for !(; ;). Indeed, our earlier definition (2.4) is a special case of
the universal property (2.1) of terminal objects. This fact implies that products are
unique up to unique isomorphism. Also, the reflection and fusion law for products
are special cases of the same laws for terminal objects.

The product functor

If each pair of objects in C has a product, one says that C has products. In such a
case X can be made into a bifunctor C +— C x C by defining it on arrows as follows:

fxg = (f-outl,g- outr). (2.7)

We met X in the special case C = Fun in Section 2.2. For general C the proof
that X preserves identities is immediate from the reflection law (outl, outr) =
To show that X also preserves composition, that is,

(Fxg)-(hxk) = (f-h)x(g-k),
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it suffices to prove the absorption law

(fxg)-(p,a) = (f-pg-a). (2.8)

Taking p = h- outl and ¢ = k- outr in (2.8) gives the desired result. Here is a proof
of (2.8):

(fxg)-(p,9)
{definition of x}

(f -outl, g - outr) . (P, Q)
{fusion law (2.6)}

(f - outl - (p,q), 9 - outr - (p, q))
= {cancellation law (2.5)}

(fp)gq)

Using the definition of x and the cancellation law (2.5), we now obtain that outl
and outr are natural transformations:

outl : outl + (x) and outr : outr « (x).

Note the two uses of outl and outr, both as a collection of arrows and as functors
between two categories. Again, use of any of the above properties in calculations
will often be signalled from now on simply by the hint products.

Coproducts

The product of A and B in C°? is called the coproduct of A and B in C. Thus
coproducts, like products, also consist of one object and two arrows for each A and
B. The object is denoted by A + B, and the two arrows by inl : A+ B + A and
inr: A+ B+ B. Given f: C+ A and g: C « B, the unique arrow C «+— A+ B
is written [f, g], and pronounced ‘case f or ¢g’. Thus, the coproduct in C is defined
by the universal property

h=[f,9] = h-inl=fandh-inr=yg (2.9)

for all h: C «+ A + B. The following diagram spells out the type information:

4 inl A+B mnr B
ST
C

The properties of coproducts follow at once from those of products by duality, but
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we can also describe them in a direct approach. The cancellation properties are:

[f,g] ml=f and [f,g]-im‘=g,

These can be obtained by taking h = [f, g] on the right of (2.9). Taking inl for f
and inr for g in (2.9) we obtain the reflection law

id = [inl,inr].
Taking m - [h, k] for h, we obtain the fusion law
m-[hkl=[f,9] & m-h=f and m-k =g,
which is the same as saying
m-[h,k] = [m-h,m-Ek].

Use of these laws in calculations is signalled by the hint coproducts.

The coproduct functor

We also obtain a bifunctor + whose definition on arrows is
f+g = [inl-f,inr-g].
The composition and fusion laws

(f+9)-(h+k) = f-htg-k
V’g]'(h+k) [fh,gk]

follow at once by duality, though one can also give a direct proof.

Coproducts in Fun are disjoint unions:
A+B = {(a,0)]|a€c A}U{(b,1)]|be B}.

Thus inl adds a O tag, while inr adds a 1. In a functional programming style one
can do this rather more directly, avoiding the artifice of using 0 and 1 as tags, by
defining A + B with the type declaration

A+ B == inlA|inrB
and the case operator by
[f,gl(inla)=fa and [f,g](inrb)=gd.

Note that in Fun if A is of size m and B is of size n, then A + B is of size m + n
while A x B is of size m x n. Unlike products, coproducts in Par and Rel are
defined in exactly the same way as in Fun.
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Products in Par and Rel

As we have already indicated, we cannot define products in Par simply by taking
the cartesian product of two sets. The reason bears repeating: the cancellation laws

outl - (f,g) =f and outr-(f,9)=g

fail to hold under the interpretation (f, g) a = (f @, g @) when f and g are partial.
To be sure, in lazy functional programming, these laws are restored to good health
by extending the notion of function to include a bottom element | and making
constructions such as pairing non-strict. We will not go into details because this
approach is not exploited in this book.

Instead, we can define A x B in Par by
Ax B == inlA| mid(A,B) | inrB.
The partial function outl : A «+ A x B is defined by the equations

outl (inla) = a
outl (mid (a,b)) = a
outl (inr b) = wundefined,

and outr by
outr (inl ) = wundefined
outr (mid (a,b)) = b
outr (inrb) = b.

The pair operator is defined by

(f,9)a = inl(fa), if defined (f a) and undefined (g a)
= inr(ga), if undefined (f a) and defined (g a)
= mid(f a,ga), otherwise.

To check, for example, that (outl - (f, g)) a = f a for all a we have to consider four
cases, depending on whether f @ and g a is defined. Taking just one case, suppose
f a is undefined and g a is defined. Then we have (f,g)a = inr (g a). But then
outl (inr (g a)) is undefined, as required. The other cases are left as exercises.

The definition of products in Rel is simpler because products coincide with coprod-
ucts. That is, we can define A x B to be the disjoint union of A and B. The reason
is that every relation has a converse and so Rel is the same as Rel°?. This is
the same reason why initial objects and terminal objects coincide in Rel. We will
discuss this situation in more depth in Chapter 5.
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Polynomial functors

Functors built up from constants, products and coproducts are said to be polyno-
mial. More precisely, the class of polynomial functors is defined inductively by the
following clauses:

e The identity functor id and the constant functors K4 for varying A are poly-
nomial;

e If F and G are polynomial, then so are their composition FG, their pointwise
sum F + G and their pointwise product F x G. These pointwise functors are
defined by

(F+G)h = Fh+Gh
FxGh = FhxGh.

For example, the functor F defined by FX = A+ X x A and Fh = ida + h x id4 is
polynomial because

F=K4+ (id X KA),
where, in this equation, + and X denote the pointwise versions.

Polynomial functors are useful in the construction of datatypes, but they are not
enough by themselves; we also need type functors, which correspond to recursively
defined types. These are discussed in Section 2.7. For datatypes that make use
of function spaces, and for a categorical treatment of currying in general, we need
exponential objects; these are discussed in Chapter 3.

Exercises

2.25 The partial order (Nat, <) of natural numbers can be regarded as a category
(see Exercise 2.6). Does this category have products? Coproducts?

2.26 Show that in any category with a terminal object and products there exist
natural isomorphisms

unit : A< Ax1
swap : AXB+BxA
assocr : Ax(Bx C)+ (AxB)xC.

These natural isomorphisms arise in a number of examples later in the book. The
inverse arrow for assocr will be denoted by assocl; thus,

assocl : (AxB)x C+ Ax(BxC)

satisfies assocl - assocr = id and assocr - assocl = id.
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2.27 Prove the exchange law
([fa g]v [h’ k]) = [(f’ h)v <97 k)]

2.28 Consider products and coproducts in Fun. Are the projections (outl, outr)
epic? Are the injections (inl, inr) monic? If the answers to these two questions are
different, does this contradict duality?

2.29 Let A be a category with products. What are the products in Arr(A)? (See
Exercise 2.8 for the definition of Arr(A).)

2.30 Complete the verification of the construction of products in Par.

2.31 A lazy functional programming language can be regarded as a category, where
the types are objects and the arrows are (meanings of) programs. Does pair forming
give a categorical product in this category?

2.6 Initial algebras

In order to say exactly what a recursively defined datatype is, we need one final
piece of machinery: the notion of an initial algebra.

Let F : C « C be a functor. By definition, an F-algebra is an arrow of type
A < FA, the object A being called the carrier of the algebra. For example, the
algebra (Nat,+) of the natural numbers and addition is an algebra of the functor
FA=AXxAand Fh="h X h.

A F-homomorphism to an algebra f : A < FA from an algebra g : B «+ FB is an
arrow h : A « B such that

h-g = f-Fh.

The type information is provided by the diagram:

B<2 B

|

A<~—FA
f

To give just one simple illustration, consider the algebra (+) : Nat « Nat? of
addition, and the algebra (@) : Nat, « Nat? of addition modulo p, where Nat, =
{0,1,...,p—1} and n ® m = (n + m) mod p. The function hn = nmod p is a
(-)2-homomorphism to @ from +.
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Identity arrows are homomorphisms, and the composition of two homomorphisms is
again a homomorphism, so F-algebras form the objects of a category Alg(F) whose
arrows are homomorphisms. For many functors, including the polynomial functors
of Fun, this category has an initial object, which we shall denote by a : T+ FT (the
letter T stands for ‘Type’ and also for ‘Term’ since such algebras are often called
term algebras). The proof that these initial algebras exist is beyond the scope of
the book; the interested reader should consult (Manes and Arbib 1986).

The existence of an initial F-algebra means that for any other F-algebra f : A< FA,
there is a unique homomorphism to f from a. We will denote this homomorphism
by (f), so (f]) : A+ T is characterised by the universal property

h=(f) = h-a=f-Fh. (2.10)

The type information is summarised in the diagram:

T2 FT

(Lf])l lF(Lf])
A~ FA

Arrows of the form (f]) are called catamorphisms, and we shall refer to uses of
the above equivalence by the hint catamorphisms. (The word ‘catamorphism’ is
derived from the greek preposition kara meaning ‘downwards’.) Catamorphisms,
like other constructions by universal properties, satisfy fusion and reflection laws.
Before giving these, let us first pause to give two examples that reveal the notion
of a catamorphism to be a familiar idea in abstract clothing.

Natural numbers

Initial algebras of the category Fun will be named by type declarations of the kind
commonly found in functional programming. For example,

Nat := zero | succ Nat

declares [zero, succ] : Nat « F Nat to be the initial algebra of the functor F defined
by FA =1+ A and Fh = id; + h. Here zero : Nat «+ 1 is a constant function.
The names Nat, zero and succ are inspired by the fact that we can think of Nat
as the natural numbers, zero as the constant function returning 0, and succ as the
successor function. The functor F is polynomial, so the category Alg(F) has an
initial object; the purpose of the type declaration is to give a name to this initial
algebra.
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Every algebra of the functor F : Fun « Fun takes the form [c, f] for some constant
function ¢ : A « 1 and function f : A « A To see this, let h : A« FA be an
F-algebra. We have h = [h - inl, h - inr], so we can set ¢ = h - inl and f = h - inr.
It is clumsy to write ([c, f]) so we shall drop the inner brackets and write (c,f]
instead.

It is helpful to spell out exactly what function h is defined by h = (¢, f]). Simplifying
the definition, we find

h-a=[cf] Fh
{definition of F}

h-a=lcf]- (id + h)
{coproduct}

h-a=]cf-h

=  {since a = [zero, succ|}

h - [zero, succ) = [c, f - h]
{coproduct}

[h - zero,h - succ] = [, f - h]
{cancellation}

h-zero=cand h-succ=f-h.

Writing 0 for the particular constant returned by the constant function zero and
n + 1 for succn, we now see that h = ((c,f] is the unique solution of the two
equations

h(0) = ¢
h(n+1) = f(hn).

In other words, h = foldn (c, f). Thus (¢, f])) = foldn (c, f) in the datatype Nat.

Strings

The second example deals with lists of characters, also called strings:
String = mil | cons (Char, String).

In the next section we will generalise this datatype to lists over an arbitrary type,
but it is worth while considering the simpler case first. The above declaration
names [nil, cons] : String « F String to be the initial algebra of the functor FA =
1+ (Char x A) and Ff = id + (id x f). In particular, nil : String < 1 is a constant
function, returning the empty string.
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Like the example of Nat given above, every algebra of this functor takes the form
[c, f] for some constant ¢ : A4 + 1 and function f : A « Char x A. Simplifying, we
find that h = (¢, f] is the unique solution of the equations
hnil = ¢
h(cons(a,z)) = f(a,hz).

In other words, (¢, f])) = foldr (¢, f) in the datatype String. So, once again, (c,f)
corresponds to a fold operator.

Fusion

From the definition of catamorphisms we immediately obtain the reflection law
(o = id (2.11)
and the very useful fusion law
h-(f)=(9) <« h-f=g-Fh (212)

The fusion law can be proved by looking at the diagram

This diagram commutes because the lower part does (by assumption) and the upper
part does (by definition of catamorphism). But since ((g]) is the unique homomor-
phism from « to g, we conclude that (g) = A - (f).

The fusion law for catamorphisms is probably the most useful tool in the arsenal of
techniques for program derivation, and we shall see literally dozens of uses in the
programming examples given in the remainder of the book. In particular, it can be
used to prove that « is an isomorphism. Suppose in the statement of fusion we take
both g and & to be a. Then we obtain a - ([f]) = (o] = id provided - f = a - Fe.
Clearly, we can choose f = Fa and as a result we obtain a- (Fa]) = id. We can also
show that (Fa) - o = id:

(Fa) - «
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= {cata}
Fa - F(Fa)
= {F functor}
F(a- (Fa))
=  {above}
Fid
= {F functor}
id
The fact that « is an isomorphism was first recorded in (Lambek 1968), and it

is sometimes referred to as Lambek’s Lemma. Motivated by his lemma, Lambek
called (o, T) a fixpoint of F, but we shall not use this terminology.

Exercises

232 Let fy: A« Bx A fi: A« AxC and f : A+ B. Define a functor F, an
F-algebra g : A + FA, and mappings ¢; (i = 0,1, 2) such that ¢; g = f;.

2.33 What is the initial algebra of the identity functor?

2.34 Let o : T «+ FT be the initial algebra of F. Prove that m’ - m = idy implies
that m is a catamorphism.

2.35 Show that (f - g) = f - (g Ff)D-

2.36 Let o : T «+ FT be the initial algebra of F. Show that if f : A « T, then
f = outl - (g] for some g.

2.37 Give an example of a functor of Fun that does not have an initial algebra.
(Hint: think of an operator F taking sets to sets such that F A is not isomorphic to
A for any A.)

2.7 Type functors

Datatypes are often parameterised. For example, we can generalise the example of
strings described above to a datatype of cons-lists over an arbitrary A:

listrA == mnil| cons (4, listr A).

This declares [nil, cons]a : listr A «+ F4(listr A) to be the initial algebra of the
functor F 4 defined by F4(B) =1+ (A x B) and F4(f) = i¢d + (id x f). We can, and
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will, write F(A, B) instead of F4(B), in which case we think of F as a bifunctor.
We will always arrange the arguments of a bifunctor so that the functor obtained
by fixing the first argument (and varying the second) is the one that describes the
initial algebra.

To illustrate this important convention, consider the declaration
listt A == mnil| snoc (listl A, A),

which describes the type of snoc-lists over A. Snoc-lists are similar to cons-lists
except that we build them by adding to the end rather than to the beginning of the
list. The algebra [nil, snoc| is the initial algebra of the bifunctor

F(4,B) = 1+ (B x A).

Fixing the first argument gives us a functor F 4(f) = F(id4, f) and it is this functor
that describes the initial algebra.

Let F be a bifunctor with the collection of initial algebras ag4 : TA«+ F(A, TA). The
construction T can be made into a functor by defining

Tf = («a-F(f,1id). (2.13)
For example, the cons-list functor is defined by
listrf = ([nil,cons]- (id + (f x id)))

which simplifies to listr f = (nil, cons - (f x id)]). Translated to the point level, this
reads

listrfnil = il
listr f (cons (a,z))

cons (f a, listr f z),
so listr f is just what functional programmers would call map f, or maplist f.

We have, of course, to prove that T preserves identities and composition, so let us
do it. First:

Tid
{definition}
(a - F(id, id))
= {bifunctors preserve identities}
()
= {reflection law}
id.
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Second:

Tf-Tyg

= {definition}

= {fusion (see below)}
(Ia : F(f, 2d) : F(g, Zd)])

= {F bifunctor}

= {definition}
T(f-9)-

The appeal to fusion is justified by the following more general argument:

(r) - Tg = (- F(g,id))
{definition of T}

(2] - (- F(g,id)) = (k- F(g, id))

< {fusion}
{cata}

h - F(id, (R)) - F(g,id) = h - F(g, id) - F(id, (h])
{F bifunctor}

true.

This argument in effect shows that

(h)-Tg = (h-F(g,id)). (2.14)

In words, a catamorphism composed with its type functor can always be expressed
as a single catamorphism. Equation (2.14) is quite useful by itself and we shall refer
to it in calculations by the hint type functor fusion. To give just one example now:
if sum = (zero, plus] is the function sum : Nat « listr Nat, then

sum - listrf = (zero,plus- (f x id)).

Now that we have established that T is a functor, we can show that a: T+ Gis a
natural transformation, where Gf = F(f, Tf). We argue in a line:

Tf-a=a-F(f,id) -F(id,Tf)=a-F(f,Tf) =a-Gf.

In what follows we will say that («,T) is the initial type defined by the bifunctor F.
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Before passing on to examples we make three remarks. The first is that it is impor-
tant not to confuse the type functor T associated with a datatype with the functor
F that defines the structure of the datatype. We will call the latter the base functor.
For example, the datatype of cons-lists over an arbitrary A has as base functor the
functor F defined on arrows by Ff = id; + id4 x f, whereas the type functor listr is
defined on arrows by listr f = (nil, cons - (f x id)).

The second remark is that, subject to certain healthiness conditions on the functor
involved, the initial algebras in Par and Rel coincide with those in Fun. This will
be proved in Chapter 5.

The third remark concerns duality. As with the definitions of terminal objects and
products, one may dualise the above discussion to coalgebras. This gives a clean
description, for instance, of infinite lists. We shall not have any use for such infinite
data structures, however, and their discussion is therefore omitted. The interested
reader is referred to (Manes and Arbib 1986; Malcolm 1990b; Hagino 1989) for
details.

Exercises

2.38 The discussion of initial types does in fact allow bifunctors of type F : A «
(B x A). Consider the the initial type (e, T). Between what categories is T a
functor? An example where B = Fun x Fun and A = Fun is

F((F,9),h) = f+g
What is the initial type of this bifunctor?

2.39 Let F be a bifunctor, and let (e, T) be the corresponding initial type. Let G
and H be unary functors, and define LA = F(GA, HA). Prove that if ¢ : H«L, then
(¢) : H«TG.

2.40 A monad is a functor H : A «+ A, together with two natural transformations
7 :H <+ id and p : H + HH, such that

p-Hp=id=p-n and p-p=p-Hy

Many initial types give rise to a monad, and the purpose of this exercise is to prove
that fact. Let F be a bifunctor given by

F(f,9) = f+Gy,

for some other functor G. Let (a, T) be the initial type of F. Define ¢ = o - inl and
¢ = (id,a - inr]). Prove that (T, ¢,) is a monad, and work out what this means
for the special case where Gg = g x g.
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Bibliographical remarks

The material presented in this chapter is well documented in the literature. There
is now a variety of textbooks on category theory that are aimed at the computing
science community, for instance (Asperti and Longo 1991; Barr and Wells 1990;
Pierce 1991; Rydeheard and Burstall 1988; Walters 1992a). The idea to use initiality
for reasoning about programs goes back at least to (Burstall and Landin 1969), and
was reinforced in (Goguen 1980). However, this work did not make use of F-algebras
and thus lacks the conciseness that gives the approach its charm. Nevertheless,
the advantages of algebra in program construction were amply demonstrated by
the CIP-L project, see e.g. (Bauer, Berghammer, Broy, Dosch, Geiselbrechtinger,
Gnatz, Hangel, Hesse, Krieg-Briickner, B., Laut, A., Matzner, T., Méller, B., Nickl,
F., Partsch, H., Pepper, P., Samelson, K., Wirsing, M., and Wassner, H. 1985;
Bauer, Ehler, Horsch, Méller, Partsch, Paukner, O., and Pepper, P. 1987; Partsch
1990).

The notion of F-algebras first appeared in the categorical literature during the 1960s,
for instance in (Lambek 1968). Long before the applications to program derivation
were realised, numerous authors e.g. (Lehmann and Smyth 1981; Manes and Arbib
1986) pointed out the advantages of F-algebras in the area of program semantics.
Hagino used a generalisation of F-algebras in designing a categorical programming
language (Hagino 1987a, 1987b, 1989, 1993), and (Cockett and Fukushima 1991)
have similar goals.

It is (Malcolm 1990a, 1990b) who deserves credit for first making the program
derivation community aware of this work. The particular treatment of datatypes
given here is strongly influenced by the presentations of our colleagues in (Spivey
1989; Gibbons 1991, 1993; Fokkinga 1992a, 1992b, 1992c; Jeuring 1991, 1993;
Meertens 1992; Meijer 1992; Paterson 1988). In particular, Fokkinga’s thesis con-
tains a much more thorough account of the foundations, and Jeuring presents some
spectacular applications. The paper by (Meijer, Fokkinga, and Paterson 1991) is
an introduction specially aimed at functional programmers.

One topic that we avoid in this book (except briefly in Section 5.6) is the categorical
treatment of datatypes that satisfy equational laws. An example of such a datatype
is, for instance, the datatype of finite bags. Our reason for not discussing such
datatypes is that we feel the benefits in later chapters are not quite justified by the
technical machinery required. The neatest categorical approach that we know of to
datatypes with laws is (Fokkinga 1996); see also (Manes 1975). There are of course
many data structures that are not easily expressed in terms of initial algebras, but
recently it has been suggested that even graphs fit the framework presented here,
provided laws are introduced (Gibbons 1995).

Another issue that we shall not address is that of mechanised reasoning. We are
hopeful, however, that the material presented here can be successfully employed in
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a mechanised reasoning system: see, for instance, (Martin and Nipkow 1990).



Chapter 3

Applications

Let us now come down to earth and illustrate some of the abstract machinery we
have set up in the preceding chapter with a number of programming techniques
and examples. We also take the opportunity to discuss some features of functional
programming that have not been covered so far in a categorical setting. These
include the use of currying and conditionals.

3.1 Banana-split

Recall that the type of cons-lists over A is defined by
lisstr A == mnil | cons (A, lstr A).

The function sum returns the sum of a list of numbers and is defined by the cata-
morphism

sum = (zero, plus),

where plus(a, b) = a+b. Similarly, the function length is defined by a catamorphism
length = (zero, succ - outr)).

Given these two functions we can define the function average by
average = diw - (sum,length),

where div(m, n) = m/n. Of course, applied to the empty list average returns 0/0
and we had better fix this problem if average is to be a total function. So let
div(0,0) = 0.

Naive implementation of this definition of average yields a program that traverses
its argument list twice: once for the computation of sum, and once for the compu-
tation of length. An obvious strategy to obtain a one-pass program is to express
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(sum, length) as a single catamorphism. This is in fact possible for any pair of
catamorphisms, irrespective of the details of this particular problem: we have

((hD, (kD) = ((h-Foutl,k - Foutr)),

where F is the — so far — unmentioned base functor of the catamorphism. The above
identity is known among researchers in the field as the banana-split law (because
catamorphism brackets are like bananas, and because the pairing operator has also
been called ‘split’ in the literature). To prove the banana-split law, it suffices by
the universal property of catamorphisms to show that

((hD, (kD) -« = (h-Foutl,k-F outr) - F((R), (k))-
This equation can be verified as follows:
((rD, (kD) -

{split fusion}

((r) - o, (K] - @)
{catamorphisms}

(h - F(R], & - F(kD)

= {split cancellation (backwards)}

(h - F(outl - ((h], (kD)), k - F(outr - ((h], (¥])))
{F functor}

(h - Foutl - F((h), (kD), k - Foutr - F((R), (k)))
{split fusion (backwards)}

(h - Foutl, k - Foutr) - F((h), (k)).

Applying the banana-split law to the particular problem of writing (sum, length) as
a catamorphism, we find that

(sum, length) = (zeros, pluss)

where zeros = (zero, zero), and pluss(a,(b,n)) = (a + b,n + 1). The banana-split
law is a perfect example of the power of the categorical approach: a simple technique
of program optimisation involving the merging of two loops is generalised to struc-
tural recursion over arbitrary datatypes and proved with a short and convincing
argument.

Exercises

3.1 Let FX =1+ (N x X). Show that

([2ero, plus] - Foutl, [zero, succ - outr] - Foutr) = [zeross, pluss].
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3.2 Let F : C « C, where C is a category that has products. Define ¢ =
(Foutl, Foutr). Between what functors is ¢ a natural transformation? Prove that
the naturality condition is indeed satisfied.

3.3 A list of numbers is called steep if each element is greater than the sum of the
elements that follow it:

steep nil true

steep (cons (a,z)) = a> sumz A steepz.
A naive implementation takes quadratic time. Give a linear-time program.

3.4 The pattern in the preceding exercise can be generalised as follows. Suppose
that h: B« FB, and

«

T FT
1 IFe, )
A~ F(4xB)

commutes. Construct k£ such that f = outl - (k) and prove that your construction
works.

3.5 Consider the datatype of trees:
tree A == null | node (tree A, A, tree A).
A tree is balanced if at each node we have
1/3 < n/(n+m+1) < 2/3,
where n and m are the sizes of the left and right subtree respectively.

Apply the preceding exercise to obtain an efficient program for testing whether a
tree is balanced.

3.6 The function preds : list Nat < Nat takes a natural number n and returns the
list [n,n—1,...,1]. Apply Exercise 3.4 to write preds in terms of a catamorphism.

3.7 The factorial function can be defined as
fact = product - preds,

where product returns the product of a list of numbers. Use the preceding exercise
and fusion to obtain a more efficient solution.
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3.8 Prove Fokkinga’s mutual recursion theorem:
f-a=h-F{f,9) A g-a=k-F{f,g)

(f,9) = (b, B)D.

It may be helpful to start by drawing a diagram of the types involved. Show that the
banana-split law and Exercise 3.4 are special cases of the mutual recursion theorem.

3.2 Ruby triangles and Horner’s rule

The initial type of cons-lists is the basis of the circuit design language Ruby (Jones
and Sheeran 1990), which is in many ways similar to the calculus used in this book.
Ruby does, however, have a number of additional primitives. One of these primitives
is called triangle. For any function f : A « A, the function ¢rif : listr A < listr A
is defined informally by

tr'if[ao,al,...,ai,...,an]=[ao,fal,...,fia,-,...,f"an].

In Ruby the single most important result for reasoning about triangles is the fol-
lowing one. For all f and c,

(c,g) - trif =(c,g-(idxf)) « f-c=candf-g=g-(fxf).

In Ruby, this fact is called Horner’s rule, because it generalises the well-known
method for evaluating polynomials. If we take ¢ = 0, g(a, b) = a+b, and f a = ax«z,
then the above equation states that because

Oxz = 0
(a+b)xz = axz+bxuz,

we have

@+ XT+axzl+ - +a, xz"
= a+(@m+(e2+-(aa+0)xz--) X 1)

In Ruby, Horner’s rule is stated only for the type of lists built up from nil and cons.
The purpose of this section is to generalise Horner’s rule to arbitrary initial types,
and then to illustrate it with a small, familiar programming problem.

First, let us define tri f : listr A « listr A formally: we have
trif = (nil,cons- (id x listr f)).

The base functor of cons-lists is F(4,B) = 1+ A x B, and the initial algebra
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a = [nil, cons), so we can write the above in the form
trif = (a-F(id,listr f)).

This immediately gives the abstract definition: let F be a bifunctor with initial type
(o, T); then

trif = (a-F@d,TH).

For the definition to make sense we require f to be of type A « A for some 4, in
which case tri f : TA«TA. We aim to generalise Horner’s rule by finding conditions
such that

(9)-trif = (g-F(id,f)).
The type information is illustrated in the following diagram:

A F44) Ta—TS

TA
fl 9 qu\ ) /([g-F(id,f)])

A A

By fusion it suffices to find conditions such that
(9) -«-F(id, Tf) = g-F(id,f)-F(id, (g))-
We calculate:

{catamorphisms}

{F bifunctor}
g - F(id, (gD - Tf)

{type functor fusion (2.14)}
9 - F(id, (g - F(f,id)))

{claim: see below}
g-F(id,f - (D)

{F bifunctor}
9 - F(id,f) - F(id, (g))
The claim is that (g - F(f,id)) = f - (9). Appealing to fusion a second time, this
equation holds if

f-9 = g-F(f,id)-F(id,f).
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Since the right-hand side equals g - F(f,f), we have shown that
(9D -trif = (g-F(id,f)) <« f-g=g-F(f,f)

For the special case of lists this is precisely the statement of Horner’s rule in Ruby.

Depth of a tree

Now consider the problem of computing the depth of a binary tree. We define such
trees with the declaration

tree A == tip A | bin (tree A, tree A).

The base functor F of this definition is F(A, B) = A+ B x B, and the initial type of
F is ([tip, bin], tree). We have that f = (g, k] is the unique solution of the equations

f(tipa) = ga
f(bin(z,y)) = h(fz,fy),

so (g, h] is the generic fold operator for binary trees. In particular, the map operator
tree f for binary trees is defined by

treef = ([tip, bin] - F(f,1d)).

At the point level, this equation translates into two equations

treef (tipa) = tip(fa)
treef (bin (z,y)) = bin(treef z,treef y).

The function maz : N < tree N returns the maximum of a tree of numbers:
maz = (id, bmaz),

where bmaz (a, b) returns the maximum of a and b. The function depths : tree N
tree A takes a tree and replaces every tip by its depth in the tree:

depths = tri succ - tree zero,

where zero is the constant function returning 0, and succ is the successor function.
Finally, we specify the depth of a tree by

depth = maz - depths.

A direction implementation of depth will require time that is quadratic in the num-
ber of tips. For an unbalanced tree of n tips with a single tip at every positive
depth, the computation of depths requires evaluation of succ* for 1 < ¢ < n and
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this takes O(n?) steps. We aim to improve the efficiency by applying the generalised
statement of Horner’s rule to the term maz - tri succ. The proviso of Horner’s rule
in this case is that

succ - [id, bmaz] = [id, bmaz] - (succ + succ X succ).
Since succ - id = id - succ we require
succ- bmazx = bmaz - (succ X succ),
but this is equivalent to the fact that succ is monotonic. Therefore, we obtain

depth
= {definitions}
maz - tri succ - tree zero
=  {Horner’s rule}
([2d, bmaz] - (id + succ x succ)) - tree zero
=  {coproducts}
(id, bmaz - (succ x succ)) - tree zero
=  {since bmaz - (succ X succ) = succ - bmaz}
(id, succ - bmaz)) - tree zero
= {type functor fusion}

(zero, succ - bmaxz)).

This is the obvious linear-time program for computing the maximum depth of a
tree.

The moral of this example is that the categorical proof of familiar laws about lists
(such as Horner’s rule) are free of the syntactic clutter that a specialised proof
would require. Furthermore, the categorically formulated law sometimes applies to
programming examples that have nothing to do with lists.

Exercises
3.9 The function slice :: list (listr* A) « list (listr* A) is given informally by
slice (29, T1,...,Tn-1] = [dropOmzp,droplz,...,drop(n—1)zn-1],

where drop n z drops the first n elements from the list z. Define the function slice
in terms of tri.
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3.10 The binary hyperproduct of a sequence of numbers lag, a1, ..., an_1] is given
by ]'[;:01 a?'. Using Horner’s rule, derive an efficient program for computing binary

hyperproducts.

3.11 Horner’s rule can be generalised as follows. If k- g = g - F(f, k), then
(9)-trif = (g-F(id,h)).

Draw a diagram of the types involved and prove the new rule.

3.12 Show that, when the new rule of the preceding exercise is applied to polyno-
mial evaluation, there is only one possible choice for h.

3.13 Specify the problem of computing Z::OI ia; in terms of tri. Horner’s rule is
not immediately applicable, but it is if you consider computing (Z::ol iai, . ;)
instead. Work out the details of this application.

3.14 Consider binary trees of type
tree A = tip A| node (tree A, tree A).

The weighted path length of a tree of numbers is obtained by multiplying each tip
by its depth, and then summing the tips. Define a function wpl : Nat < tree Nat
that returns the weighted path length of a tree, using tri. Using Horner’s rule,
improve the efficiency of the definition.

3.3 The TEX problem — part one

The TEX problem (Knuth 1990; Gries 1990a) is to do with converting between bi-
nary and decimal numbers in Knuth’s text processing system TgX (used to produce
this book). TEX uses integer arithmetic, with all fractions expressed as integer
multiples of 276, Since the input language of TEX documents is decimal, there is
the problem of converting between decimal fractions and their nearest representable
binary equivalents.

Here, we are interested only in the decimal to binary problem; the converse problem,
which is more difficult, will be dealt with in Chapter 10. Let z denote the decimal
fraction 0.dyds ... d; and let

i=k
val(z) = Z d; /107 (3.1)
j=1

be the corresponding real number. The problem is to find the integer multiple
of 2716 nearest to wval(x), that is, to round 2'6val(z) to the nearest integer. If
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two integers are equally near this quantity, we will take the larger; so we want
n = |2'%val(z) + 1/2]. The value n will lie in the range 0 < n < 216.

So far, so good. But it is required to use integer arithmetic only in the calcula-
tion and to keep intermediate results reasonably small, so there is a programming
problem to get round.

To formulate (3.1) in programming terms we will need the datatype
Decimal ::= nil | cons (Digit, Decimal).

The function val : Unit « Decimal, where Unit denotes the set of real numbers r
in the unit interval 0 < r < 1, is then given by the catamorphism

(zero, shift)
(d +r)/10.

val

shift (d, r)

For example, with z = [dy, dz, d3] we obtain that valz is the number
(di + (d2 + (d5s + 0)/10)/10)/10 = d1/10 + d5/100 + d3/1000.

Writing [0, 216] for the set of integers n in the range 0 < n < 26, our problem is to
compute intern : [0,2'6] «— Decimal, where

intern = round - val
roundr = |[(2Yr+1)/2),

under the restriction that only integer arithmetic is allowed.

For completeness, we specify the converse problem, which is to compute a function
extern : Decimal « [0,2'¢), where [0,2'6) denotes the set of integers n in the
range 0 < n < 216 The function eztern is defined by the condition that for all
arguments n the value of extern n should be a shortest decimal fraction satisfying
intern (extern n) = n. We cannot yet formalise this specification, let alone solve
the problem, since the definition does not identify a unique decimal fraction, and
so extern cannot be described solely within a functional framework. On the other
hand, extern can be specified using relations, a point that motivates the remainder
of the book.

Let usreturn to the problem of computing intern. Given its definition, it is tempting
to try and use the fusion law for catamorphisms, promoting the computation of
round into the catamorphism. However, this idea does not quite work. To solve the
problem, we need to make use of the following ‘rule of floors’: for integers a and b,
with b > 0, and real r we have

l(a+r)/b] = |(a+]r])/b].
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Applied to the function round, the rule of floors gives that

round = halve - convert
halven = (n+1)div2
convertr = |27r].

This division of round into two components turns out to be necessary because, as
we shall see, we can apply fusion with convert but not with halve.

To see if we can apply fusion with convert, we calculate:

(convert - shift) (d,r)

{definitions of convert and shift}
[2'7(d + r)/10|
= {rule of floors, since 2!7d is an integer}
1(27d + (2'r])/10]

{definition of convert}
[(2'7d + convert(r))/10|
= {introducing cshift; see below}

cshift(d, convert(r)),

i

where cshift(d,n) = (2!7d + n) div 10. Since we also have convert(0) = 0, we now
obtain

convert - [zero, shift] = [zero, cshift] - (id + (id X convert)),
and hence, by fusion, intern = halve - (zero, cshift]). This concludes the derivation.

Two further remarks are in order. The first is a small calculation to show that the
expression halve - (zero, cshift]) cannot be optimised by a second appeal to fusion.
We have

(halve - cshift) (d, n)
= {definitions of halve and cshift}
L(L(2'"d + n)/10] +1)/2]
= {arithmetic}
[(21d + n + 10)/20]
Now, in order to appeal to fusion, we have to write this last expression in the form

f (d, halve n) for some function f. Since halve(2k) = halve(2k — 1) for all k > 0, we
therefore require that

f (d, halve (2k)) = f (d, halve (2k — 1)).
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In other words, we need
[(2Yd + 2k +10)/20) = [(2d + 2k +9)/20]

for all £ > 0. But, taking d = 0 and k = 5, this gives 1 = 0, so no function f can
exist and the attempt to use fusion a second time fails.

The second remark concerns the fact that nowhere above have we exploited any
property of 217 except that it was a non-negative integer. For the particular value
217, the algorithm can be optimised: except for the first 17, all digits of the given
decimal can be discarded since they do not affect the answer. A proof of this fact
can be found in (Knuth 1990).

Exercises

3.15 Taking Decimal = listr Digit (why is it valid to do so?), the function val could
be specified

val = sum - tri(/10) - listr (/10).
Derive the catamorphism in the text.

3.16 Supposing we take 22 rather than 26, characterise those decimals whose
intern values are n, for 0 < n < 4.

3.17 Show that intern = intern - take 17.
3.18 The rule of indirect equality states that two integers m and n are equal iff
k<m = k<n , forallk.

Prove the rule of indirect equality. Can you generalise the rule to arbitrary ordered
sets?

3.19 The floor of a real number z is defined by the property that, for all integers n,
n<z = n<]|z|

Prove the rule of floors using this definition and the rule of indirect equality.

3.20 Show that the rule of floors is not valid when @ or b is not an integer.

3.21 Show that if f : A« B is injective, then for any binary operator (&) : B« C xB
there exists a binary operator (®) : A+ A x C such that

f(cdd) = c®fD.
(Cf. Exercise 2.34.)



66 3/ Applications

3.22 Let f : A« B and (@) : B+ C x B. To prove that there exists no binary
operator (®) : A < C x A such that

f(c®bd) = c®fb,
it suffices to find ¢, by and b, such that

fbo=fbi and  f(c® bo)# f(c® br).

Apply this strategy to prove that fusion does not apply to round - val.

3.4 Conditions and conditionals

We have already shown how many features of current functional programming lan-
guages can be expressed and characterised in a purely categorical setting. But there
are two important omissions: definition by cases and currying. Currying will be
dealt with in the following section; here we are concerned with how to characterise
definition by cases.

The coproduct construction permits a restricted kind of definition by cases, essen-
tially definition by pattern-matching. As we have seen, this is sufficient for the
description of many functions. However, programmers also make use of condition-
als; for example, the function filter p is defined using a mixture of pattern-matching
and case analysis:

filterp[] = []

{ cons(a, filterpz), ifpa

filter p (cons (a, z)) filterpz, otherwise.

Given the McCarthy conditional form (p — f, g) for writing conditionals, we can
express filter p as a catamorphism on cons-lists:

filterp = (nil, test p)
testp = (p-outl > cons, outr).

The question thus arises: how can we express and characterise the conditional form
(p — £, 9) in a categorical setting?

In functional programming the datatype Bool is declared by
Bool ::= true | false.

Thus, Bool = 1+ 1, with injection functions inl = true and inr = false. Using this
datatype, we can define the function not : Bool « Bool by

not = [false, true).
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The negation of a condition p : Bool + A can now be defined as not - p. Although
this is straightforward enough, the construction of binary operators such as and and
or is a little more problematic. As we shall see, we need the assumption that the
underlying category is distributive. In a distributive category one can also construct
conditionals.

Distributive categories

In any category with products and coproducts there is a natural transformation
undistr : AX (B+ C)«+ (Ax B)+ (A x C)

defined by undistr = [id X inl,id x inr] (undistr is short for ‘un-distribute-right’).
Thus,

(f X (g+ h)) - undistr = wundistr- ((f X 9) + (f X h))

for all f, g and h of the appropriate types. In a distributive category undistr is, by
assumption, a natural isomorphism. This means that there is an arrow

distr : (AxB)+(AxC)«+Ax (B+0C)
such that distr - undistr = id and undistr - distr = id.

There is a second requirement on a distributive category. In any category with
products and initial objects, there is a (unique) arrow

unnull : A x 00

for each A. In a distributive category unnull, like undistr, is assumed to be an
isomorphism. Thus, there is an arrow null : 0 « A x 0 such that null - unnull = id
and unnull - null = id.

In other words, in a distributive category we have the natural isomorphisms

Ax (B+0C) (AxB)+(AxC)
Ax0 = 0,

IR

as well as the natural isomorphisms
Ax(BxC)=2(AxB)xC A+ B+C)2(A+B)+C
AxB=BxA A+B=2B+ A
Ax1=A A+0= A4,

described in Exercise 2.26. Below we shall sometimes omit brackets in products and
coproducts that consist of more than two components.
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One consequence of a category being distributive is that there are non-trivial arrows
whose source is a product, the trivial arrows being the identity arrow and the
projections. In particular, there is an isomorphism

quad : 1+ 1+ 1+ 1 « Bool?.

We will leave the proof as an exercise. It follows that we can define arrows of type
Bool « Bool? in terms of arrows of type Bool < 1+ 1+ 1+ 1. For example, we can
define

and = [true, false, false, false] - quad

and the conjunction of p, ¢ : Bool «— A by and - (p, ¢). Other boolean connectives
can also be defined by such ‘truth tables’.

A distributive category also gives us the means to construct, given a function p :
Bool + A and two functions f, g : B+ A, a conditional function (p — f, g) : B+ A.
The idea is to associate with each condition p : Bool +— A an arrow p? : A+ A+ A,
for then we can define

(p—f.9) = [fg]-p7 (3.2)
The arrow p? is defined by

p? = (unit + unit) - distr - (id, p).
The types are shown by the following diagram:
(id, p)

A A x Bool
p? distr
Ax1+Ax1

unit + unit

The association of conditions p with arrows p? is injective (see Exercise 3.25). Using
definition (3.2), let us now show that the following three properties of conditionals
hold:

h-(p—>f9) = (p=h-f,h-g) (33)
(p—>f9)-h = (p-h>f-hg-h) (3.4)
p—2ff) = f (3.5)

Equation (3.3) is immediate from (3.2) using the distributivity property of coprod-
ucts. For (3.4) it is sufficient to show

(h+h)-(p-h)? = p?-h.
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The proof is:

(h+h)-(p-h)?
{definition}

(b + h) - (unit + unit) - distr - (id,p - h)
= {naturality of distr and unit}

(unit + unit) - distr - (b x id) - (id,p - h)
= {products}

(unit + unit) - distr - (id,p) - h
=  {definition}

p?- h.

For (3.5) it is sufficient to show that [f,f] - p? = f. We argue:
[f,f]- p?
{definition}
[f, f] - (unit + unit) - distr - (id, p)
{coproducts; naturality of unit}
unit - [f X id, f x id)] - distr - (id, p)
{claim: see below}
unit - (f x id) - (id, p)
{products}
unit - (f,p)
=  {since unit = outl}
f-
The claim is an instance of the fact that

fxl[g,h] = [f xg,fxh]- distr.

The proof, which we leave as a short exercise, uses the definition of undistr and the
fact that undistr - distr = id.

i

it

Exercises

3.23 Show that if A0 40

‘]\ /outr
0

commutes, then there must exist an arrow unnull such that unnull - null = id and
null - unnull = id:
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3.24 Is Rel a distributive category?

3.25 Prove that (-)? is injective with inverse (-); defined by
t, = (+0)-t

Hint: first show that (! +!) - distr = (! +!) - outr.

3.26 Prove that
(unit + unit) - distr : F+«G,

where FA= A+ A and GA = A x Bool.

3.27 Suppose in a distributive category that there is an arrow h : 0 «— A. Show
that h is an isomorphism and hence that A is also an initial object.

3.28 Prove that f x [g,h] = [f X g,f x h] - distr.
3.29 Show that Bool2 ~1+1+1+1.

3.30 Prove that filter p - listr f = listr f - filter (p - f) using the following definition
of filter:

filterp = concat - listr (p — wrap, nil),

where wrap a = [a] and nil : listr A + A is a constant returning the empty list.

3.5 Concatenation and currying

Consider once more the type listr A of cons-lists over A. In functional programming
the function cat : listr A < listr A x listr A is written as an infix operator +# and
defined by the equations

4y =y
cons (a,z) 4y = cons(a,zH y).

In terms of our categorical combinators these equations become

cat - (nil x id) = outr
cat- (cons x id) = cons- (id X cat) - assocr,

where assocr is the natural isomorphism assocr : A x (B x C) « (Ax B) x C
described in Exercise 2.26. We can combine the two equations for cat into one:

cat - ([nil, cons] x id) = [outr, cons]- (id + id x cat) - @, (3:6)
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where ¢: (1 x C)+ Ax (B x C) + (1+ A x B) x C is given by
¢ = (id+ assocr) - distl

and distl is the natural isomorphism (4 x C) + (B x C) « (A + B) x C whose
companion distr was described in the preceding section.

But how do we know that equation (3.6) defines cat uniquely? The function cat
is not a catamorphism, in spite of its name, because it has two arguments, so we
cannot appeal to the unique solution property of catamorphisms.

The answer is to consider a variant ccat of cat in which the arguments are curried.
Suppose we define ccat : (listr A « listr A) « listr A by ccat £y = z + y. Then we
have

ceat[] = id
ccat (cons (a,z)) = cconsa - ccat z,

where we take ccons : (listr A « listr A) + A to be a curried version of cons. This
version of cat is a catamorphism, for we have

ccat = ((constid, compose - (ccons x id))),

where const f is a constant returning f and compose(f,g) = f - g. Just to check
this, we expand the catamorphism to two equations:

ccat - nil = const id
ceat - cons = compose - (ccons X ccat).

Applying the first equation to the element of the terminal object, and the second
to (a,z), we obtain the pointwise versions

ccatnil = id
ccat (cons (a,z)) = compose (ccons a, ccat x),

which is what we had before. The conclusion is that since the curried version of cat
is uniquely defined by this translation, the original version is, too.

All this leads to a more general problem: consider a functor F with initial type
(e, T), another functor G, and a transformation ¢ 4,5 : G(A X B) «+ FA x B. What
conditions on ¢ guarantee that the recursion

f-(axid) = h-Gf-¢ (3.7

defines a unique function f for each choice of A?
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In a diagram we have

TAxB 24 e144 B % 6Tax B)
f les
B - GB

To solve the problem we use the same idea as before and curry the function f. To
do this we need the idea of a function space object A +— B, more usually written in
the form AZ. Function space objects are called exponentials.

Exponentials

Let C be a category with terminal object and products. An exponential of two
objects A and B is an object A® and an arrow apply : A «— AB x B such that for
each f : A « C x B there is a unique arrow curry f : AZ « C such that

apply - (curry f x id) = f.

In other words, we have the universal property

g=curryf = apply (g x id) =f.

For fixed A and B, this definition can be regarded as defining a terminal object in
the category Exp, constructed as follows. The objects of Exp are arrows A« C x B
in C. An arrow h « k of Exp is an arrow f : C x B + D x B of C just when the
following diagram commutes:

cxB1*X" pyB

N A

The terminal object of Exp is apply : A« AP x B, and If is given by curry f. The
reflection law of terminal objects translates in this case to

curryapply = id,
and the fusion law reads
curry f - g = curry (f - (g x id)).

If a category has finite products, and for every pair of objects A and B the expo-
nential AP exists, the category is said to be cartesian closed. In what follows, we
assume that we are working in a cartesian closed category.
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Returning to the problem of solving equation (3.7), the fusion law gives us that
f-(axid)=h-Gf-¢ = curryf-a=curry(h-Gf-¢).

Our aim now is to find a k so that
curry(h-Gf-¢) = k-F(curryf),

in which case we obtain curry f = (k). We reason:

curry (b -G f - ¢)
= {curry cancellation}

curry (h - G (apply - (curry f x id)) - ¢)
= {functor}

curry (h - G apply - G (curry f x id) - @)
= {assumption: ¢ natural}

curry (h - G apply - ¢ - (F(curry f) x id))
= {curry fusion law (backwards)}

curry (h - G apply - @) - F(curry f).

Hence we can take k = curry (h- G apply - ¢). The only assumption in the argument
above was that ¢ is natural in the following sense:

Ghxid)-¢ = ¢-(Fhx id).

In summary, we have proved the following structural recursion theorem.

Theorem 3.1 If ¢ is natural in the sense that G(h x id) - ¢ = ¢ - (Fh x id), then
f-(axid) = h-Gf-¢
if and only if

f = apply- ((curry (h - Gapply - @) x id).

Let us now see what this gives in the case of cat. We started with
cat - (a x id) = [outr, cons| - (id + id X cat) - @,

where ¢ = (id + assocr) - distl. So, h = [outr, cons] and Gf = (id + id x f). The
naturality condition on ¢ is

(id+idx (hxid))-¢ = ¢-((3d+ (id x h) x id)),
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which is easily checked. Hence we find that

cat = (curry ([outr, cons] - (id + id X apply) - (id + assocr) - distl))),
which simplifies to

cat = (curry ([outr, cons - (id X apply) - assocr] - distl)]).

We leave it as an instructive exercise to recover the pointwise definition of cat from
the above catamorphism.

Tree traversal

Let us look at another illustration. Consider again the initial type of trees intro-
duced in Section 3.2. The function tips returns the list of tips of a given tree:

tips = (wrap, cat).

Here cat (z, y) = = + y is the concatenation function on lists from the last section,
and wrap is the function that converts an element into a singleton list, so wrap a =
[a]- In most functional languages, the computation of =+ y takes time proportional
to the length of . Therefore, when we attempt to implement the above definition
directly in such a language, the result is a quadratic-time program.

To improve the efficiency, we aim to design a curried function tipcat such that
tipcattz = tipstH z.

Since the empty list is the unit of concatenation we have tips t = tipcat t (], so tipcat
is a generalisation of our problem. The addition of an extra parameter such as z is
known as accumulation and is a well-known technique for improving the efficiency
of functional programs.

Using curry, we can write the above definition of ¢ipcat more briefly as
tipcat = curry cat - tips.

This suggests an application of the fusion law. Can we find an f and op so that
both of the following equations hold?

currycat - wrap = f

curry cat - cat = op - (curry cat x curry cat)

Well, since cons (a,z) = cat([a],z), we can take f = curry cons. To find op we
reason as follows:
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(curry cat - cat) (z,y) 2
{application}
(zHy)H=z
=  {since (#) is associative}
(z 4 (y + 2))
{application}
(curry cat - curry cat y) 2
= {introducing compose (h, k) = h - k}

i

(compose - (curry cat x curry cat)) (z,y) 2.
Hence we have
tipst = (curry cons, compose)) t nil.

In contrast to the original definition of tips, this equation can be implemented
directly as a linear-time program.

Exercises

3.31 Show that

cat - (nil x id) = outr
cat - (cons x id) = cons- (id X cat) - assocr

is equivalent to equation (3.6), using properties of products and coproducts only.
3.32 Prove that any cartesian closed category that has coproducts is distributive.
3.33 Construct the following isomorphisms:

A%=1 Al 4 ABFC 2 4B x 4O,

3.34 Construct a bijection between arrows of type A+« B and arrows of type AZ 1.

3.35 What does it mean for a preorder to be cartesian closed? (See Exercise 2.6
for the interpretation of preorders as categories.)

3.36 Let B be an object in a cartesian closed category. Show how (.)Z can be
made into a functor by defining fZ for an arbitrary arrow f.

3.37 Show that if A is cartesian closed, then so is AB. (See Exercise 2.19 for the
definition of AB.)
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3.38 The map function (as in functional programming) is a collection of arrows
mapap : listr AT B  AB

such that mapa pf = listr f. Between what functors is map a natural transforma-
tion. Write out the naturality condition and prove that it is satisfied.

3.39 The function cpr (short for ‘cartesian product, right’) with type
cpr : listr (A x B) « A x listr B

is defined by the list comprehension
cpr(z,b) = [(a,b)] a+z].

Give a point-free definition of cpr in terms of listr.

3.40 A functor F is said to be strong if there exists a corresponding natural trans-
formation

mapaB : FATB « AB .

Show that every functor of Fun is strong. Give an example of a functor that is
not strong. (Warning: in the literature, strength usually involves a number of
additional conditions. Interested readers should consult the references at the end
of this chapter.)

3.41 What conditions guarantee that
f-(idxa) = h-Gf-¢
has a unique solution for each choice of h?

3.42 Show that the following equations uniquely determine iter (g, h) : A+ (Nat x
B), for each choice of g: A«— B and h: A+ A:

iter (g, h) - (zero x id) = g - outr
iter (g, h) - (succ x id) = h-itergh.

How can addition be expressed in terms of iter?

3.43 Continuing the preceding exercise, show that
id x idter (id, h)

Nat x A Nat x (Nat x A))
iter (id, h) lassocl
Nat Nat x A (Nat x Nat) x A

iter (id, h) plus x id
commutes for all h: 4 « A.
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3.44 Consider the type definition
tree A := tip A | node (tree A)A

Does this definition make sense in Fun? Could you write it in your favourite func-
tional programming language?

3.45 The introduction of an accumulation parameter in the tree traversal example
can be summarised as follows. Suppose that we have a function k¥ and a value e
such that k a e = a (all @) and k-f = g- Fk. Then for all z, we have (f) z = (g) z e.
Prove this general statement. The following four exercises aim to apply this strategy
to other examples.

3.46 Recall the function convert : listr A « listl A which produces the cons-list
corresponding to a given snoc list. It is defined by

convert = (nil, snocr)),

where snocr (z, @) = = + [a]. Improve the efficiency of convert by introducing an
accumulation parameter.

3.47 Using the type of cons-lists, define
reverse = ([nil, snocr)),

where snocr was defined above. Improve the efficiency of reverse by introducing an
accumulation parameter.

3.48 The function depths, as defined in terms of tri, takes quadratic time. Derive a
linear-time implementation by introducing an accumulation parameter. Hint: take
kan = tree (+n) a, and e = 0.

3.49 In analogy with the depth of a tree example, we can also define the minimum
depth, and the minimum depth can be written as a catamorphism. Direct evaluation
of the catamorphism is inefficient because it will explore subtrees all the way down
to the tips, even if it has already found a tip at a lesser depth. Improve the efficiency
by introducing an accumulation parameter. Hint: take k a (n, m) = min(a + n, m)
and e = (0, 00).

3.50 Consider the recursion scheme:
looph - (o xid) = [id,looph - (id x h) - assocr] - distl,

where o = [nil, snoc]. Show that for any choice of h the function loop h is determined
uniquely.
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3.51 Using the preceding exercise and Exercise 3.46, check that convcatzy =
convert x H y satisfies the equation

uncurry convcat = loop cons.
Hence show how cons-list catamorphisms can be implemented on snoc-lists by
(e,f) - convert = loopf - (id,e-!).

How can snoc-list catamorphisms be implemented by a loop over cons-lists?
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Chapter 4

Relations and Allegories

We now generalise from functions to relations. There are a number of reasons for
this step. First, like the move from real numbers to complex ones, the move to rela-
tions increases our powers of expression. Relations, unlike functions, are essentially
nondeterministic and one can employ them to specify nondeterministic problems.
For instance, an optimisation problem can be specified in terms of finding an op-
timal solution among a set of candidates without also having to specify precisely
which one should be chosen. Every relation has a well-defined converse, so one can
specify problems in terms of converses of other problems.

A second reason concerns the structure of certain proofs. There are deterministically
specified programming problems with deterministic solutions where, nevertheless,
it is helpful to consider nondeterministic expressions in passing from the former to
the latter. The proofs become easier, more structure is revealed, and directions for
useful generalisation are clearly signposted. So it is with problems about functions
of real variables that are solved more easily in the complex plane.

On the other hand, in the hundred years or so of its existence, the calculus of
relations has gained a good deal of notoriety for the apparently enormous number
of operators and laws that one has to memorise in order to do proofs effectively.
In this chapter we aim to cope with this problem by presenting the calculus in five
successive stages, each of which is motivated by categorical considerations and is
sufficiently small to be studied as a unit. We will see how these parts interact, and
how they can be put to use in developing a concise and effective style of reasoning.

4.1 Allegories

Allegories are to the algebra of relations as categories are to the algebra of func-
tions. An allegory A is a category endowed with three operators in addition to
target, source, composition and identities. These extra operators are inspired by
the category Rel of sets and relations. Briefly, we can compare relations with a
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partial order C, take the intersection of two relations with N, and take a relation to
its converse with the unary operator (_)°. The purpose of this section is to describe
these operators axiomatically.

Inclusion

The first assumption is that any two arrows with the same source and target can be
compared with a partial order C, and that composition is monotonic with respect
to this order: that is,

(S] - S2) and (Tl - Tg) implies (Sl . Tl) - (Sg . T2)

In Rel, where a relation R : A + B is interpreted as a subset R C A x B, inclusion
of relations is the same as set-theoretic inclusion; thus

RCS = (Ya,b:aRb= aSh).

Monotonicity of composition is so fundamental that we often apply it tacitly in
proofs. An expression of the form S C T is called an inequation, and most of the
laws in the relational calculus are inequations rather than equations. The proof
format used in the preceding chapter adapts easily to reasoning about inequations,
as long as we don’t mix reasoning with C and reasoning with O. A proof of R = S
by two separate proofs, one of R C S and one of S C R, is sometimes called a ping-
pong argument. Use of ping-pong arguments can often be avoided either by direct
equational reasoning, or by an indirect proof in which the following equivalence is
exploited:

R=S = (XCR=XCS) foral X.
Thus, an indirect proof is equational reasoning with =.

It will occasionally be helpful to illustrate inequations by diagrams similar to those
given in the preceding chapter. The fact that a diagram illustrates an inequation
rather than an equation is signalled by inserting an inclusion sign at an appropriate
point. For instance, the diagram

A,T_IB

Sll c [T

C<+——D
So

depicts the inequation S; - Ty C S - T5. In such cases, one says that a diagram
semi-commutes.
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Meet

The second assumption is that for all arrows R,S : A < B there is an arrow
RNS : A+« B, called the meet of R and S, and characterised by the universal

property
XC(RNS) = (XCR)and (X C89), (4.1)
forall X : A« B. Inwords, RNS is the greatest lower bound of R and S. Using this
universal property of meet it can easily be established that meet is commutative,
associative and idempotent. In symbols:
RNnS = SNR
RN(SNT) (RNS)NT
RNR = R.

Using meet, we can restate the axiom of monotonicity as two inclusions:

R-(SNT) C (R-S)N(R-T)
(RNS)-T C (R-T)N(S-T).

Given N as an associative, commutative, and idempotent operation, we need not
postulate inclusion of arrows as a primitive concept, for R C S can be defined as
an abbreviation for RN S = R.

Converse

Finally, for each arrow R : A < B there is an arrow R° : B < A called the converse
of R (and also known as the reverse or reciprocal of R). The converse operator has
three properties. First, it is an involution:

(R°)° = R. (4.2)
Second, it is order-preserving:

RCS = R°CS° (4.3)
Third, it is contravariant:

(R-8)° = S°-R°. (4.4)

Using (4.2) and (4.3), together with the universal property (4.1), we obtain that
converse distributes over meet:

(RNS)° = R°NnS°. (4.5)

Use of these four properties in calculations will usually be signalled just by the hint
converse.
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The modular law

There is one more axiom that connects all three operators in an allegory. The axiom
is called the modular law and states that

(R-S)NT C R-(SN(R°-T)). (4.6)

The modular law is also known as Dedekind’s rule. The modular law holds in Rel,
the proof being as follows:

(3b: aRb A bSc) A aTc
{predicate calculus}
(3b: aRb A bSc A aTc)
= {since aRb A aTc = b(R° - T)c}
(3b: aRbA bSc Ab(R°- T)c)
{meet}
(3b: aRbADB(SN(R®- T))c).

One can think of the modular law as a weak converse of the distributivity of com-
position over meet.

By applying converse to both sides of the modular law and renaming, we obtain the
dual variant

(R-S)NT C (RN(T-8°)-8S. (4.7)
In fact, the modular law can be stated symmetrically in R and S:

(R-S)NT C (RN(T-S5°)-(SN(R°-T)). (4.8)

Let us prove that (4.8) is equivalent to the preceding two versions. First, mono-
tonicity of composition gives at once that (4.8) implies both (4.6) and (4.7). For
the other direction, we reason:

(R-S)nT
{meet idempotent}
(R-S)yNTNnT
{inequation (4.7), writing U = RN (T - S°)}
(v-S)nt
{inequation (4.6)}
U-(SN(U°-T))
{since U C R; converse; monotonicity}

U-(SN(R°- T))

N

N

N
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In particular, taking T = id and replacing R by R° in (4.8), we obtain
(R°-S)nid C (RNS)°-(RNS). (4.9)
This inclusion is useful when reasoning about the range operator, defined below.
A proof similar to the above one gives that
R C R-R°-R. (4.10)
This completes the formal definition of an allegory. Note that neither the join

operation (U) nor the complementation operator (—) on arrows are part of the
definition of an allegory, even though both are meaningful in Rel.

To explore the consequences of the axiomatisation we will need some additional
concepts and notation, and we turn to these next.

Exercises

4.1 Using an indirect proof and the universal property of meet, prove that meet is
associativee RN(SNT)=(RNS)NT.

4.2 Translate the following semi-commutative diagrams into inequations:

A R B A R B
NE S\ c?/> ]V
S T

C C i D

4.3 Find a counter-example for (R- S)N(R-T)C R- (SN T).

4.4 The term universal property of meet suggests that RN S is the terminal object
in a certain category. Is it?

4.5 Show that RN(S-T)=RNS-((S°-R)NT).
4.6 Prove that RC R-R°-R.
4.7 Prove that if A and B are allegories, then so is A x B.
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4.2 Special properties of arrows

Various properties of relations that relate to order are familiar from ordinary set
theory, and can be stated very concisely in the language of relations and allegories.

An arrow R : A < A is said to be reflexive if idg C R and transitive if R- R C R.
An arrow that is both reflexive and transitive is called a preorder. The converse of
a preorder is again a preorder, and monotonicity of composition gives us that the
meet of two preorders is a preorder as well.

An arrow R : A «+ A is said to be symmetric if R C R°. Because converse is a
monotonic involution, this is the same as saying that R = R°. Again it is easy to
check that the meet of two symmetric arrows is symmetric.

An arrow R : A« A is said to be anti-symmetric if RNR° C id4. An anti-symmetric
preorder is called a partial order. A symmetric preorder is called an equivalence. If
R is a preorder, then RN R° is an equivalence.

A less familiar notion, but one which turns out to be extremely useful, is that of
a coreflexive arrow. An arrow C : A « A is called coreflexive if C C id4. One
can think of C as a subset of A. Every coreflexive arrow is both transitive and
symmetric. Here is a proof of symmetry:

C

c {inequation (4.10)}
c.-c°-C

C  {since C coreflexive}
id-C°-id

= {identity arrows}
c°

The proof of transitivity is even easier and is left as an exercise.

Range and domain

Associated with every arrow R : A « B are two coreflexives ran R : A +— A and
dom R : B + B, called the range and domain of R respectively. Below we shall only
discuss range; the properties of domain follow by duality since, by definition,

domR = ranR°.
One way of defining ran R : A « A is by the universal property
ranRCX = RCX-R forall X Cidy. (4.11)
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The intended interpretation in Rel is that a(ran R)a holds if there exists an element
b such that aRb.

We can also define ran R directly:
ranR = (R-R°)Nid. (4.12)
To prove that (4.12) implies (4.11), note that
R = RNR C ((R-R°)Nid)-R = mnR-R
bsl the modular law and so, by monotonicity, we obtain
ranRCX = RCX:-R
for any X. Conversely,

(R-R°)Nid

C  {assume RC X - R}
(X-R-R°)Nid

{modular law}
X-((R-R°)NX°)

{meet}
X X°

{assuming X is a coreflexive}
X,

N

N

N

completing the proof.

If X is coreflexive, then X - R C R,andso RC X-Rifandonlyif R=X-R. In
particular, taking X = ran R in (4.11) we obtain

R = ranR-R. (4.13)

Taking R=S-T and X = ran S in (4.11), and using (4.13), we obtain ran (S- T) C
ran S. In fact, this result can be sharpened: we have

ran(R-S) = ran(R-ran§). (4.14)
In one direction the proof is
ran(R-S)=ran(R-ranS-S) C ran (R - ran S).

The other direction follows from (4.12).
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Finally, let us consider briefly how the range operator interacts with meet. From
the direct definition of range (4.12) and monotonicity, we have

ran(RNS) C idN(R-S°).
The converse inequation also holds, by (4.9), and therefore

ran(RNS) = idn(R-S°). (4.15)

Simple and entire arrows

An allegory has three subcategories of special interest, the categories formed by
taking just: (i) the simple arrows, also called partial functions; (ii) the entire arrows,
also called total relations; and (iii) those arrows that are both simple and entire,
that is, functions. We now examine each of these subcategories in some detail.

An arrow S : A « B is said to be simple if
§-8° C ida.

Simple arrows are also known as imps (short for implementations) or partial func-
tions. In set-theoretic terms, S is simple if for every b there exists at most one a
such that aSb. Simple arrows satisfy various algebraic properties not enjoyed by
arbitrary arrows. For example, the modular law can be strengthened to an identity:

(S-RNT = S-(RN(S°-T)) provided S is simple. (4.16)
The inclusion (2) is proved as follows:
S-(RN(S°-T)) C (S-RN(S-8°-T) C (S -RNT.
We also have that composition of simple arrows right-distributes through meets:
(RNT)-§ = (R-S)N(T-S) provided S is simple. (4.17)
Again, the proof makes essential use of the modular law.
An arrow R : A «+ B is said to be entire if
idg C R°-R.

Equivalently, R is entire when dom R = idg. In set-theoretic terms R is entire if
for every b there exists at least one a such that aRb. Since dom (R-S) C dom S we
have that S is entire whenever R - S is for any R. Also clear is the fact that if R is
entire and R C S, then S is entire. Finally, using (4.15) it is easy to show that

RNS entire = idCR°-S. (4.18)

This condition will be useful below.
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An arrow that is both simple and entire is said to be a function. Single lower-case
letters will always denote functions, even if we do not say so explicitly. For any
allegory A, its subcategory of functions will be denoted by Fun(A). In particular,
Fun(Rel) = Fun.

The following two shunting rules for functions are very useful:

f-RCS = RCf°-S (4.19)
R-f°CS = RCS-f. (4.20)

To prove (4.19) we reason:

f-RCS
= {monotonicity}
fe-f-RCf°-8
= {since f is entire}
RCf°-§
=  {monotonicity}
f-RCf-f°-8
= {since f is simple}
f-RCS.
The dual form (4.20) is obtained by taking converses. Any arrow f satisfying either

(4.19) or (4.20) for all R and S is necessarily a function; the proof is left to the
reader.

An easy consequence of the shunting rules is the fact that inclusion of functions
reduces to equality:

(fc9 = (f=9) = (f29).

We reason:

fcy
{shunting}
WdCf-g
{shunting}
9°cf
{converse is a monotonic involution}
g<f.

fH

it

i

This fact is used frequently.
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Functions can also be characterised without making explicit use of the converse
operator. This result will be of fundamental importance in the following chapter,
so we record it as a proposition.

Proposition 4.1 Suppose that R: A+ B and S : B «+ A satisfy R- S C id and
id C S- R Then S = R°, and so R is a function.

Proof. First observe that id C S - R implies that S - R is entire. Hence R is entire
as well.

We now reason:

S

- {since R is entire}
R°-R-8

C  {since R-S C id}
Re.

By taking R = S° and § = R° in the above argument, we also have R° C S, and
so S = R°.

o

Exercises

4.8 Prove that coreflexives are transitive.

4.9 Let A and B be coreflexive arrows. Prove that A- B= AN B.
4.10 Let C be coreflexive. Prove that (C-R)NS=C-(RNS).
4.11 Let C be coreflexive. Prove that

(C-X)nid = (X-C)Nid
(C-X-C)Nid

= C-(XNid)

= (XNid)-C.

4.12 Show that, when C is coreflexive, ran(C - R) = C - ranR.

4.13 An arrow is said to be idempotent if R - R = R. Prove that an arrow which
is both symmetric and transitive is idempotent.
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4.14 Prove that R is symmetric and transitive if and only if R = R - R°.

4.15 Prove that if S is simple, S = §-5°- S. Does this equation imply simplicity?
4.16 Prove that ran (RN (S - T)) =ran((R- T°)N S).

4.17 Prove that domR-f = f - dom (R - f).

4.18 A Iocale is a partial order (C, V) in which every subset X C V has a least
upper bound | | X, and any two elements a, b have a greatest lower bound a M b.
Furthermore, it is required that

Ux)ynd = |Hend|laeXx}.

A V-valued relation of type A« B is a function V « (A x B). Show that V-valued
relations form an allegory.

4.3 Tabular allegories

The definition of an allegory is very general and admits models that are quite
different from set-theoretic relations. Surprisingly, however, one only needs to make
two additional assumptions, the existence of tabulations and a unit, to get very close
to set-theoretic relations, at least in terms of proofs. The existence of tabulations
makes it possible to mimic pointwise proofs in a categorical setting. In a pointwise
proof we reason about relations as binary predicates, manipulating aRb instead of
R itself. In some cases pointwise proofs are more effective than point-free proofs;
indeed it may even happen that no point-free proof is available. Tabulations give
us a means of overcoming this phenomenon and thus the best of both worlds.

Tabulations

Let R: A+ B. A pair of functions f : A« C and g : B « C is said to be a
tabulation of R if

R=f-g° and (f°-f)N(g°-g) =id.
An allegory is said to be tabular if every arrow has a tabulation.

In particular, the allegory Rel is tabular. In Rel a relation R : A «+ B can be
identified with a subset C of A x B. Taking f and g to be the projection functions
outl : A« C and outr : B« C, we obtain R = outl - outr®. Moreover, in Rel the
projection functions satisfy

(outl® - outl) N (outr® - outr) = id,
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as one can easily check, so the second condition is satisfied as well.

In any tabular allegory, the condition (f° - f) N (¢° - g) = id is equivalent to saying
that the pair of functions (f, g) is jointly monic, that is, if for all functions k and k
we have

h=k = (f-h=f-kandg-h=g-k).
In one direction we reason:

f-h=f-kandg-h=g- -k

= {shunting of functions}
h-k°Cf°-fandh-k°Cg°-g

{meet}
h-k°<c(f°-f)n(g°-9)
= {assumption}
h-k°Cid

{shunting of functions}
hCk

{inclusion of functions is equality}
h=k.

0]

i

For the other direction, assume that (k, k) is a tabulation of (f°- f) N (g°- g):

h-k°C(f°-f)n(s°-9)
{as before}
f-h=f-kandg-h=g-k
{assuming (f, g) is jointly monic}
h =k,

fit

fH

and so (f°-f)N(g°-g) = h-h° C id. But since f and g are entire, this inclusion
can be strengthened to an equality.

The kind of reasoning seen in the last part of this proof is typical: we are essentially
doing pointwise proofs in a relational framework. Similar reasoning arises in the
proof of the next result, which gives a characterisation of inclusion in terms of
functions.

Proposition 4.2 Let (f, g) be a tabulation of R. Then h - k° C R if and only if
there exists a (necessarily unique) function m such that h =f-m and k = g - m.
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Proof. Given the existence of function m such that

VN

B m C

N

D
commutes, we have

h-k°
=  {assumption, converse}
f -m-m° - g°
C  {m simple}
f-9°
= {(f, g) tabulates R}
R.

In the other direction, define m = (f°- h) N (¢° - k). We first show that m is simple:

m - m°

=  {definition and converse}
((F°-h) N (g°-k)) - ((°-f) N (k- 9))

{monotonicity}
(fe-h-h2-f)N(g°-k-k°-g)

{h and k are simple}
(fe-f)n(g°-9)

{(f, 9) tabulates R}
id.

N

N

N

To show that m is entire, we can appeal to (4.18) and prove id C h°-f-g°-k. The
argument is

id

N

{h and k are entire}
he-h-k°-k
c {assumption and (f, g) tabulates R}
he-f-g°-k.
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Since we now know m is a function and
fmgffohgh’

we obtain that f - m = h because inclusion of functions is equality. By symmetry,
it is also the case that g - m = k. Finally, the fact that m is uniquely defined by
f+-m=hand g-m = k follows at once from the fact that (f, g) is jointly monic.

(]

One import of this result is that tabulations are unique up to unique isomorphism,
that is, if both (f, g) and (h, k) tabulate R, then there is a unique isomorphism m
such that h=f-m and k = g - m.

Unit

A unit in an allegory is an object U with two properties. First, idy is the largest
arrow of type U + U, that is,

RCidy <« R:U+U.

In other words, every arrow U « U is a coreflexive. The second property is that
for every object A there exists an entire arrow pg : U «+ A. This entire arrow is
necessarily a function because pa - pa° C idy by the first condition, so p4 is simple
as well. An allegory possessing a unit is called unitary.

The allegory Rel is unitary: a unit is a singleton set and p, is the unique function
mapping every element of A to the sole inhabitant of the singleton. Recall that a
singleton set in Rel is a terminal object in Fun, its subcategory of functions.

In a unitary allegory we have, for any relation R : A « B, that

R C pa°®-pB
{shunting functions}
pa-R-pp° C idy
{definition unit}
true.

]

In other words, ps° - pp is the largest arrow of type A «+ B. From now on, we shall
denote this arrow by II : A « B. In Rel, the arrow II is just the product A x B.

As a special case of the above result we have that I : U « A is the arrow p4, and
since inclusion of functions is equality, it follows that p4 is the only function with
this type. Thus a unit in an allegory is always a terminal object in its subcategory
of functions, a point we illustrated above in the case of Rel.
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Restricted to tabular allegories, the converse is also true: in a tabular allegory, a
terminal object in the subcategory of functions is a unit of the allegory. By the
definition of a unit, it suffices to show that id; is the largest arrow of type 1 « 1.
To this end, let R : 1+ 1, and let (f, g) be a tabulation of R. Because 1 is terminal
and f,g:1+ A we have f = g =!. Hence,

R=f-¢°=1.1°Cid,

and the claim is proved. Based on this equivalence of terminal objects and units,
we will write !4 in preference to pa, and 1 instead of U when discussing units.

Finally, let us consider the tabulation (f,g) of Il : A «+ B, where f : A + C and
g : B+ C for some C. Since h - k® C II for any two functions & : A «+ D and
k : B+ D, we obtain from Proposition 4.2 that m = (f° - k) N (g° - k) is the unique
arrow such that A = f - m and k = g - m. But this just says that C, together with
f and g, is a product of A and B in the subcategory of functions. So without loss
of generality, we may assume that C = A x B, and (f,g) = (outl, outr). Also,
m = (h,k) and so

(h,k) = (outl’-h) N (outr®- k).

We will use this fact in the following chapter, when we discuss how to obtain a
useful notion of produects in a relational setting.

Set-theoretic relations

Finally, let us briefly return to the question of pointless and pointwise proofs. There
is a meta-theorem about unitary tabular allegories which makes precise our intuition
that they are very much like relations in set theory.

A Horn-sentence is a predicate of the form
Es=DiNE=DyA..NE, =D, = E,1=Dy,,

where E; and D; are expressions that refer only to the operators of an allegory, as
well as tabulations and units. The meta-~theorem is that a Horn-sentence holds for
every unitary tabular allegory if and only if it is true for the specific category Rel
of sets and relations. In other words, everything we have said so far could have
been proved by checking it in set theory. A proof of this remarkable meta-theorem
is outside the scope of this book and the interested reader is referred to (Freyd and
Scedrov 1990) for details.

Although set-theoretic proofs are valid for any unitary tabular allegory, direct proofs
from the axioms are usually simpler, possess more structure, and are more revealing.
Accordingly, we resort to proof by tabulation only when other methods fail.
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Exercises

4.19 Prove that a function m is monic if and only if m° - m = id.
4.20 Prove that for every function f there exist functions ¢ and m such that
f=m-cand c-c® =id and m®- m = id.

Is this factorisation in some sense unique? (In text books on category theory, this
factorisation is introduced under the heading ‘epi-monic factorisation’.)

4.21 Show that if (f, g) tabulates R and R is simple, then g is monic.
4.22 Show that if R = f - ¢° and R is entire, g - g° = id.

4.23 Using the above two exercises, show that if (f,g) tabulates R and R is a
function, then ¢ is an isomorphism.

4.24 Show that h - k° C R - S iff there exists an entire relation @ such that

h-QCR and Q-k°CS.

4.25 Is the allegory of V-valued relations in Exercise 4.18 tabular?
4.26 Provethat (X C Y)=(ranX Cran Y) forall X,Y : A« 1.
4.27 Prove that dom S = idNII- S.

4.4 Locally complete allegories

It is now time to study the operator that seems, somewhat mysteriously, to have
been left out of the discussion so far: the operator U that returns the union of
two relations. In fact, we will consider the more general operator | J that returns
the union of a set of relations. In particular, we shall see how its distributivity
properties give rise to two other operations, implication (=) and division (\).

Join and zero

An allegory is said to be locally complete if for any set ‘H of arrows A + B there is
an arrow |JH : A« B, called the join of H, characterised by the universal property

UHCX = (VReEH:RCX)
forall X : A« B.
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It is assumed that meet and composition distribute over join:

UH)NS W RNS|ReH}
(UH)-S = {R-S|Re#H}

Neither of these equations follows from the universal property of join. On the other
hand, the universal property does give us that converse distributes over join:

UH)® = U{R°|ReH}.

This is because converse is a monotonic involution. In the special case where H is
the empty set we write @ for | JH; when H = {R, S} we write RU S. By taking %
to be the empty set we obtain that 0 is a zero both of meet and composition. In
Rel, the arrow 0 is the empty relation.

Like meet, the binary join U is associative, commutative and idempotent. It is
important to bear in mind, however, that in a locally complete allegory there does
not exist the symmetry between meet and join found in the predicate calculus: for
meet one only has the modular law, while composition properly distributes over
join.

Implication

Given two arrows R, S : A « B, the implication (R = S) : A + B can be defined
by the universal property

XCR=S) = (XNR)CS forall X: A« B.
The intended interpretation in set theory is that a(R = S)b = (aRb = aSh).
Implication can also be defined directly as a join:

R=S = UY{X|(XNnR)CS})

To prove that this definition satisfies the universal property, assume first that (X N
R) C S. Then we obtain X € {X|(XNR)C S} andso X C (R = S) by the
universal property of join. For the other direction we argue:

XC(R=>Y9)
{definition of R = S}
X cU{Y (Y nR)C S}
= {meet distributes over join}
XNRCUY{YNR|(YNR)CS}
= {universal property of join}
XNRCS.

IH
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Composing preorders

One use of implication is in composing preorders. Consider, for instance, the lexical
ordering on pairs of numbers:

(a,0)<(¢,d) = a<eV(a=cAb<La).
We can write this in an alternative way:

(a,0) <(c,d) = a<cA(c<a=>b<d).
This suggests defining R; S (pronounced ‘R then S’) by

R;S = RN(R°=19).

The relation R ; S first compares two elements by R, and if the two elements are
equivalent in R, it then compares them by S. In particular, the lexical ordering on
pairs of numbers is rendered as

(outl® - leg - outl) ; (outr® - leg - outr),
where leq is the prefix name for <.

If R and S are preorders, then R ; S is a preorder. The proof makes use of the
symmetric modular law (4.8) and is left as an exercise. One can also show that (;)
is associative with unit II. This, too, is left as an exercise.

Division

Given two arrows R and S with a common target, the left-division operation R\S
(pronounced ‘R under S’) is defined by the universal property

XCR\S = R-XCS.
In a diagram, X = R\S is the largest arrow that makes the triangle
X

N2

semi-commute. The interpretation of R\S as a predicate is

A

a(R\S)e = (Vb:bRa = bSc),

so the operation (\) gives us a way of expressing specifications that involve universal
quantification.
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Left-division can also be defined explicitly as a join:
R\S = ({X|R-XCS}.

The proof that this works hinges on the fact that composition distributes over join,
and is analogous to the argument for implication spelled out above. Note that R\S
is monotonic in S, but anti-monotonic in R. In fact, we have

(RUS)\T = (R\T)N(S\T) and R\(SNT)=(R\S)N(R\T).
The universal property of left-division also gives the identity

(R-S\T = S\(R\T),
but nothing interesting can be said about R\(S - T).
The cancellation law of division is

R-(R\S) ¢ S

and its proof is an immediate consequence of the universal property.

Right-division

Since composition is symmetric in both arguments we can define the dual operation
of right-division S/R (pronounced ‘S over R’) for any relations S and R with a
€ommon Source:

XCS/R = X-RCS.
At the point level we have
a(S/R)b = (Vc: aSc < bRe).

Since converse is a monotonic involution the two division operators can be defined
in terms of each other:

R\S =(S°/R°)° and S/R=(R°\S°)°.
Sometimes it’s better to use one version of division rather than the other; the choice
is usually dictated by the desire to reduce the number of converses in an expression.
Exercises

4.28 Prove that the meet of a collection H of arrows can be constructed as a join:

NH = U{S|(YReH:SCR)}.
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4.29 Prove that ran (JH) = H{ran X | X € H}.

4.30 Show that there exists an operator (—) such that
R-SCX = RCSUX

for all X. Using this universal property, show that

R-0 = R

RUS = RU(S-R)
R-(SUT) = R-S8-T
(RUS)-T = (R-T)U(S-T).

4.31 Prove that R = 0 if and only if ran R = (). Show how this may be used to
prove that

(R-S)NT=0)=(RN(T-S°) =0).

4.32 Prove the following properties of implication using its universal property:

R=>(S=>T) = (RNS)=>T

(RUS)=T = R=>T)nlS=>T1T)
R=>(SNT) = (R=5N(R=>T)
RN(R=S) = RNS.

4.33 Prove the following property of implication

fo-(R=>8)-9g = (f°-R-9)=>(f*-5-9).
4.34 Prove that R; S is a preorder if R and S are. Also prove that (;) is associative
with unit II.

4.35 Prove the laws

(R\S)-f = R\(5-f)
fo-(R\S) = (R-f\S.

4.36 Let (<, A) and (C, B) be preorders (in the ordinary set-theoretic sense, not as
arrows in an allegory). A Galois connection is a pair (f, g) of monotonic mappings
f: A« B and g: B+ A such that

r<gy = fzCuy.
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The function f is called the lower adjoint, and g the upper adjoint. For example,
defining

fX=XNR and gY=R=>Y,

we see that the universal property of = in fact asserts the existence of a Galois
connection. Spot the Galois connection in the universal properties of division and
subtraction (see Exercise 4.30).

The following few exercises continue the theme of Galois connections.

4.37 What does it mean to say that the mapping X — X - R is lower adjoint to
Y—S§-Y?

4.38 In Exercise 3.19, we defined the floor of a rational number using a universal
property. This property can be phrased as a Galois connection; identify the relevant
preorders and the adjoints.

4.39 Show how the universal property of binary meet can be viewed as a Galois
connection.

4.40 Now consider a Galois connection between complete lattices (partially ordered
sets where every subset has both a least upper bound (lub) and a greatest lower
bound (gib)). Prove that the following two statements are equivalent:

e (f, g) is a Galois connection.

e f preserves least upper bounds and for all z,

gy = lb{z|fz <y}

4.5 Boolean allegories

One operator is still missing, namely the operator - of negation. In a locally
complete allegory, one can define negation by

-R = (R=0).

This notion of negation satisfies a number of the properties one would expect. First
of all, negation is order-reversing. Furthermore, we have De Morgan’s law

-(RUS) = (=R)N(=9).

In general, however, it is not true that negation is an involution.
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If the equation —(—R) = R is satisfied, then the allegory is called boolean; in
particular, Rel is boolean. Boolean allegories satisfy many properties that are not
valid in other allegories. For instance, division can be defined in terms of negation:

X/Y = =(=X-Y°). (4.21)

(From now on, we omit the brackets round —X, giving — the highest priority in for-
mulae.) This definition expresses the relationship between universal and existential
quantification in classical logic. To prove (4.21), it suffices to show that

~R/Y = —(R-Y°), (4.22)

because taking R = —X and using X = —(—X) gives the desired result. It turns
out that equation (4.22) is valid in any locally complete allegory:

X C-R/Y
= {division}
X-YC-R
{negation}
X-YC(R=0)
{implication}
X-YNRCO
{Exercise (4.31)}
XNR-Y°CO
{implication; negation}
XC-(R-Y°).

fH

fH

Notice that the above proof uses indirect equational reasoning, proving that R = S
by showing that X C R = X C S for arbitrary X.

In our own experience, it is best to avoid proofs that involve negation as much as
possible, since the number of rules in the relational calculus becomes quite unman-
ageable when boolean negation is considered.

Exercises

4.41 Without assuming the allegory is boolean, prove that:

- o= 0
-R = -—R
~(RUS) = -RN-S
-~(RU-R) = I
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4.42 Prove that a locally complete allegory is boolean iff R U-R =1I for all R.

4.43 Inrelational calculi that take negation as primitive, the use of division is often
replaced by an appeal to Schroder’s rule, which asserts that

(-T-S°C-R)=(R-SCT)=(R°-~T C-S).

Prove that Schroder’s rule is valid in any boolean allegory.

4.6 Power allegories

In set theory, relations are usually defined as subsets of a cartesian product, a
fact we have used a number of times already. But it is important to observe that
this is a more or less arbitrary decision, since relations could have been introduced
as boolean-valued functions of two arguments, or as set-valued functions. In this
section, we shall show how the notion of powersets may be defined in an allegory
by exploiting the isomorphism between relations and set-valued functions.

Power transpose and epsilon

In order to model set-valued functions in an allegory A we need three things:

e for each object A in A an object PA, called the power-object of A;

e a function A, called power transpose, that takes an arrow R : A + B and
returns a function AR : PA + B;

e an arrow € : A + PA, called the membership relation of P.
These three things are defined (up to unique isomorphism) by the following universal
property. Forall R: A+ B and f : PA «+ B,
f=AR = €-f=R.

The following diagram summarises the type information:
AR

N

It is immediate from the universal property that AR = AS implies R = S, so A
is an isomorphism between relations and (set-valued) functions. In set theory, A is

PA B
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defined by the set comprehension
(AR)b = {al|aRb}.

Indeed, one might say that the definition of A is merely a restatement of the com-
prehension principle in axiomatic set theory.

Let us now see how the universal property of A can be used to prove some simple
identities in set theory. First of all, by taking f = AR, we have the cancellation
property

€-AR = R,

so the diagram above commutes.

As a consequence of A-cancellation we obtain the fusion law
AR-f) = AR-f,

which is valid only if f is a function.

Finally, we have the reflection law A€ = id, which is proved by taking f = id and
R = € in the universal property.

For completeness we remark that the definition of (PA, A, €) can also be phrased as
asserting the existence of a terminal object in a certain category. Given an allegory
A and an object A, consider the category A/A whose objects are all arrows R of
A with target A, and whose arrows are those functions f : R « S for which the
following diagram commutes:

B ! c
A s
A

Composition in A/A is the same as that in A. Now, the terminal object of A/A is
the relation €4 : A « PA because

f=AR « f:€s«R

and so AR is just another notation for !g.

Existential image

It is a general principle in category theory that any suitable operator on objects
can be extended to a functor. Since we have just introduced the operator P on
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the objects of an allegory A, it is natural to look for a corresponding functor. In
the present case there are several possibilities, one of which is the power functor
P: A « A, and another is the existential image functor E : Fun(A) « A. It is
not immediately obvious what the action of the power functor should be on the
arrows of an allegory, so we will postpone consideration of this possibility to the
next chapter.

The existential image functor is defined by
ER = A(R-€).

In set theory we have
(ER)z = {a|(3b:aRbAbEZ)}.

It is easy to see from the reflection law A€ = id that E preserves identities. To
show that E also preserves composition, it suffices to prove the absorption property

ER-AS = A(R-9).
Taking S = T - € givesus ER - ET = E(R - T), which is what is required.
Here is a proof of the absorption property:

ER-AS=A(R-S)

{defining property of A}
€-ER-AS=R-S

{definition of E, A-cancellation}
R-€-AS=R-S

{A-cancellation}

fH

true

As an immediate consequence of A-cancellation, we obtain that € is a natural
transformation id < JE, where J : A « Fun(A) is the inclusion functor.

The restriction of E to functions is called the power functor P; thus P = EJ. Note
that P : Fun(A) + Fun(A), while E : Fun(A) + A. In set theory, P is the map
operation that applies a function to all elements of a set:

Pfz = {fal|la€z}.
In the following chapter we shall show how to extend P to a functor P : A «+ A.

From now on we will omit J in the composition JE, silently embedding Fun(A) in
A; thus we assume that E: A « A.
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Singleton and union

For any object A, the singleton function 7 : PA « A is defined by 7 = Aid. In
set theory, 7 takes an element and returns a singleton set. Using the fusion law
A(R-f)= AR - f, we obtain

Af=A(id-f)=Aid-f=7-f
and so
Pf-r=Ef-Nid=A(f-id) =Af =7-f.

Thus T is a natural transformation P + id. These and similar facts illustrate the
difference between P and E, for 7 is not a natural transformation E « id.

For each ‘A, the union function y : PA « PPA is given by y = E€. In words, p
returns the union of a collection of sets. Since € : id + E, we have u : E « EE.
Union satisfies the one-point properties

pPr = id=p-7

as well as the distribution property
p-p = p-Pu

This last result follows from the definition of y plus naturality:
p-Pu=p-PEE=pu-EE€e=E€-p=pu- p.

In later chapters we will use union as a synonym for .

The subset relation

For any A, the subset relation subset : PA < PA is defined by subset = €\€.
Interpreted in set theory we have

zsubsety = (Va:a€z=acy)

Note the distinction between subset and C: the former models the inclusion relation
between sets, while the latter is the primitive operation that compares arrows in an
allegory.

Based on its set-theoretic interpretation, we would expect that subset is a partial
order. Reflexivity and transitivity are immediate from the properties of division,
but the proof that subset is anti-symmetric, that is, subset N subset® = id, requires
a little more effort, and in fact holds only for a unitary tabular allegory. Given this
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assumption, we will prove a more general fact, namely, that
AR = (e\R)Nn(R\e)°".
Anti-symmetry of subset then follows from the reflection law A€ = id.

To prove the above equation for A, we invoke the rule of indirect equality and
establish that

XCAR = X C(e\R)N(R\e)°
for all X. Assume that (f, g) is a tabulation of X. We reason:

f-9°CAR
{shunting of functions}
f=AR.g
{fusion}
f=AR-yg)
{universal property of A}
€-f=R-g
{anti-symmetry of C}
(€-fCR-g)and (R-gC€-f)
{shunting of functions}
(€-f-9°CR)and (R-g-f° Ce)
{division}
(f-9° S €\R) and (g f° S R\€)
{converse, meet}

f-9° C(e\R)N(R\€)®,

Iit

fH

and we are done.

Exercises

4.44 Consider the equation A(R- f) = AR- f. Why is it not possible to replace the
function f by an arbitrary arrow? Give a counter-example.

4.45 The notion of non-empty power objects (corresponding to non-empty subsets)
can be defined by changing the defining property of power transpose slightly. What
is the required change?

4.46 Show that 7 is monic.
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4.47 Prove that AR=ER -7, and ER = p-P(AR).
4.48 Prove that (AR)° - AS = (R\S) N (S\R)°.

4.49 Prove that R is a preorder if and only if R = R\R. Using this, show that R
is a preorder if and only if there exists a partial order S and a function f such that
R=f°.-S-f.

4.50 Prove that €/(R\€) = R.

4.51 A predicate transformer is a function of type PA < PB. One can define a
partial order on predicate transformers by

f<g = e€e-fCe-yg.

A predicate transformer h is said to be monotonic if h - subset C subset - h. Prove
that h is monotonic if and only if

f<g implies h-f<h-g
for all f and g.

4.52 For R : B « A, consider the predicate transformer wip R : PA «+ PB defined
by wlp R = A(R\€). Prove that wip (R - S) = wip S - wip R, and

RCS = wlpS < wlpR.

(Exercise 4.50 will come in handy here.) Finally, show how to associate with any
predicate transformer p : PA « PB an arrow S : B + A so that

p<wlpR = wpS<uwpR
for any R: B « A. (This Exercise is the topic of (Morgan 1993).)

Bibliographical remarks

The calculus of relations has a rich history, going back to (De Morgan 1860), (Peirce
1870) and (Schréder 1895). The subject as we know it today was mostly shaped
by Tarski and his students in a series of articles, starting with (Tarski 1941). An
overview of the origins of the relational calculus can be found in (Maddux 1991;
Pratt 1992).

During the 1960s several authors started to explore relations in a categorical setting
(Brinkmann 1969; Mac Lane 1961; Puppe 1962). This resulted in a consensus
that regular categories are the appropriate setting for studying relations in general
(Grillet 1970; Kawahara 1973b). In fact, a category is regular if and only if it



Bibliographical remarks 109
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until recently, most of this work was based on Tarski’s axiomatisation; the standard
reference is (Schmidt and Stréhlein 1993). Related references are (Berghammer
and Zierer 1986; Berghammer, Kempf, Schmidt, and Stréhlein 1991; Desharnais,
Mili, and Mili 1993; Mili 1983; Mili, Desharnais, and Mili 1987). (Mili, Desharnais,
and Mili 1994) is particularly similar to this book, in that it focuses on program
derivation.
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fluence. An especially interesting application of Galois connections in the relational
calculus is presented by (Backhouse and Van der Woude 1993).
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A topic that we shall not address in this book is that of executing relational expres-
sions. Clearly, it would be desirable to do so, but it is as yet unclear what the model
of computation should be. One promising proposal, which involves rewriting using
the axioms of an allegory, has been put forward by (Broome and Lipton 1994).



Chapter 5

Datatypes in Allegories

The idea now is to replace categories by allegories as the mathematical basis of a
useful calculus for deriving programs. However, there is a major stumbling block:
categorical definitions of datatypes are not suitable when working in an allegory.
Each allegory is identical to its opposite so dual categorical constructs coincide. In
particular, products coincide with coproducts, which is not what one wants in a
sensible theory of datatypes.

The solution proposed in this chapter is to define all relevant datatype constructions
in Fun(A), and then extend them in some canonical way to A. In fact, we show
that the base functors of datatypes in Fun(A), the power functor, and type functors
can all be extended to monotonic functors of A. In particular this means that a
monotonic extension of a categorical product exists in A, and this extension —
called relational product — can be used in place of a categorical product. Crucial
to the success of the whole enterprise is the notion of tabulations introduced in the
preceding chapter.

As a result, catamorphisms can be extended to include relational algebras. Rela-
tional catamorphisms are powerful tools for problem specification, and we go on
to illustrate their use by showing how some standard combinatorial functions can
be defined very succinctly using relations. This material is used heavily in later
chapters on solving optimisation problems. The chapter ends with a discussion of
how natural transformations can be generalised in a relational setting.

5.1 Relators

Let A and B be tabular allegories. By definition, a relator is a monotonic functor
F: A « B, that is, a functor F satisfying

RCS = FRCES
for all B and S. |
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As we shall see in Theorem 5.1 below, a relator can also be characterised as a functor
on relations that preserves converse, that is,

(FR)° = F(R°).

As a first step towards proving this result, we prove the following lemma.

Lemma 5.1 Let F be a relator and f a function. Then Ff is a function, and

(Ff)° =F(f°).
Proof. Since functions are entire and simple, we have

Ff-F(f°) = F(f-f°) € Fid = id
F(f°)-Ff = F(f°-f) 2 Fid = id.

Now recall Proposition 4.1 of the preceding chapter, which states that R is a function
if and only if there exists an S such that R-S C id and id C S - R. Furthermore,
these two inequations imply that S = R°. It follows that Ff is a function with
converse F(f°).

O

Theorem 5.1 A functor is a relator if and only if it preserves converse.

Proof. First, assume F is a relator and let (f,g) be a tabulation of R. Using
Lemma 5.1 we have:

F(R°)
(FR)®

F(F-0°)) = Flg-f) _ = Fg-F(f°)
(Ff-F(g°)° = (Ff-(Fg)°)° = Fg-(Ff)° = Fg-F(f°).

Thus F(R°) = (FR)°.

For the reverse direction we again use tabulations. Suppose R=h-k° C f-g° =S,
with (f, g) jointly monic. By Proposition 4.2 of the preceding chapter there exists
a function m such that h = f - m and k = g - m. Hence, we can reason:

FR

= {definition of R and F a functor}
Fh - F(k°)

= {F preserves converse}
Fh - (Fk)°
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= {definition of m and F is a functor}
Ff-Fm-(Fm)°- (Fg)°
- {since Fm is a function and so is simple}

Ff -Fg°
=  {F a functor and definition of S}
FS,

and so F is monotonic.

O

Corollary 5.1 If two relators F and G agree on functions, that is, if Ff = Gf for

all f, then F =G.

Proof. Let R be an arbitrary relation, and (f, g) a tabulation of R. Then
FR=F(f-¢°) = Ff - (Fo)° = Gf - (Gg)° = GR.

O

One consequence of Theorem 5.1 is that, when F is a relator, it is safe to write FR°
to mean either (FR)® or F(R®), a convention we henceforth adopt.

Exercises

5.1 Give an example of a non-monotonic functor F : Rel «+ Rel.

5.2 Show that any relator preserves meets of coreflexives, that is,
F(XNY) = FXNFY,

for all X, Y C id. Is the restriction X, Y C id necessary?

5.3 Denoting the set of all functions A < X by AX, the exponential functor ()X :
Fun < Fun is defined on arrows by fX h = f - h. Is the exponential functor a
relator? What is its generalisation to relations?

5.4 Consider a functor F : Fun < Fun defined on objects by

A - {{}, if 4={)

{0}, otherwise.

This defines the action of F on arrows uniquely; what is it?
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Now suppose F can be extended to a relator on Rel. Consider the constant functions
one, two : {1,2} « {0} returning 1 and 2 respectively. Use the definition of F to
show that F(one® - two) = id, where id : {0} « {0}.

Now use the assumption that F preserves converse to show that F(one® - two) = 0.
(This exercise shows that not every functor of Fun can be extended to a monotonic
functor of Rel.)

5.5 Show that any relator preserves the domain operator

F(domR) = dom(FR).

5.2 Relational products

Let us now see how we can extend the product functor to a relator. Recall from the
discussion of units in the preceding chapter that Fun(A) has products whenever A
is a unitary tabular allegory. Recall also that (outl, outr) is the tabulation of IT and
the pairing operator satisfies

(f,9) = (outl®-f)n (outre-g).
This immediately suggests how pairing might be generalised to relations: define
(R,S) = (outl®- R)N (outr®-S). (5.1)

The interpretation of (R, S) in Rel is, of course, that (a, b)(R, S)c when aRc and
bSc. Given (5.1), we can define x in the normal way by

RxS = (R-outl,S - outr). (5.2)

Note that the same sign X is used for the generalised product construction (hereafter
called the relational product) in A as for the categorical product in the subcategory
Fun(A). However, relational product is not a categorical product.

The task now is to show that relational product is a monotonic bifunctor. First,
it is clear that (R, S) is monotonic both in R and S, and from the definition of x
we obtain by a short proof that (R x §)° = R° x §°. Thus x preserves converse.
Furthermore, x preserves identity arrows (because they are functions), so the nub
of the matter is to show that it also preserves composition, that is,

(Rx8)-(UxV) = (R-U)x(S-V).
This result follows from the more general absorption property

(Rx8)-(X,Y) = (R-X,S8-Y). (5.3)
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In one direction (C), the proof of (5.3) is easy: expand the definitions, use mono-
tonicity and the fact that out! and outr are simple. We leave details as an exercise.
The proof in the other direction is a little tricky, so we will break it into stages.
Below, we will give a direct proof of the special case

(R-X,Y) C (Rxid)-(X,Y). (5.4)

By a symmetrical argument, we also obtain the special case
(X,S-Y) C (idx98)-(X,Y). (5.5)
Now we argue:

(R-X,5-Y)
{(5.4)}
(R x id)-(X,S-Y)
{(5:5)}
(Rxid)- (S xid)-(X,Y)
- {since (R x id) - (id x S) C (R x S) (exercise)}
(Rx 8)-(X,Y).

N

N

To prove (5.4) we argue:

(R-X,Y)
= {61}
(outl®-R- X)N (outr® - Y)
= {claim: outl - (R x id) = R - outl for all R; converse}
((R x id) - outl® - X) N (outr® - Y)
{modular law}
(R x id) - ((outl® - X) N ((R° X id) - outr® - Y))
{claim: outr - (R x §) C S - outr for all R, S; converse}
(R x id) - ((outl® - X) N (outr® - Y))
- ()}
(Rxid)-(X,Y)

N

N

In the above calculation we appealed to two claims, both of which follow from the
more general facts
outl- (R,S) = R-domS$S (5-6)
outr-(R,S) = S-domR. (5.7)
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The proof of (5.6) is

outl - (R, S)
{(5.1)}
outl - ((outl® - R) N (outr® - S))
= {modular identity, since outl simple; outl - outl® = id}
RN (outl - outr® - S)
{since outl - outr®° = II}
RN(II-S)
{Exercise (4.27)}
R-domS.

The proof of (5.7) is symmetrical.

Equation (5.6) indicates why (outl, outr) does not form a categorical product in the
allegorical setting: for any arrow R, we have outl - (R,0) = 0, not R.

Finally, let us prove the following useful cancellation law:
(R,8)°-(X,Y) = (R°-X)N(S°-Y). (5.8)
The proof is

(R,8)°-(X,Y)
{converse, absorption (backwards)}
(id,id)° - (R° x 8°) - (X, Y)
{(5.3)}
(id,4d)° - (R°- X, 8° . Y)
{5.1)}
(id, id)° - ((outl® - R° - X) N (outr® - S° - Y))
{distribution over meet, since (id, id) is a function}
((id, id)° - outl® - R° - X) N ({id, id)° - outr® - S° - Y)
{products}
(R°-X)N(S°-Y).

It is worth while observing that all the above equations and inclusions can also be
proved by an appeal to the meta-theorem of Section 4.3. Such indirect proofs are
quite short as compared to the excruciating symbol manipulation found above. On
the other hand, practice in the style of calculation given here will be useful later on
when the meta-theorem cannot be applied.
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Exercises

5.6 Prove that (R x id) - (id x S) D (R x S) using only (5.4) and (5.2).
5.7 Show that (P, Q) - (R,S)° C (P- R°) x (Q - S°).
5.8 Prove that (R x S)-(X,Y)C(R-X,S-Y).

5.9 Prove that (R,S)-f = (R-f,S - f). Is this equation true when f is replaced
by an arbitrary arrow?

5.10 Let F : A + A be a relator. Define unzip (F) = (Foutl, Foutr). Prove that
unzip(F)-F(Rx S) = (FR xFS)- unzp (F).
for all R, S. (Hint: first consider the case S = id.)

5.11 Recall the definition of exponentials from Chapter 3 An exponential of two
objects A and B is an object A® and an arrow eval : A <« AP x B such that for
each f : A < C x B there is a unique arrow curry f : AP < C such that

g=curryf = eval-(gxid)=f.

Reading (x) as relational product, does Rel have exponentials?

5.3 Relational coproducts

Fortunately, coproducts are simpler than products, at least in the setting of power
allegories. Let (inl, inr, A + B) be the coproduct of A and B in Fun(A), where A
is a power allegory. Then it is also a coproduct in the whole allegory A:

T-inl=Rand T-inr=3S5
= {power transpose isomorphism}
A(T - inl) = AR and A(T - inr) = AS
{ A fusion (backwards)}
AT -inl=AR and AT - inr = AS
{coproduct of functions}
AT = [AR,AS]
{A-cancellation}
T = €-[AR,AS].

Hence we can define [R, S] = € - [AR,AS]. The following diagram illustrates this
calculation:
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A+ B
s
A\
A PC < B

AR | AS
€
C
The border arrows of the diagram also suggests an explicit formula for R, S]:
[R,S] = (R-inl°)U(S -inr°). (5.9)

The proof of (5.9) is left as Exercise 5.12.

Given the definition of [R, S|, we can define the coproduct relator + in the usual
way by

R+S = [inl-R,inr-S]. (5.10)

It is easy to check that + is monotonic in both arguments, so + is a relator. In
analogy with products, we obtain the useful cancellation law

[R,S]-[U,V]° = (R-U°)U(S-V°). (5.11)

The proof is easier than the corresporniding cancellation law for products, and details
are left as an exercise.

Exercises

5.12 Define X = [id,0]. Use the universal property of coproducts to show that
X -inl = id and X - inr = (. Give the corresponding equations satisfied by Y =
[0, id]. Hence prove that

(inl- X) U (inr- Y) = [inl,inr] = id.
Now use Proposition 4.1 to conclude that X = inl° and Y = inr°. Hence prove
[R,S] = (R-#ml°) U (S-inr°).
5.13 Prove (5.11). Why not say simply that this result follows by duality from the
corresponding law for products?
5.14 Prove the equation
(R+85)N([U,V]°-[P,Q]) = (RN(U°-P)+(SN(V°-Q)).
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5.4 The power relator

Next we show how to extend P to a relator. Recall from the last chapter that,
over functions, P was defined as the restriction of existential image to functions:
P = EJ. Furthermore, we know that Pf = A(f - €) because ER = A(R - €), and
we also know from the final section of the preceding chapter the explicit formula
AR = (€\R) N (R\€)® for A. Putting these bits together we obtain

Pf = (e\(f-€) n ((f-e)\e)”.
The second term can be rephrased using the fact that (f - R)\S = R\(f°- S), so
Pf = (e\(f-€)) n((3-1)/3),
where 3 is a convenient abbreviation for €°.
The last identity suggests the following generalisation of P to relations:
PR = (€\(R-€)) N ((3-R)/3).
In Rel, this reads
z(PR)y = (Va€z:3be€y:aRb) N (Vb€ y:3a€x:aRd).

In words, if z(PR)y, then every element of z is related by R to some element in y
and conversely.

It is immediate from the monotonicity of division that PR is monotonic in R. We
also have that Pid = id, since this is just a restatement of the anti-symmetry of
subset, proved in the preceding chapter. So to show that P is a relator, we are left
with the task of proving that P distributes over composition.

The proof is in two parts. To show that
PR-PS C P(R-9),

observe that the right-hand side is the meet of two relations. By the universal
properties of meet and division, the result follows if we can prove the inclusions
€-PR-PS C R-S-€
PR-PS-3 C >-R-S.

Both follow from the definition of P and the cancellation laws of division.

Now for the hard part, which is to show that P(R-S) C PR-PS. The proof involves
tabulations. Let (z, 2) be a tabulation of P(R - S) and define

y = A(R°-€-7)N(S-€-2)).
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We aim to justify the following steps:
P(R-S)=z-2°Cz-y°-y-2° CPR-PS.

The first inclusion follows because y is a function and functions are entire. For
the second inclusion, we prove that z - ° C PR, and appeal to the symmetrical
argument to obtain y - z° C PS.

By definition of division, z - y° C PR is equivalent to
€-z-y°CR-€¢ and z-y9°-3C>-R.
For the first inclusion, we argue

€-z-1°CR-€
{shunting of functions}
€ zCR-€-y ‘
{definition of y, A-cancellation}
€-rCR-(R°-€-2)N(S-€-2))
&= {modular law}
€ zC(€-x)N(R-5-€-2)
{definition of meet}
€-zCR-S-€-2
{shunting of z; division}
z-2°Ce\(R-S-€)
= {since z - z° = P(R - S)}

true.

The second inclusion is proved as follows:

z-y°->
= {definition of y, A cancellation}
z-((R°-€-3)N(S-€-2))°

c {monotonicity, converse}
z-z°-3-R

- {since z is simple}
5-R.

This completes the proof.
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Exercises

5.15 A relator is completely determined by its action on functions. Since P and E
coincide on functions, they are equal. What is wrong with this argument?

5.16 Prove that ER - P(dom R) C PR.

5.5 Relational catamorphisms

Since the type functors of Fun(A) are defined as catamorphisms, we first check that
catamorphisms can be extended to include relational algebras.

Let F be a relator and suppose that F has initial algebra o : T + FT in the
subcategory of functions. By analogy with the above discussion of coproducts, we
can show that « is also initial in the whole allegory:

(X-a=R-FX) = (X =¢€-(A(R-Fe))). (5.12)
The proof is:

X-a=R-FX
{A is an isomorphism}
A(X-a)=A(R-FX)
{A cancellation (backwards)}
A(X-a)=A(R-F(e-AX))
{relators; A fusion (backwards, twice)}
AX -a=A(R-Fe)-FAX
{catamorphisms of functions}
AX = (AR -Fe))
{A cancellation}
X =€-(A(R-Fe)).

The proof is summarised in the following diagram:

(o4

T FT
(A(R- Fe)])l lF([A(R -Fe))
PA W FPA
€ lFG
A FA

R
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It follows that we can define (R) by the equation
(R) = €-(A(R-Fg)).

Equivalently, A(R) = (A(R-Fe)). This identity was first exploited in (Eilen-
berg and Wright 1967) to reason algebraically about the equivalence between de-
terministic and nondeterministic automata. For this reason we will refer to it sub-
sequently as the Eilenberg—Wright Lemma.

Type relators

Let F be a binary relator with initial type (@, T), so T is a type functor. To show
that T is a relator, it is sufficient to prove that it preserves converse:

(TR)® = T(R°)
= {definition of T, catamorphisms}
(TR)’-a=a-F((TR)°,R°)
= {since a is an isomorphism}
(TR’ =a-F((TR)°,R°) -a°
=  {converse, F relator}
TR=a-F(TR,R)-a°
{as before}
true.

Exercises

5.17 Provided the allegory is Boolean, every coreflexive C' can be associated with
another coreflexive ~C such that

CN~C=0 and CU~C =1id.

For any coreflexive C define guard C = [C,~C]°. Prove that guard C is a function.
Define the conditional (C — R, S) by

(C—R,S) = (R+S)-guard C.
Now prove that conditionals are very similar to cases:
RC(C—85T) = (R-CCS)and (R-~CCT).

This useful exercise gives us another way of modelling conditional expressions, and
is the one that we will adopt in the future.
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5.18 Let F be a binary relator, with initial type (e, T). Suppose that F preserves
meets, i.e.,

FRNX,SNY) = F(R,S)NF(X,Y).

Show that T also preserves meets. Note that this proves, for instance, that the list
functor preserves meets.

5.19 Prove that (R) is entire when R is entire. Hint: use reflection to show that
dom (R) = id.

5.6 Combinatorial functions

To counter-balance the foregoing, rather technical material, we devote the rest of
this chapter to giving some immediate feeling for the increase in descriptive power
that one obtains in a relational setting. The functional programmer is familiar with
a range of list-theoretic functions that can be used in the specification and solution
of many combinatorial problems. In this section, we define some of these functions
in terms of relational catamorphisms. All the functions defined below will re-appear
in later chapters, so this section is quite important.

We also take the opportunity to fix some conventions. In the second half of the book
we will be writing functional programs to solve a number of combinatorial problems
and, since cons-lists are given privileged status in functional programming, we will
stipulate that, in the future, lists mean cons-lists except where otherwise stated.
We will henceforth write list rather than listr to denote the type functor for lists.

Subsequences

The subsequence relation subseq : list A + list A can be defined by
subseq = (nil, cons U outr)).

The function Asubseq takes a list £ and returns the set of all subsequences of z. This
definition is very succinct, but is not available in functional programming, which
does not allow either relations or sets. To express Asubseq without using relations,
recall the Eilenberg—Wright lemma, which states that

A(R) = (A(R-F(id,€))).
If we can find e and f such that
A([nil, cons U outr] - F(id,€)) = [e,f],
where F(A,B) =1+ (A x B), then we obtain Asubseq = (e, f).
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To determine e and f we just expand the left-hand side and simplify:

A([nil, cons U outr] - F(id, €))
=  {definition of F}

A([nil, cons U outr] - (id + id x €))
= {coproduct}

A[nil, (cons U outr) - (id x €)]
= {power transpose of case}

[Anil, A((cons U outr) - (id x €))].

So we can certainly take e = Anil = T - nil, where 7 converts its argument into a
singleton set.

To find an appropriate expression for f we will need the power transpose of the join
of two relations. This is given by

A(RUS) = cup-(AR,AS),

where cup = A((€ - outl) U (€ - outr)) is the function that returns the union of
two sets. The proof of the above equation is a simple exercise using the universal
property of A, and we omit details.

Now we continue:

A((cons U outr) - (id x €))
= {composition over join, naturality of outr}
A((cons - (id x €)) U (€ - outr))
= {power transpose of join}
cup - (A(cons - (id x €)), A(€ - outr))
= {power transpose of composition, cons and outr are functions}
cup - (Pcons - A(id x €), outr).

It follows that we can take

f = cup-{Pcons-A(id x €), outr),
and so
Asubseq = (7 - nil, cup - (Pcons - A(id x €), outr))).

The final task in implementing Asubseq is to replace the sets by lists. The result is
simple enough to see if we write e and f in the form

e = {[I}

f(a,zs) = {cons(a,z) |z € zs}Uazs.
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In the implementation of Asubseq these definitions are replaced by

e = [l

f(a,zs) = [cons(a,z) |z x8] H zs.
In other words, we define the implementation subsegs of Asubsegq by
subseqgs = (wrap - nil, cat - (list cons - cpr, outr)]),

where cpr : list (A x B) + A x list B (short for “cartesian product, right”) is de-
fined by

CPT(G',z) = [(a’,b) ' b(—.’l,'].

To justify the definition of subsegs we need the function setify : P A « list A that
turns a list into the set of its elements:

setify = (w,cup- (7 x id)),

where w returns the empty set. With the help of setify we can formalise the re-
lationship between each set-theoretic operation and the list-theoretic function that
implements it. For instance,

setify -nil = w
setify -wrap = T
setify - cat cup - (setify x setify)
setify - concat union - setify - list setify
setify - list f Pf - setify
setify - cpr = A(id x €) - (id x setify).

Using these identities, it is easy to show by an appeal to fusion that
setify - subseqs = Asubseq.

We leave the details as an exercise.

Cartesian product

The function cpr used above implements one member of an important class of
combinators associated with cartesian product. Two other functions, cpp and cpl,
defined by

6pp($7y) = [(a,b) | a <z, b(_:‘/]
cpl(z,b) = [(a,b) | a =],
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implement A(€ x €) and A(€ x id), respectively. Thus,

setify-cpp = A€ x €)
setify - cpl = A(€ x id).

All three functions are among the combinators catalogued in the Appendix for useful
point-free programming,

The three functions are examples of a more general pattern. For a relator F, the
function

cp(F): PFA+~FPA

is defined by ¢p (F) = AF(€). In particular, ¢pp is an implementation of ¢p (F) for
FA = A x A, and cpl is a similar implementation when FA = A x B.

As another example, consider cp (list), which is described informally by
cp (list) [z1, 22, ..., 2] = {la1,02,...,04] | aj € z;}.

Since list R = (nil, cons - (R X id)]), appeal to the Eilenberg-Wright lemma gives
cp (list) = (A[nil, cons - (€ x €)]).

Expanding this definition, we obtain
cp (list) = (Anil, A(cons - (€ x €))]) = (7 - nil,Pcons - A(€ x €)).

The function cp (list) is implemented by a function cplist : list (list A) < list (list A)
obtained by representing sets by lists in the way we have seen above. The result is:

cplist = (wrap - nil, list cons - cpp).

The function cplist is another example of a useful combinator for point-free pro-
gramming. We will meet the cp-family again in Section 8.3.

Prefix and suffix

The relation prefirz describes the prefix relation on lists, so z prefic y when zH#2 =y
for some 2. Thus, prefix = outl - cat®. Alternatively, we can define prefix = init*,
where init* is the reflexive transitive closure of the relation init = outl - snoc® that
removes the last element of a list. The reflexive transitive closure R* of a relation
R will be defined formally in the following chapter.

We can also describe prefiz by a relational catamorphism:

prefir = (nil, nil U cons).
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The first nil in the catamorphism has type list A < 1, while the second has type
list A~ A x list A. Strictly speaking, we should write the second one in the form
nil -, where ! : 1 « A x list A.

Applying the Eilenberg-Wright lemma to the given definition of prefiz, we find
Aprefix = (7 - nil, cup - (7 - nil, P cons - A(id x €))).

Replacing sets by lists in the usual way, we obtain an implementation of Aprefiz by
a function inits defined by

inits = (wrap - nil, cat - (wrap - nil, list cons - cpr))).
This translates to two familiar equations:

inits[] = [[]]
inits ([a] #z) = [[]] # [[a] # y | y « initsz].

Note that inits returns a list of initial segments in increasing order of length.

The relation suffix is dual to prefiz, but we have to use snoc-lists to describe it as
a relational catamorphism. Alternatively, suffic = tail*, where tail = outr - cons®
removes the first element from a list. The implementation of Asuffiz is by a function
tails that returns a list of tail segments in decreasing order of length. The two
equations defining tails are

tails[] = [[l]
tails (z # [a])) = [y+[a] | y « tailsz] + [[]].

This is not a legitimate implementation in most functional languages. Instead, one
can use the two equations

tads[] = [[]]
tails ([a) # z)) = [[a] # =] H tails z.

We will see in Section 6.7 how these equations are obtained. Alternatively, tails can
be implemented as a catamorphism on cons-lists:

tails = (wrap- nil, extend)),
where
extend (a,[z) # zs) = [[a] H# z] # [z] H zs.

We can put inits and tails together to give an implementation of the function Acat®
that splits a list in all possible ways:

splits = zip - (inits, tails).
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For this implementation to work it is essential that inits and tails order their seg-
ments in opposite ways.

Partitions

A partition of a list is a decomposition of the list into a list of non-empty contiguous
segments. For instance, the set of partitions of [1,2, 3] is

{[[v), 2, (3]}, [(1,2], (3], {n)[23]], [[1,23]]}-

A surprising number of combinatorial problems can be phrased as problems about
partitions, and we will see examples in Chapters 7 and 8. The relation

partition : list (listt A) < list A

is defined by partition = concat®, where concat = (nil, cat]) and cat is restricted to
the type list A« list AT x list A. One can also express partition as a catamorphism

partition = (nil, new U glue)),
where
new = cons-(wrap X id)
glue = cons- (cons x id) - assocl - (id X cons®).

The pointwise definitions are

new (a,zs) = [[a]] H# s
glue (a,[z] H# zs) = [[a] # z] H zs.

The definition of partition as a catamorphism thus describes a step-by-step pro-
cedure, where at each step either a new singleton segment is created, or the next
element is ‘glued’ to the front of the first segment.

The definition of partition by a catamorphism is not as perspicuous as its definition
by the converse of a catamorphism. The definitions can be shown to be equivalent
using a theorem that we will prove in the following chapter. This theorem states that
if R: A+ FA is a surjective relation, and if f : T A+ A satisfies f - R C a-F(id, f),
where T is the type functor induced by T, then f° = (R).

We will apply the theorem with f = concat and R = [nil, new U glue]. We have to
show that
concat - nil C nil
concat - new C cons - (id X concat)
-

concat - glue cons - (id x concat).
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We prove only the third inclusion:

concat - glue
{definition of glue}
concat - cons - (cons X id) - assocl - (id x cons®)

= {since concat = (nil, cat))}
cat - (cons X concat) - assocl - (id x cons®)
=  {naturality of assocl}
cat - (cons x id) - assocl - (id x (id x concat) - cons®)
C  {since concat = (nil, cat)}
cat - (cons X id) - assocl - (id x cat®) - (id x concat)
= {since cat - (cons x id) = cons - (id X cat) - assocr}
cons - (id X cat) - assocr - assocl - (id x cat®) - (id x concat)
C  {since assocr - assocl = id and cat - cat® C id}
cons - (id x concat).

We also have to show that [nil, new U glue] is surjective, that is,
id C (nil-nil°) U ((new U glue) - (new U glue)®).
We leave it as an exercise to show that

new - new® = cons - (wrap - wrap® X id) - cons®
glue - glue® = cons - (cons - cons® x id) - cons®.

Using these equalities, we can now conclude that

(nil - nil°) U (new - new®) U (glue - glue®)
=  {above}
(nil - nil®) U (cons - (((wrap - wrap®) U (cons - cons®)) x id) - cons®)
=  {since (wrap - wrap®) U (cons - cons®) = id (on non-empty lists)}
(nil - nil®) U (cons - cons®)
= {since a - a® = id for all initial algebras a}
id,

which gives the result.
By the Eilenberg—Wright leﬁlma, we obtain

Apartition = (Anil, A((new U glue) - (id x €))).
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We can simplify the second term, arguing;:

A((new U glue) - (id x €))
{power transpose of composition}
union - PA(new U glue) - A(id x €)
= {power transpose of join}
union - P(cup - (Anew, Aglue)) - A(id x €)

= {since new is a function}

union - P(cup - (1 - new, Aglue)) - A(id x €).
Finally, we can implement Apartition by a function partitions defined by
partitions = (wrap - nil, concat - list (cons - (new, glues)) - cpr)),
where glues implements Aglue:

glues (a,[]) = []
glues (a,[z] H xs) ([[a] + z] H zs].

The proof of setify - partitions = Apartition is left as an exercise.

Permutations

Finally, consider the relation perm that holds between two lists if one is a per-
mutation of the other. There are a number of ways to specify perm; perhaps the
simplest is to use the type bag A of finite bags over A as an intermediate datatype.
This type can be described as a functional F-algebra [bnil, bcons] of the functor
F(A, B) =14+ A x B. The function bcons satisfies the property that

beons (a, beons (b, z)) = beons (b, beons (a, )),

which in point-free style reads
beons - (id x bcons) = bcons - (id X bcons) - exch,

where exch : B x (A x C) + A x (B x C) is the natural isomorphism
exch = assocr - (swap X id) - assocl.

The property captures the fact that the order of the elements in a bag is irrelevant
but duplicates do have to be taken into account. The function bagify : bag A« list A
turns a list into the bag of its elements, and is defined by the catamorphism

bagify = (bnil, beons).
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Since every finite bag is the bag of elements of some list, bagify is a surjective
function, so bagify - bagify® = id.

We can now define perm by
perm = bagify® - bagify.

In words, z is a permutation of y if the bag of values in z is equal to the bag of
values in y. In particular, it follows at once from the definition that perm = perm®°.

The above specification of perms does not lead directly to a functional program for
computing Aperm. One possibility is to express perm as a catamorphism perm =
(nil, add)) and then follow the path taken with all the examples given above. It is
easy to show (exercise) that

perm - cons = perm - cons - (id x perm),

so we can take add = perm - cons, although, of course, the result is not useful for
computing perm. An alternative choice for add is the relation

add = cat-(id x cons) - exch - (id x cat®).

In words, add (a,z) = y+[a]H# 2z where y+ 2 = z, so add (a,z) adds a somewhere
to the list z. Although this definition of add is intuitively straightforward, the proof
that perm = (nil, add]) depends on the fact that bags can be viewed as an initial
algebra, and we won’t go into it. The function Aadd can be implemented as a
function adds defined by

adds (a,z) = [y 4 [a] # 2 | (y, 2) « splits z],

where splits is the implementation of Acat® described above. The function perms
that implements Aperm is given by

perms = (wrap - nil, list add - cpr)).

We will meet perm again in the following chapter when we derive some sorting
algorithms.

Exercises

5.20 Construct functions cup, cap and cross so that
A(RUS) cup - (AR, AS)
A(RNS) cap - (AR, AS)
AR x S) cross - (AR x AS).
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5.21 Prove that

setify -nil = w
setify -wrap = T
setify - cons = cup - (T X setify)

setify - listf = Pf - setify.

5.22 Prove that setify - subseqs = Asubseq.

5.23 Express subseq as the converse of a catamorphism. (Hint: think about super-
sequences.)

5.24 As a function of type list A « listT A, the relation init can be defined as a
catamorphism. How?

5.25 Prove that

new - new® cons - (wrap - wrap® X id) - cons®

glue - glue® = cons - (cons - cons® X id) - cons®.

5.26 Prove that setify - partitions = Apartition.
5.27 Show that
Apartition = ([Anil, cup - (Pnew, union - PAglue) - A(id x €))),
and hence find another implementation of Apartition.
5.28 Using bagify - bagify® = id, show that perm - cons = perm - cons - (id x perm).

5.29 A list z is an interleaving of two sequences y and z if it can be split into a
series of subsequences, with alternate subsequences extracted from y and 2. For
example, [1,10,2,3,11,12,4] is an interleaving of [1,2,3,4] and [10,11,12]). The
relation interleave interleaves two lists nondeterministically. Define interleave as
the converse of a catamorphism.

5.7 Lax natural transformations

As we have seen, reasoning about datatypes in a relational setting makes it possi-
ble to explore properties that are difficult or impossible to express in a functional
setting. On the other hand, some properties that are simple equalities in a func-
tional setting become inequalities in a relational one. A good example is provided
by natural transformations and lax natural transformations. A lax natural trans-
formation is like a natural transformation but the naturality condition becomes an
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inequation. Formally, a collection of arrows ¢4 : FA « GA is called a lax natural
transformation, and is denoted by ¢ : F « G, if

FR-¢ DO ¢-GR (5.13)

for all R. Notice the direction D of the inclusion, which can be remembered by
relating it to the shape of the hook in «=. The inclusion can be pictured as

Fa <2 Ga

o > for

FB «— GB
¢

As one example of a lax natural transformation, we have € : id < P; in other
words,

R-€¢ DO €-PR,
for all R. This follows at once from the definition of PR.

The main result concerning lax natural transformations is the following theorem.

Theorem 5.2 Let F,G : A « B be relators and J : B « Fun(B) the inclusion of
functions into relations. Then ¢ : F <~ G = ¢ : FJ « GJ.

Proof. First, assume that ¢ : F <= G, so in particular we have Ff-¢ D ¢ - Gf. But
also

Ff-¢C¢-Gf
{shunting of functions}
¢-Gf° CFf°-¢
{inequation (5.13) with R = f°}

true,

and so Ff - ¢ = ¢ - Gf for all f.

Conversely, assume that ¢ : FJ « GJ, so Fg- ¢ = ¢ - Gg for all functions g. By
shunting of functions, this gives Fg° - ¢ D ¢ - Gg° since F and G are relators and
thus preserve converse.
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Now, we complete the proof by arguing;

Exercises

FR-¢

{let (f, g) be a tabulation of R}
F(f-9°)-¢

{relators}
Ff-Fg°-¢

{above}
Ff-¢-Gg°

{since ¢ : FJ « GJ}
¢-Gf - Gg°

{relators}
¢-G(f-9°)

{since f - ¢° tabulates R}
¢-FR.
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5.30 Each of the following pairs is related by C or D. State in each case what the
relationship is:

PR-7 and 7-R

(R x R)-(id,id) and (id,id)-R
cup- (PR xPR) and PR - cup.
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Chapter 6

Recursive Programs

The recursive programs we have seen so far have all been based, one way or the
other, on catamorphisms. But not all the recursions that arise in programming
are homomorphisms of a datatype. For example, one may want to implement the
converse of a catamorphism, or a divide and conquer scheme.

To set the scene, we begin this chapter with a simple programming problem whose
solution is given by a non-structural recursion. The solutions of a recursion equation
are called its fixed points and we continue with a discussion of some general prop-
erties of fixed points. We then go on to discuss an important class of computations,
called hylomorphisms, that captures most of the recursive programs one is likely to
meet in practice. To illustrate the material, we give applications to the problem of
deriving fast exponentiation, one or two sorting algorithms, and an algorithm for
computing the closure of a relation.

6.1 Digits of a number

The problem in this section is simply to convert a natural number to its decimal
representation. The decimal representation of a nonzero natural number is a list of
digits starting with a nonzero digit. The representation of zero is exceptional in this
respect, in that it is a list with one element, namely zero itself. Having observed
this anomaly, we shall concentrate on deriving an algorithm for converting positive
natural numbers.

The first step is to specify the problem formally. The types involved are four in
number: the type Nat* of positive natural numbers; the type Digit = {0, 1,...,9}
of digits; the type Digitt = {1,2,...,9} of nonzero digits; and finally the type of
decimal representations, which are non-empty sequences of digits beginning with a
nonzero digit. This last type can be declared as

Decimal ::= wrap Digit* | snoc (Decimal, Digit).
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Thus, ([wrap, snoc), Decimal) is the initial algebra of the functor
FA = Digitt + (A x Digit).

The function val : Nat* < Decimal is a catamorphism
val = (embed, op),

where embed : Natt < Digitt is the inclusion of digits into natural numbers, and
op(n, d) = 10n + d. To check this, let = be the decimal

z = snoc (snoc (wrap dz, dy), dp).
Then we have
valz = 10(10dz + di) + dp = 10%dz + 10" d; + 10%d,.

We can now specify the function digits, which takes a number and returns its decimal
representation, by

digits C  wal®. (6.1)

The use of C rather than = is necessary because we do not know (at least not yet)
that val® is a function. One should read (6.1) as requiring a functional refinement
of val®. The goal is to synthesise an algorithm from this specification of digits.

As a first step, we expand the definition of val®:

val®
{definition}
(embed, op))°
{catamorphisms}

([embed, op] - Fval - [wrap, snoc]® )°
= {converse}
[wrap, snoc) - Fval® - [embed, op)°
{definition of F}
[wrap, snoc] - (id + val® x id) - [embed, op]°
{coproduct}
[wrap, snoc - (val® x id)] - [embed, op]°
= {coproduct}
(wrap - embed®) U (snoc - (val® x id) - 0p°).

Hence val® satisfies the recursive equation

val®° = (wrap-embed®) U (snoc - (val® x id) - op®).
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In order to see what relation is given by op° : Nat* x Digit < Nat*, we reason:

op(n,d) =m
= {definition of op}
10n+d=m

{arithmetic and 0 < d < 10}
n=mdiv1l0 A d = m mod 10.

To obtain the right type for op® we need to ensure that 0 < n in the above cal-
culation, and this means that we require 10 < m as a precondition. So op° is a
partial function, defined if and only if its argument is at least 10. On the other
hand, embed® is also a partial function, defined if and only if its argument is less
than 10. The join in the recursive equation for val® can therefore be replaced by a
conditional expression, and we obtain

a’m = wrap m, if m <10
v - snoc (val® (m div 10), m mod 10), otherwise.

As a recursive program, this equation determines val® uniquely. The recursion
terminates on all arguments because m > 10 and n = m div 10 together imply
n < m, and so val® is applied to successively smaller natural numbers. It therefore
follows that val® is a (total) function and we can take digits = val®.

Writing the result in functional programming style, we obtain the program

i B [m], if m <10
gusm = digits (m div 10) + [m mod 10], otherwise.

The program runs in quadratic time because the implementation of snoc on lists
takes linear time. To obtain a linear-time program we can introduce an accumula-
tion parameter and write digits m = f (m,[]), where

fm,z) = [m] + =, ifm <10
m - f (mdiv 10, [n mod 10] # z), otherwise.

Notice that the anomalous case of 0 is treated correctly in the above algorithm.

Simple as it is, the digits of a number example illustrates a basic strategy for pro-
gram derivation using a relational calculus. First, a function of interest is specified
as a refinement of some relation R. Then, after due process of manipulation, R is
discovered to be a solution of a certain recursion equation. Finally, the recursion is
used to implement the function. As we shall see, the due process of manipulation
can often be replaced by an appeal to a single theorem.
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Exercises

6.1 Justify the final program above.

6.2 Least fixed points

Catamorphisms are defined as the unique fixed points of certain recursion equations
(as are the converses of catamorphisms). Here we are interested in the fact that,
when working in a relational context, one may also consider least fixed points.

The key result for reasoning about least fixed points is the celebrated Knaster—
Tarski theorem (Knaster 1928; Tarski 1955), which in our terminology is as follows:

Theorem 6.1 (Knaster—Tarski) Suppose ¢ is a monotonic mapping (not neces-
sarily a functor) on the arrows of a locally complete allegory, taking a relation
X : A« B to ¢X : A+ B. Then each of the equations ¢X C X and ¢X = X
has a least solution and these least solutions coincide. Dually, each of the equations
X C ¢X and X = ¢X has a greatest solution and these greatest solutions coincide.

Proof. Let X = {X | $X C X} and define R = (| X. We first show that ¢R C R,
or, equivalently, that X € X implies R C X. We reason:

XeX
=  {definition of R}
RCX
= {¢ monotonic}
PR C ¢X
= {since ¢X C X}
¢RC X.
But now, since R € X, it follows that X = R is the least solution of ¢X C X. It
remains to prove that R C ¢R:

RC ¢R
<  {definition of R}
$(¢R) C ¢R
<= {since ¢ monotonic}
#RCR
{above}
true.
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For brevity we henceforth write (uX : ¢X) for the least solution of the equation
X = ¢X.

Let us now consider what the Knaster—Tarski theorem says about datatypes and
catamorphisms. Recall that (R]) was defined by the universal property

X=(R) = X-a=R-FX,

where F is the base relator of the catamorphism. Because « is an isomorphism, the
equation on the right can also be written as X = R-FX - o°, so X = (R) is the
unique (and hence both greatest and least) solution of the equation. Since F is a
relator, the mapping ¢ defined by ¢X = R - FX - o° is monotonic. Hence by the
Knaster—Tarski theorem we obtain

(R)CX « R-FX-o°CX (6.2)
XC(R) « XCR-FX-a° (6.3)

The fusion law for catamorphisms therefore has two variants in which equality is
replaced by inclusion:

(T)CS-(R) « T-FSCS-R (6.4)
S-(R)CS(T) « S-RCT-FS. (6.5)

The proofs of these results are easy exercises.

Exercises

6.2 Where in the proof of the Knaster—Tarski theorem did we use the locally com-
plete property of the allegory?

6.3 Say that ¢ is continuous if it preserves joins of ascending chains of relations.
That is, if Xo C X1 C X;..., then ¢(U{Xn | 0 < n}) = U{¢Xn | 0 < n}. Prove
Kleene’s theorem (Kleene 1952) which states that, under the conditions of the
Knaster—Tarski theorem and the assumption that ¢ is continuous,

(uX : 9X) = U{¢"0|0< n},
where ¢"X = ¢X - X ---- X (n times).

6.4 Use the Knaster—Tarski theorem to justify the following method for showing
(uX : ¢X) C A: show that ¢pA C A.

Use Kleene’s theorem to justify the alternative method: show that X C A implies
¢X C A. This method is called fixed point induction.
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6.5 If ¢ is a monotonic mapping, then the least solution of X C X satisfies
¢X = X. Show that this is a special case of Lambek’s lemma when the partial
order of arrows A « B is regarded as a category, and ¢ is regarded as a functor on
this category.

6.6 Prove (6.4) and (6.5).

6.7 Prove that (R) C (S) follows from R - F(S) C S - F(S). Give an example
where it is not true that R C S, but that, nevertheless, (R]) C (5).

6.8 An arrow is said to be difunctional if R = R- R°- R. The difunctional closure of
an arbitrary arrow R is the least difunctional relation that contains R. Construct
the difunctional closure of R as a least fixed point.

6.3 Hylomorphisms

The composition of a catamorphism with the converse of a catamorphism is called
a hylomorphism. Thus hylomorphisms are expressions of the form (R]) - (S)°. Hy-
lomorphisms are important because they capture the idea of using an intermediate
data structure in the solution of a problem.

More precisely, suppose that R : A <+ FA and also that S : B «+ FB. Then we have
(R)-(S)°: A« B, where (R) : A« T and (S)°: T+ B, and where T is the
initial type of F. The type T is the intermediate data structure.

Practically every relation of interest can be expressed as a hylomorphism. Since
(@) = id, all catamorphisms and converses of catamorphisms are themselves exam-
ples of hylomorphisms. We will see many other examples in due course.

Hylomorphisms can be characterised as least fixed points. More precisely, the fol-
lowing theorem holds:
Theorem 6.2 Suppose that R : A« FA and S : B < FB are two F-algebras.
Then (R) - (S)° : A < B is given by

(R)-(S)° = (uX:R-FX-S°).
Proof. First we show that (R - (S)° is a fixed point:

R-F((R)-(SD°)-5°
= {functors}
R-F(R)-F(S)°- 8°
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{catamorphisms}
(R)-a-F(S)°-S°
=  {converse; catamorphisms}
(RD - (S)".
Second, we show that
(R)-(S)°CX « R-FX-S8°CX

and appeal to Knaster-Tarski. The proof makes use of the division operation, a
typical strategy in reasoning about least fixed points:

(R)-(S)° c X
{division}

(R) € X/(S)°

&= {Knaster—Tarski, and equation (6.2)}

R-F(X/(S)°) -0 C X/(S)°
{division}

R-F(X/(8)%) e (S)° C X
{catamorphims}

R-F(X/(8)°)-F(S)°-8°C X

<  {functors and division cancellation}

R-FX.-S°CX.

a

When FX = GX +HX, so F-algebras are coproducts, we can appeal to the following
corollary of Theorem 6.2:

Corollary 6.1
([RI,RZD . ([S],Szl)o = ([J,X : (Rl -GX - Slo) U (R2 -HX - Sgo)).
Proof. We reason:
[Rl, Rz] . (GX + HX) . [S], Sz]o
=  {coproduct}
[R1-GX, Ry - HX]- [S1, S2)°

{coproduct}
(R1-GX - 51°) U (Rz-HX - 5°)).
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Theorem 6.2, henceforth called the hylomorphism theorem, can be read as repre-
senting a prototypical ‘divide and conquer’ scheme. The term S° represents the
decomposition stage, FX represents the stage of solving the subproblems recur-
sively, and R represents the recombination stage. We will see applications in the
next section and in Section 6.6.

Exercises

6.9 Specify the function that converts the binary representation of a number to its
octal representation as a hylomorphism.

6.10 Show that hylomorphisms preserve simplicity: if R is simple and S is simple,
then (R) - (S°)° is simple.

6.4 Fast exponentiation and modulus computation

Consider the problem of computing a® for natural numbers a and b. The curried
function exp : (Nat « Nat) «+ Nat is defined by the catamorphism

ezpa = (one, mult a)).

This definition encapsulates the two equations a® = 1 and a®*! = a x ab. The

computation of ezp a b by the catamorphism takes O(b) steps, but by using a divide
and conquer scheme we can improve the running time to O(log b) steps.

To derive the fast exponentiation algorithm consider the type Bin of binary num-
bers, defined by Bin = listl Bit, where Bit = {0, 1}. For example, as an element of
Bin the number 6 is given as [1, 1, 0]. The partial function convert : Nat < Bin con-
verts a well-formed binary number, that is, a sequence of bits that is either empty
or begins with a 1, into natural numbers and is given by a snoc-list catamorphism

convert = (zero, shift)),
where shift : Natt « Nat x Bit is given by shift (n,d) =2 x n + d.
Now we can argue:

expa
o) {since convert is simple}

ezxp a - convert - convert®
= {fusion, see below, with op a (n, d) = (d =0 = n?%,a x n?)}

(one, op a)) - convert®
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= {corollary to hylomorphism theorem}
(uX : (one - zero®) U (opa- (X x id) - shift®))

The fusion step is justified by the equations

expa-zero = one
expa-shift = opa- (ezpa X id).
By construction, zero and shift have disjoint ranges, so we can proceed as in the

digits of a number example and replace the join by a conditional expression. The
result is the following program for computing ezp a b:

1 ifb=0

etpab = {Opa(empa(bdiv2),bmod2), otherwise.

Modulus computation

Exactly the same idea can be used to compute a mod b for natural a and positive
natural b. The curried function mod : (Nat < Nat) + Nat* is defined by the
catamorphism

modb = (zero,succd),

where succba = (@ = b —1 — 0,a + 1). The computation of a mod b by this
method takes O(a) steps. But, as before, we can argue:

mod b
2 {since convert is simple}

mod b - convert - convert®
{fusion, see below}

(zero, op b)) - convert®
{hylomorphisms}
(uX : (zero - zero®) U (opb- (X x id) - shift®)).

The fusion step is justified by the equations

mod b-zero = zero
mod b - shift = opb-(modb x id),

where opb(r,d)=n>b—>n—-bn)and n=2xr+d.
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The result is the program

0, ifa=0
modba = opb(mod b (adiv2),0), if evena
op b (mod b (a div2),1), if odd a.

The running time is O(log a) steps.

These simple exercises demonstrate how divide and conquer schemes can be intro-
duced by invoking a suitable intermediate datatype.

Exercises

6.11 Why do the programs for exponentiation and modulus terminate and deliver
functions?

6.5 Unique fixed points

The hylomorphism theorem states that a hylomorphism is the least fixed point of a
certain recursion equation. However, it is not necessarily the only fixed point. To
illustrate, consider the hylomorphism

X = (=zero,id) - (zero, positive))°

on natural numbers, where positive is the coreflexive that holds only on positive
integers (so positive = succ - succ®). The catamorphism (zero, id])) describes the
constant function that always returns zero, and ((zero, positive]) describes the core-
flexive that holds only on zero. Hence X is again the coreflexive that holds only on
zero. However, the recursion equation corresponding to the hylomorphism is

X = [zero,id]- (id + X) - [2ero, positive]°,

which simplifies to X = (zero - zero®) U (X - positive). This equation has other
solutions, including X = id.

Note also that [zero, positive]® : 1+ Nat « Nat is a function, as is [zero, id], but the
least solution of the recursion is not even entire. However, Exercise 6.10 shows that
if R and S are simple relations, then so is (uX : R-FX - §).

It is important to know when a recursion equation X = R - FX - §° has a unique
solution, and when the solution is a function. It is not sufficient for R and S° to
be functions, as we saw above. The condition is simple to state: we need the fact
that member (F) - S° is an inductive relation, where member (F)4 : A + FA is the
membership relation for the datatype FA. The two sections that follow explain the
essential ideas without going into full details.
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Inductive relations

Basically, a relation is inductive if one can use it to perform induction. Formally,
R: A+ A is inductive if

RAXCX = IICX

for all X : A < B. At the point level, this definition says that if
(Vc: cRa = cXb) = aXb

holds for all @ and b, then X holds everywhere.

To take a simple example, let < be the usual ordering on natural numbers. For
fixed b, the implication

(Va:(Ve:c<a=cXb) = aXb) = (Va:aXd)

asserts the general principle of mathematical induction for natural numbers, in
which the role of an arbitrary proposition involving a is played by the expression
aXb. As another example, take the relation tail = outr - cons®. The induction
principle here is that if a relation holds for a list £ whenever it holds for tail , then
it holds for every list.

A key result is that if S is inductive and R- R C R- S, then R is also inductive. This
result is left as an instructive exercise in division. It follows that if S is inductive
and R C S, then R is inductive. It also follows that S is inductive if and only
if St is, where St is the transitive closure of S. This relation can be defined by
St =(uX:S U (X-8)). The reflexive transitive closure S* is the subject of a
separate section given below.

There is another way to define the notion of an inductive relation, but it requires
the allegory to be Boolean. A relation R : A « A is well-founded if

XCX-R = XC0

for all X : B « A. This corresponds to the set-theoretic notion that there are no
infinite chains ag, a1, ... such that a;y1Ra; for all i > 0. If a relation is inductive,
then it is also well-founded, but the converse holds only in a Boolean allegory.

Membership

The other key idea is membership. Data types record the presence of elements, so
one would expect a relator F to come equipped with a membership arrow member, :
A « FA for each A, such that a member z precisely when a is an element of z. In
fact, not all relators do possess a membership relation, though fortunately those
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relators that arise in programming (the polynomial relators, the power relator, and
the type relators) do. Here are the membership relations for the polynomial relators,
in which we write member (F) to emphasise the dependence on F:

member (id) = id
member (Ka) = 0
member (F+G) = [member (F), member (G)]
member (F x G) = (member (F) - outl) U (member (G) - outr)
member (F-G) = member (G) - member (F).

Most of these are intuitively obvious, given the informal idea of membership. For
example, in Rel the relator FA = A x A returns pairs of elements and z is a member
of a pair (y, 2) if £ = y or £ = z. On the other hand the constant relator K4(B) = A
records no elements from B, so its membership relation is the empty relation.

The membership relation for the power relator is €, as one would expect. That
leaves the membership relation for type relators. In a power allegory, the problem
of defining the membership relation for a type functor T is the same problem as
defining setify for the type. We have

member (T) = € - setify (T)
setify (T) = Amember (T).

There is an alternative method (see Exercise 6.17) for defining the membership
relation of type functors that does not depend on sets.

So far we have not said what it means for a relation to be a membership relation.
One might expect that the formal definition would be straightforward, but in fact
it is not and we will not discuss it in the text (but see Exercise 6.18). If F does have
a membership relation member, then

R - member DO member- -FR

for all R, so member is a lax natural transformation member : id < F. In fact,
member — provided it exists — is the largest lax natural transformation with this
type. It follows that membership relations, if they exist, are unique.

Consequences

The central result about the existence of inductive relations is that member (F) - °
is inductive, where « is the initial F-algebra. For example, consider the initial type
([2ero, succ], Nat) of the functor FX = 1 + X. The membership relation here is
[0, id], so we now know that

[0, id) - [zero, succ)® = succ®
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is inductive. Furthermore, < is the relation pred*, where pred = succ®, so this
relation is also inductive. This remark justifies the termination of the recursion in
the digits of a number example.

As a second example, take lists. The membership relation is [0, outr], so
[0, outr] - [nil, cons]° = outr - cons®

is inductive. Since tail = outr- cons® we obtain that tail*, the proper suffix relation
is inductive. With snoc-lists, init and the proper prefix relation are both inductive.

The theorem referred to earlier about unique solutions is the following one.
Theorem 6.3 If member (F) - S is inductive, then the equation X = R-FX - S

has a unique solution X = ¢(R, S). Moreover, ¢(R, S) is entire if both R and S are
entire.

Proof. For a full proof see (Doornbos and Backhouse 1995).

O

Corollary 6.2 Suppose member (F) - g is inductive. Then the unique solution of
X =f-FX - g is a function.

Proof. The unique solution is X = (f]) - (¢°)°, which is entire by the theorem,
since f and g are. But Exercise 6.10 shows that the solution is also simple, since f
and g are.

O

For the next result, recall that R is surjective if id C R - R°. Thus, R is surjective
if and only if R° is entire.

Corollary 6.3 If member (F) - R° is inductive, then (R) is surjective if R is.
Proof. X =a-FX - R° has the unique solution X = (R)°.

O

Using these results, we can now prove the theorem used in Section 5.6 to justify the

definition of partition as a catamorphism.

Theorem 6.4 If R is surjective and f - R C a - Ff, then f° = (R).
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Proof. In one direction we argue:

(R) Cf°
{shunting and (o) = id}
f-(R) < (o)
& {fusion}
f-RCa-Ff
& {assumption}

true.
In the other direction we argue:

fe < (R)

<  {claim: (R) is surjective}
(R) - (R)°- f° < (R)

<  {since f - (R) C id from above; converse}
true.

By Corollary 6.3 the claim follows by showing that member - R° is inductive. But

member - R°

C {since f - R C a - Ff, shunting}
member - Ff°-a° - f

- {since member : id « F}
f° - member-a°-f.

Now, by Exercise 6.16, f° - member - a° - f is inductive because member - a° is.
Finally, any relation included in an inductive relation is inductive, so member - R°
is inductive.

(]

Exercises

6.12 Prove that R is inductive if and only if the equation X = R\X has a unique
solution.

6.13 Prove that if S is inductive and R- R C R - S, then R is inductive.
6.14 Is the empty relation # inductive? What about II?

6.15 Show that the meet of two inductive relations is again inductive. Give a
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counter-example to show that the join of two inductive relations need not be induc-
tive.

6.16 Show that if R is well-founded, then so is f° - R - f for any function f.

6.17 Define inlist : A « list A as a catamorphism. Why can’t inlist : A < list A
also be defined as a catamorphism? An arbitrary element of a list can be found by
taking the first element of an arbitrary suffix, thus we can define inlist = head - tail*.
Show how this definition can be generalised to define intree, where

tree A = tip A| bin (tree A, tree A).
How about
tree A = null | fork (tree A, A, tree A) ?

6.18 The formal definition of membership is this: a collection of arrows member is
a membership relation of F if

FR - (member\id) = member\R

for all R. Show that F has a membership relation member if and only if FR -
(member\S) = member\(R - S) for all R and S.

6.19 Assume that id is the largest lax natural transformation of type id « id, and
that relator F has a membership relation member. Show that member is the largest
lax natural transformation of type id < F.

6.20 Prove that for any relators F and G, the relation member (F)\member (G) is
the largest lax natural transformation of type F < G.

6.21 Prove that in a Boolean allegory member (F) is entire if and only if F) = 0.

6.6 Sorting by selection

The problem of sorting is an interesting one because of the variety of approaches
one can take. One can head for a catamorphism, the converse of a catamorphism, or
various hylomorphisms using different intermediate datatypes. We will concentrate
on just two sorting algorithms that depend on selection for their operation.

The function sort : list A « list A sorts a list under a given connected preorder
R : A« A A relation R is said to be connected if R U R° = II; the normal
terminology is total but this invites confusion with the quite different idea of an
entire relation. The function sort is specified by

sort C ordered - perm, (6.6)
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where perm was defined in the preceding chapter, and ordered is the coreflexive
that tests whether a list is ordered under R.

If relation R is a linear order (that is, a connected anti-symmetric preorder), then
ordered - perm is a function and (6.6) determines sort uniquely, but we assume
only that R is a connected preorder, so the use of refinement is necessary. Strictly
speaking, we should parameterise both sort and ordered with the relation R, but
for this section it is simplest to assume that R is fixed.

We can define ordered as a relational catamorphism
ordered = ([nil, cons - ok)),

where the coreflexive ok is defined by the corresponding predicate
ok (a,z) = (Vb: binlistz : aRb).

The relation inlist : A « list A is the membership relation for lists. Thus ordered
rebuilds its argument list, ensuring at each step that only smaller elements are
added to the front. There is an alternative definition of ok, namely,

ok (a,z) = (z=[] V aR/(headz)),

but this definition turns out not to be so useful for our purposes.

Selection sort

In outline, the derivation of selection sort is as follows:

ordered - perm

=  {since perm = perm° and ordered = ordered®}
(perm - ordered)®

= {since ordered = (nil, cons - ok)}

(perm - (nil, cons - ok]))°

V)

{fusion, for an appropriate relation select}

(nil, select®)°.

In selection sort we head for an algorithm expressed as the converse of a catamor-
phism. The proviso for the fusion step is
perm - cons - ok D select® - (id x perm)

and the following calculation shows how select may be constructed:
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perm - cons - ok
{since perm = ([nil, perm - cons)) (Section 5.6)}

Il

perm - cons - (id x perm) - ok

= {claim: (id x perm) - ok = ok - (id x perm) (Exercise 6.22)}
perm - cons - ok - (id x perm)

2 {specifying select C ok - cons® - perm}

select® - (id x perm).

In words, select is defined by the rule that if (a,y) = select z, then [a] + y is
a permutation of z with aRb for all elements b of y. The relation select is not
a function because it is undefined on the empty list. But we do want it to be a
function on non-empty lists. Suppose we can find base and step so that

(base, step)) - embed C ok - cons® - (nil, perm - cons)),

where embed : listt A « list A converts a non-empty element of list A to an element
of listt A. Then we can take select = (base, step)) - embed.

The functions base and step are specified by the fusion conditions:

base C ok - cons® - perm - wrap

step - (id X ok - cons®) C ok - cons® - perm - cons.

These conditions are satisfied by taking

basea = (a,[])

{ (a,[b] + z), if aRb

step (a,(b,z)) = (b,[a] # ), otherwise.

We leave details as an exercise. Finally, appeal to the hylomorphism theorem gives
that X = (nil, select®)’ is the unique solution of the equation

X = (nil-nil°) U (cons- (id x X) - select),
so we can implement sort by

[, ifz =]
sortz = [a] + sort y, otherwise
where (a,y) = select z.
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Quicksort

The so-called ‘advanced’ sorting algorithms (quicksort, mergesort, heapsort, and
so on) all use some form of tree as an intermediate datatype. Here we sketch the
development of Hoare’s quicksort (Hoare 1962), which follows the path of selection
sort quite closely.

Consider the type tree A defined by
tree A = null | fork (tree A, A, tree A).
The function flatten : list A + tree A is defined by
flatten = ([nil, join)),

where join (z, a,y) = ¢ # [a] # y. Thus flatten produces a list of the elements in
a tree in left to right order.

In outline, the derivation of quicksort is

ordered - perm
o) {since flatten is a function}
ordered - flatten - flatten® - perm
= {claim: ordered - flatten = flatten - inordered (see below)}
flatten - inordered - flatten® - perm
=  {converses}
flatten - (perm - flatten - inordered)®
) {fusion, for an appropriate definition of split}
flatten - (nil, split°)°.
In quicksort we head for an algorithm expressed as a hylomorphism using trees as
an intermediate datatype.

The coreflexive inordered on trees is defined by
inordered = ((null, fork - check))
where the coreflexive check holds for (z, a, y) if
(Vb : bintreex = bRa) A (Vb : bintree y = aRb).

The relation intree is the membership test for trees. Introducing Ff = f x id x f
for brevity, the proviso for the fusion step in the above calculation is

split® - F(perm - flatten) C  perm - flatten - fork - check.
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To establish this condition we need the coreflexive check’ that holds for (z, a, y) if
(Vb: binlistz = bRa) A (Vb : binlist y = aRD).

Thus check’ is similar to check except for the switch to lists.

We now reason:

perm - flatten - fork - check
=  {catamorphisms, since flatten = (nil, join)}
perm. - join - F flatten - check
= {claim: F flatten - check = check’ - F flatten}
perm - join - check’ - F flatten
= {claim: perm - join = perm - join - F perm}
perm - join - F perm - check’ - F flatten
= {claim: F perm - check’ = check’ - F perm; functors}
perm - join - check’ - F(perm - flatten)
D  {taking split C check’ - join°® - perm}
split® - F(perm - flatten).
Formal proofs of the three claims are left as exercises. In words, split is defined
by the rule that if (y, a, 2) = split z, then y + [a] + 2 is a permutation of z with

bRa for all b in y and aRb for all b in 2. As in the case of selection sort, we can
implement split with a catamorphism on non-empty lists:

split = (base, step)) - embed.
The fusion conditions are:

base check’ - join® - perm - wrap

-
split - (id x check’ - join) C check’ - join® - perm - cons.
These conditions are satisfied by taking

basea = ([],a,(])

{ (la] 4 z,b,y), if aRb

step (a, (2, b, y)) (z,b,[a] H y), otherwise.

Finally, appeal to the hylomorphism theorem gives that X = flatten - (nil, split°])°
is the least solution of the equation

X = (nil-nil°) U (join- (X x id x X) - split).



156 6 / Recursive Programs

Hence sort can be implemented by

(I, ifz =]
sortt = sorty H [a] # sortz,  otherwise
where (y, a, 2z) = split z.

The derivation of quicksort is thus very similar to that of selection sort except for
the introduction of trees as an intermediate datatype.

Exercises

6.22 Using Exercise 6.19, show that inlist = inlist - perm. Give a point-free defini-
tion of ok. Using the preceding exercise, prove that (id x perm)-ok = ok-(id x perm).

6.23 Why is the recursion in the programs for selection sort and quicksort guaran-
teed to terminate?

6.24 Writing ordered R to show explicitly the dependence on the preorder R, prove
that ordered R - ordered S = ordered (R N S), stating any assumption you use.

6.25 Consider the problem of sorting a (finite) set. Why is the second of the
specifications

sort C ordered R - setify®
sort C ordered (RN neq) - setify®,

more sensible? The relation neq satisfies anegb if a # b Develop the second
specification to a version of selection sort, assuming that the input is presented as
a list possibly with duplicates.

6.26 Sort using the type tree A as in quicksort, but changing the definition of
flatten = ((nil, join)) by taking join (z,a,y) = [a] + z H+ y.

6.27 Repeat the preceding exercise but with join (z, a,y) = z +H y + [a].

6.28 Repeat the preceding exercise but with join (z, e, y) = [a] # merge (z,y),
where merge merges two ordered lists into one:

merge (z,[]) = =
merge ([, y) = y
merge ([a] # z,[b] #y) = { {ba]] i ,",::g: (([z(;][.l:.]}.—: Z;: gtgg'l‘);vise.

6.29 What goes wrong if one attempts to sort using the intermediate datatype

tree A == null | tip A | fork (tree A, tree A) ?
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6.30 Recall from Section 5.6 that perm = (nil, add]), where
add = cat- (id x cons) - exch - (id X cat®),

and exch = assocr - (swap X id) - assocl. Using this characterisation of perm, we can
reason:

ordered - perm

= {using perm = (nil, add)}
ordered - (nil, add))

= {fusion}
(nil, ordered - add)).

o) {for a suitable function insert}
(nil, insert).

Verify the fusion condition ordered - add = ordered - add - (id x ordered). Describe a
function insert satisfying insert - (id x ordered) C ordered - add, and hence justify
the last step. The resulting algorithm is known as ‘insertion sort’.

6.7 Closure

A good illustration of the problem of how to compute the least fixed point of a
recursion equation, when other fixed points may exist, is provided by relational
closure. For every relation R : A« A, there exists a smallest preorder R* containing
R, called the reflexive transitive closure of R. Our primary aim in this section is
to show how to compute E(R*) : PA + PA whenever the result is known to be a
finite set (so the computation will terminate). Many graph algorithms make use of
such a computation, for instance in determining the set of vertices reachable from
a given vertex.

The closure of R is characterised by the universal property
RCX = R*CX forall preorders X.
It can also be defined explicitly by either of the equations

R* = (uX:id U (X -R)) (6.7)
R* = (uX:id U (R-X)). (6.8)

The proof that these definitions coincide is left as an exercise.
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To justify (6.7) we have to prove that S = (pX : id U (X - R)) is the smallest
preorder containing R. Since

id C€C ddU (S-R) C S,
we have that S is reflexive. Using this, we obtain

R C idUR C idU(S-R C 8,

and so S contains R. For transitivity, we argue:

§-§CS§
{left-division}
SCS\S
< {definition of S}
id U (S\S)-RC S5\S
= {division}
S-(iduU (S\S)-R)C S
= {composition over join}
SU(S-(S\S)-R)CS
& {cancellation of division}
SU(-RCS
{definition of S}

true.

Note the similarity of the proof to that of Theorem 6.2 with a switch of division
operator. Finally, suppose X is a preorder that contains R. Then we have

dU(X-R C dU(X-X) C X,

andso S C X.

Computing closure

It is a fact that the equation X = id U (X - R) has a unique solution, necessarily
X = R*, if and only if R is an inductive relation. In particular, tail is inductive, so
suffiz is characterised by the equation

suffit = id U (suffic - tail).

Simple calculation leads to the following recursion equation for Asuffic:

Asuffit = cup - (1, A(suffiz - tail)).
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Using the fact that tail is not defined on the empty list, we can introduce a case
analysis, obtaining

(Asuffir)[] = {[]}
(Asuffiz) ([a] #+2z) = {[a] H 2z} U (Asuffiz) z.

Representing sets by lists in the usual way, we now obtain the following recursive
program for computing the function tails of Section 5.6:

taids[] = [[]]
tails ([a) #+ ) = [[a] + z]+ tailsz.

All this is very straightforward, but the method only works because the basic re-
cursion equation has a unique solution. In this section we show how to compute
A(R*) when R is not an inductive relation.

Rather than attempt to derive a method for computing A(R*) directly, we con-
centrate first on giving an alternative recursive formulation for R*. This recursion
will be designed for efficient computation once we bring in the sets. The reason for
this strategy is that it will enable us to employ relational reasoning for as long as
possible.

In the following development use is made of relational subtraction. Recall from
Exercise 4.30 that R — S is defined by the universal property

R-S C T = R C SUT.
From this we obtain a number of expected properties, including

R-0 = R

RUS = RU(S-R)
R-(SUT) = R-S-T
(RUS)-T = (R-T)U(S-T).

In the third identity the subtraction operator is assumed to associate to the left, so
R—S—T=(R-S)— T. Use of these rules will be signalled just with the hint
subtraction.

We will also make use of the following property of least fixed points, called the
rolling rule:

(0 X : 9(¥X)) = @(uX : P(¢X)).

The proof of the rolling rule is left as an exercise, as are two other identities for
manipulating least fixed points.
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Finally, we make use of the fact that
R-§ = (X:S U (R-X))
This too is left as an exercise.
Now for the main calculation. The idea is to define 6 by
6(P,Q) = P U (uX:QU(R-X - P)), (69)
and use 6 to obtain a recursive method for computing R* - S. From above we have
6(0, S) = R* - S so the aim is to show how to compute 6(0, S).
Since
6(P,0)=PU(uX:R-X-P)=PUD=P,
it follows that 0(P,0) = P. We can also obtain an expression for (P, Q), arguing;
6(P, Q)
= {definition}
PU(pX:QU(R-X —P))
= {subtraction}
PUpX:QU(R-X—-P—-Q))
= {rolling with X = QU X and yX = (R- X — P — Q)}
PUQUuX:R-(QUX)—P-Q)
= {subtraction}
PUQU(uX:(R-Q-P-QU(R-X-P-Q)
= {definition of 6}
6(PUQ,QU(R-Q~ P - Q)).
Summarising, we have shown that
0(0,S) = R*-S
6(P,0) = P
0(P9Q) = G(PUQ7R Q'—P— Q))

These three equations can be used in a recursive method for computing R* - S:
compute 6(0, S), where

3 P, ifQ==0
(P, Q) = { 6(PUQ,R-Q—P—Q), otherwise.

The algorithm will not terminate unless, regarded as a set of pairs, R* - S is a finite
relation; under this restriction the algorithm will terminate because the size of P
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increases at each recursive step. If it does terminate, then the three properties of 6
given above guarantee that the result is R* - S.

The above algorithm is non-standard in that relations appear as data objects. But
we can rewrite the algorithm to use sets as data rather than relations. Think of
the relations P, @ and S as being elements (that is, having type A « 1, where
R: A« Aisgiven) and let p=AP, ¢g=AQ and s = AS. Then p, ¢ and s are the
corresponding elements of type PA «+ 1. By applying A to everything in sight, and
recalling that A(R*- S) = E(R*)-AS, we obtain the following method for computing
E(R*)(s): compute close (0, s), where

close (p,q) = P if g =10
P4 close (pU ¢, (ER) g — p — q), otherwise.

In this algorithm the operations are set-theoretic rather than relational; thus U is
set union and (—) is set difference. As before, the algorithm is not guaranteed to
terminate unless the closure of s under R is a finite set.

Exercises

6.31 Justify the alternative definition (6.8) of closure.
6.32 Show that R- S* = (uX: R U (X-S))and S*-R=(pX : R U (S - X)).
6.33 Show that R* = (id,R)) - (id, id)°, where the intermediate datatype is

iterate A = once A | again (iterate A).

6.34 Give a catamorphism chainR on non-empty lists so that R* = head - chainR°.
6.35 The p-calculus. There are just two defining properties of (X : ¢X):

H(uX :¢X) = (uX :4X)
PYCY = (uX:6X)CY.

The first one states that (uX : $X) is a fixed point of ¢, and the second one states
that (uX : $X) is a lower bound on all fixed points. Use these two rules to give a
proof of the rolling rule

(X : o(YX)) = ¢(uX : 9(¢X)).
The diagonal rule of the p-calculus states that

(X :pY :9(X,Y)) = (uX:6(X,X)).

Prove the diagonal rule.
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Finally, the substitution rule states that

(uX : p(nY :P(X,Y))) = ¢(uX:P(6X, X))

The proof of the substitution rule is a simple combination of the preceding two
rules. What is it?

6.36 Using the diagonal rule of the u-calculus, show that
(RuS)* = R*-(S-R")"

6.37 Using the preceding exercise, show that for any coreflexive C
R-C=C = R=(R-~0),

where ~C is defined in Exercise 5.17.
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Chapter 7

Optimisation Problems

In the remaining four chapters we concentrate on a single class of problems; the
aim is to develop a useful body of results for solving such problems efficiently. The
problems are those that can be specified in the form

min R - A((S) - (T)°).

This asks for a minimum element under the relation R in the set of results returned
by a hylomorphism. Problems of this form will be referred to as optimisation
problems.

Formalising a programming problem as one of optimisation is attractive because
the specification is short, the idiom is widely applicable, and there are a number
of well-known strategies for arriving at efficient solutions. We will study two such
strategies in some depth: the greedy method, and dynamic programming.

The present chapter and Chapter 10 deal with greedy algorithms, while Chapters 8
and 9 are concerned with dynamic programming. This chapter and Chapter 8
consider a restricted class of optimisation problem in which T is the initial algebra
of the intermediate datatype of the hylomorphism, so the problems take the form
min R - A(S])). Chapters 9 and 10 deal with the general case.

The central result of this chapter is Theorem 7.2, which gives a simple condition
under which an optimum result can be computed by computing an optimum partial
result at each stage. The theoretical material is followed by three applications;
each application ends with a functional program, written in Gofer, that solves the
problem. The same format (specification, derivation, program) is followed for each
optimisation problem that we solve in the remainder of the book.

We begin by defining the relation min R formally and establishing its properties.
Some proofs illustrate the interaction of division, membership and power-transpose,
while others show the occasional need to bring in tabulations; many are left as
instructive exercises in the relational calculus.
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7.1 Minimum and maximum

For any relation R : A « A the relation min R : A « PA is defined by
minR = € N (R/3).

In words, @ is a minimum element of = under R if a is both an element of £ and a
lower bound of £ under R. The definition of min R does not require that R be a
preorder, but it is only really useful when such is the case. The definition of min R
can be phrased as the universal property

XCmimR = XCe€ and X-3CR
for all X : A — A. We can also define
maz R = minR°,
so a maximum element under R is a minimum element under R°.

The following three properties of lower bounds are easy consequences of the fact
that (R/S)-f = R/(f°- S):

(R/2)'7 = R (7.1)

(R/3)-AS = R/S° (7.2)

(R/3) - union = (R/3)/3. (7.3)
From (7.1) and (7.2) we obtain

minR-7 = idNR (7.4)

minR-AS = SN (R/S°). (7.5)

Equation (7.4) gives that R is reflexive if and only if the minimum element under
R of a singleton set is its sole inhabitant. Equation (7.5) can be rephrased as the
universal property

XCminR-AS = XCSand X:-S°CR.

This rule is used frequently and is indicated in calculations by the hint universal
property of min.

Another useful rule is the following one:
minR-AS = min(RN(S-85°)-AS. (7.6)

For the proof we argue as follows:
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min (RN (S -S°))-AS
= {(7.5)}
SN ((RN(S-5°))/5°)
= {division}
S N (R/S°) n ((S-8°)/8°)
=  {commutativity of meet, and S C (S - §°)/S°}
SN(R/S°)
= {(7.5)}
min R - AS.

Equation (7.6) allows us to bring in context into an optimisation problem. It states
that for the purpose of taking a minimum under R on sets returned by AS, it
is sufficient to constrain R to those values that are related to one and the same
element by S. This context condition can be helpful in the task of checking the
conditions we need to hold in order to solve an optimisation problem in a particular
way. Below, we will refer to uses of (7.6) by the hint context.

Fusion with the power functor

Since ES = A(S - €), equation (7.5) leads to:
minR-ES = (S-€) N (R/(S-€)°). (7.7)

One application of (7.7) is the following result, which shows how to shunt a function
through a minimum:

minR-Pf = f-min(f°-R-f). (7:8)
We reason:
min R -Pf
= {(7.7) and E = P on functions}
(f-€) N (R/(f-€)°)

= {converse; division; f a function}

(f-€) n (BR-f)/3)

{modular law, f simple}

f-(en(f°-(R-f)/3))
=  {division}

f-(en((f°-R-f)/3)
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= {definition of min}
f-min(f°- R-f).
As an intermediate step in the above proof, we showed that
mnR-Pf = (f-€) N (R-f)/3).
This suggests the truth of
minR-PS = (§-€)n ((R-5)/3). (7.9)

Equation (7.9) does in fact hold provided that R is reflexive. In one direction the
proof involves tabulations. The other half, namely,

minR-PS C (S-€) n (R-8)/3), (7.10)

is easier and is all we will need later on. For the proof, observe that by the universal
property of meet, (7.10) is equivalent to

mnR-PSCS-€ and mimR-PS-2CR-S.
We argue in two lines, using the naturality of €:

minR-PS
minR-PS->

€-PS

c C S-€
C minR-3-S C R-S.

Inclusion (7.10) is referred to subsequently as fusion with the power functor.

Distribution over union

Given a collection of non-empty sets, one can select a minimum of the union by
selecting a minimum element in each collection and then taking a minimum of the
set of minimums. Since a minimum of the empty set is not defined, the procedure
breaks down if any set in the collection is empty, which is why we have inclusion
rather than equality in:

min R-P(minR) C min R - union. (7.11)

Inclusion (7.11) only holds if R is a preorder. Under the same assumption we can
strengthen (7.11) to read

minR-P(min R) = min R - union - P(dom (min R)). (7.12)

The proof of (7.11) is straightforward using (7.5) and the fact that € : id < P. We
leave the details as an exercise. The direction C in (7.12) is also easy, using

minR = minR - dom (min R).
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Using fusion with the power functor, the other half, namely
min R - union - P(dom (min R)) C min R - P(min R),
follows from the two inclusions

min R - union - P(dom (min R)) C
min R - union - P(dom (min R))-> C R-minR.

The proofs are left as exercises.

Implementing min

We cannot refine min R to an implementable function except on non-empty finite
sets; even then we require R to be a connected preorder. Given setify : P A« listt A,
the specification of minlist R : A < listt A reads:

minliss R C  min R - setify.

Assuming R is connected, we can take minlist R = (id, bmin R]), where bmin R
(short for ‘binary minimum’) is defined by

bmin R(a,b) = (aRb— a,b).

The function minlist R chooses the leftmost minimum element in the case of ties.
In the Appendix, minlist is defined as a function that takes as argument a Boolean
function of type Bool + A x A.

Exercises

7.1 Prove that (R/3) - subset® = R/, where subset = €\€.
7.2 Prove that subset - ER = €\(R - €).
7.3 Prove that (R-S)/T = (R/3)-((3-8)/T) by rewriting R in the form (€ - AR°)°.

7.4 Prove that (R/3)-PS = (R-S)/3. (Hint: Exercises 7.1, 7.2, and 7.3 will be
useful, as well as the fact that Inc: P« E.)

7.5 Show that if R is a preorder, then R - (R/3) = R/>.
7.6 Prove that min (RN S) = (min R) N (min S).

7.7 Prove that € - 3 = II. What well-known principle of set theory does this
equation express? Using the result, prove that min R = € if and only if R =1I.
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7.8 Prove that if R and S are reflexive, then RN S° = min R - (min S)°. (Hint: for
the direction C use tabulations, letting (f, g) tabulate RN S° and h = A(f U g).)
7.9 Using the preceding exercise prove that if R is reflexive, then R = min R - 3.

7.10 Suppose that R and S are reflexive. Prove that min R C min S if and only if
RCS.

7.11 Prove that min R is a simple relation if and only if R is anti-symmetric.

7.12 Suppose that R is a preorder. Using Exercise 7.5, show that min R = €N (R-
min R).

7.13 Show that if R is a preorder and S is a function, then RN(S°-S) is a preorder.
7.14 Prove that if R is a preorder, then maz R- AR = RN R°.
7.15 Prove that (minR- S, min R- T) C min (R x R) - A(S, T).

7.16 Prove that if R is reflexive and S is a preorder, then min R - A(min S) =
min (S; R), where S; R = SN (S° = R).

7.17 The supremum operator can be defined in two ways:

supR = minR-A(R°/€)
supR = ((€\R)/R)°N(R/(€\R)).

Prove that these two definitions are equivalent if R is a preorder.

7.18 One proof of the other half of (7.9) makes use of (7.4). Given (7.4) it suffices
to show

(8-€)n((R/3)-PS) C minR-PS.
The proof is a difficult exercise in tabulation.

7.19 The following few exercises, many of which originate from (Bleeker 1994), deal
with minimal elements. Informally, a minimal element of a set  under a relation
R is an element a € z such that for all b € =z with bRa we have aRb. The formal
definition is

mnlR = min(R° = R).

Prove that (R° = R) is reflexive for any R, but that (R° = R) is not necessarily a
preorder even when R is.

7.20 Prove that min R C mnl R with equality only if R is a connected preorder.

7.21 Is it the case that mnl RC mnl S if R C S?
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7.22 Prove that mnl R -Pf =f -mnl(f°- R - f).
7.23 Prove that mnl R = € if and only if R is a symmetric relation.
7.24 Express mnl (R + S) in terms of mnl R and mnl S.
7.25 For an equivalence relation @ define class Q by
classQ = cap-(id,AQ - €),

where cap returns the intersection of two sets. Informally, class ) takes a set and
returns some equivalence class under (). Prove that if R is a preorder, then

mnl(R;S) = mnlS - class (RN R°) - A(mnl R).
7.26 The remaining exercises deal with the notion of a well-bounded preorder. In

set-theoretic terms, a preorder R is well bounded if every non-empty set has a
minimum under R; this translates to

dom(€) = dom (min R).
Why is a well-bounded preorder necessarily a connected preorder?

As a difficult exercise in tabulations, show that R is well bounded if and only if
RN —R°, the strict part of R is a well-founded (equivalently, inductive) relation.

7.27 Prove that if R is well bounded, then so is f° - R - f for all functions f.

7.28 Show that R is well bounded if and only if € C R° - min R.

7.29 Using the preceding exercise, show that if R is a well-bounded preorder, then
min R - union = min R - E(min R).

This result strengthens (7.11). Using this fact, show how min R - setify can be
expressed as a catamorphism.

7.30 A relation R is said to be well supported if

dom (€) = dom(mnlR).
Show that well-supportedness is a weaker notion than well-boundedness.
7.31 Prove that if R is a well-supported preorder, then € C R° - mnl R.

7.32 Prove that if R is a well-supported preorder, then mnl R - union = mnl R -
E(mnl R).
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7.2 Monotonic algebras

We come now to an important idea that will dominate the remaining chapters. By
definition, an F-algebra S : A «+ FA is monotonic on a relation R : A « A if

S-FR € R-S.

To illustrate, consider the function plus : Nat + Nat x Nat. Addition of natural
numbers is monotonic on leg, the normal linear ordering on numbers, a fact we can
express as

plus - (leg x leg) C leq - plus.
At the point level this reads
c=a+bAa<d ALV = c<ad+V.

When S = f, a function, monotonicity can be expressed in either of the following
equivalent forms:

f-FR-f°CR and FRCf-R-f.

By shunting we also obtain that f is monotonic on R if and only if it is monotonic
on R°. However, none of these equivalences hold for general relations; in particular,
it does not follow that if S is monotonic on R, then S is also monotonic on R°.

For functions, monotonicity is equivalent to distributivity. We say that f : A« FA
distributes over R if

f-F(minR) € minR-A(f-Fe).

For example, the pointwise version of the fact that + distributes over < is
minzt+miny = min{a+b|la€zAbeEy}

provided that £ and y are non-empty. Here min = min leg.

Theorem 7.1 Function f is monotonic over R if and only if it distributes over R.

Proof. We argue:
f-F(minR) Cmin R- A(f - F€)

{universal property of min}

f-F(minR)C f-Fe and f-F(minR)-(f-FE)°CR
{since min R C €}

f-F(minR)-(f-FE)°CR
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=  {converse; relators}
f-F(minR-2)-f°CR
{since min R -> = R if R is reflexive}

f-FR-f°CR.

O

In this chapter the main result about monotonicity is the following, which we will
refer to subsequently as the greedy theorem.

Theorem 7.2 If S is monotonic on a preorder R°, then
(minR-AS) C minR-A(S).
Proof. We reason:

(min R - AS]) C min R - A(S)
{universal property of min}
(min R-AS) C (S) and (minR-AS)-(S)°C R
= {since min R - AS C S}
(minR-AS)-(S)°C R
<  {hylomorphism theorem (see below)}
minR-AS-FR-S°CR
< {monotonicity: FR-S° C S°- R}
minR-AS-S°-RCR
&= {since min R- AS C R/S°; division}
R-RCR
{transitivity of R}

true.

Recall that the hylomorphism theorem (Theorem 6.2) expressed a hylomorphism
as a least fixed point of a certain recursion equation; thus by Knaster-Tarski, the
hylomorphism (min R - AS)) - (S)° is included in R if R satisfies the associated
recursion inequation.

0O

For an alternative formulation of the greedy theorem see Exercise 7.37. For problems
involving maz rather than min, the relevant condition of the greedy theorem is that
S should be monotonic on R, not R°. Note also that we can always bring in context
if we need to, and show that S is monotonic on R° N (([S) - (S)°).
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The exercises given below explore some simple consequences of the greedy theorem.
In the remainder of this chapter we will look at three other problems, each chosen
to bring out a different aspect of the theory.

Exercises

7.33 Express the fact that a+b < a+ b’ implies that b < b’ in a point-free manner.

7.34 Let a be the initial F-algebra. Prove that if a is monotonic on R, then R is
reflexive.

7.35 Sometimes we want monotonicity and distributivity to hold only on the set of
values returned by a relation. Find a suitably weakened definition of monotonicity
that implies

f-F(minR-AS) C minR-A(f-FS).
7.36 Use the preceding exercise to give a necessary, as well as a sufficient, condition
for establishing the conclusion of the greedy theorem.

7.37 Prove the following variation of the greedy theorem: if f is monotonic on R
and f C min R- AS, then (f]) C min R - A(S).

7.38 Prove that if S is monotonic on R°, then min R-AS - min (FR) C min R-ES.
7.39 The function takewhile of functional programming can be specified by
takewhilep = mazx R - A(list p - prefiz),

where R = length® - leq - length. In words, takewhile p = returns the longest prefix of
z with the property that all its elements satisfy p. (Question: why the longest here
rather than a longest?) Using prefic = (nil, cons U nil) and the greedy theorem,
derive the standard implementation of takewhile.

7.40 The maximum segment sum problem (Gries 1984, 1990b) is specified by
mss = maz - A(sum - segment),

where maz is an abbreviation for maz leq. Using segment = prefiz - suffix, express
this problem in the form

mss = maz - P(maz - A(sum - prefiz)) - Asuffiz.

Express prefiz as a catamorphism on cons-lists, and use fusion to express sum- prefiz
as a catamorphism. Hence use the greedy theorem to show that

(zero, oplus) C maz - A(sum - prefiz),
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where oplus = maz - A(zero U plus). Finally, express list (¢, f] - tails as a catamor-
phism and hence show how to implement mss by a linear-time algorithm.

7.41 The function filter can be specified by filter p = maz R - A(list p - subseq). In
words, filter p z returns the longest subsequence of z with the property that all its
elements satisfy p. (Question: again, why the rather than a longest subsequence?)
Using subseq = ([nil, cons U outr]) and the greedy theorem, derive the standard
program for filter.

7.42 Let Ldenote the normal lexical (i.e. dictionary)ordering on sequences. Justify
the monotonicity condition

cons- (id x L) C L- cons.
Hence show that (nil, maz L - A(cons U outr)]) C maz L - Asubseq.

Now justify the facts that: (i) a lexically largest subsequence of a given sequence is
necessarily a descending sequence; and (ii) if z is descending and a > head z, then
[a] + z is lexically larger than z. Use point-free versions of these facts to prove
(formally!) that

(nil, (ok — cons, outr)) = (nil, maz L- A(cons U outr))),

where ok holds for (a,z) if z = [] or a > headz. Give an example to show
(ok — cons, outr) # maz L - A(cons U outr).

7.3 Planning a company party

The following problem appears as an exercise in (Cormen, Leiserson, and Rivest
1990) in their chapter on dynamic programming:

Professor McKenzie is consulting for the president of the A.-B. Corpo-
ration, which is planning a company party. The company has a hier-
archical structure; that is, the supervisor relation forms a tree rooted
at the president. The personnel office has ranked each employee with a
conviviality rating, which is a real number. In order to make the party
fun for all attendees, the president does not want both an employee and
his or her immediate supervisor to attend.

a. Describe an algorithm to make up the guest list. The goal should be
to maximise the sum of the conviviality ratings of the guests. Analyze
the running time of your algorithm.

b. How can the professor ensure that the president gets invited to his
or her own party?
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We will solve this problem with a greedy algorithm. The moral of the exercise
is that our classification of what is a greedy algorithm can include problems that
others might view as applications of dynamic programming.

The company structure is given by a tree of type tree Employee, where
tree A := node (A, list (tree A)).

The base functor is F(A, B) = A x list B. Given party : list A+ tree A, our problem
is to compute maz R - Aparty, where

R = (sum- list rating)° - leg - (sum - list rating),
and rating : Real + Employee is the conviviality function for individual employees.

We can define party : list A < tree A in terms of a catamorphism that produces two
parties, one that includes the root and one that excludes it:

party = choose - ((include, ezclude))).

The relation choose is defined by choose = outlUoutr. The relation include includes
the root of the tree, so by the president’s ruling the roots of the immediate subtrees
have to be excluded. The relation ezclude excludes the root, so we have an arbitrary
choice between including or excluding the roots of the immediate subtrees. The
formal definitions are:

include = cons - (id x (concat - list outr))
exclude = outr- (id x (concat - list choose)).

Note that include is a function but ezclude is not.

Derivation

The derivation involves two appeals to monotonicity, both of which we will justify
afterwards.

We argue:

maz R - Aparty
= {definition of party}

maz R - A(choose - ({include, exclude)])
= {since A(X-Y)=EX-AY}

maz R - Echoose - A(((include, ezclude)))
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2 {claim: Exercise 7.38 is applicable}

maz R - Achoose - maz (R x R) - A((include, ezclude)))
o) {claim: the greedy theorem is applicable}

maz R - Achoose - (maz (R x R) - A{include, exclude))).

The first claim requires us to show that choose is monotonic on R, that is,
choose- (R x R) C R- choose.

The proof is left as a simple exercise. The second claim requires us to show that
(include, exclude) is monotonic on R X R, that is,

(tnclude, exclude) - (id x list (R x R)) C (R x R) - (include, exclude).
To justify this we argue:

(include, exclude) - (id x list (R X R))
{products}
(include - (id x list (R X R)), exclude - (id x list (R x R)))
Cc {claims}
(R - include, R - ezclude)
{products}
(R x R) - (include, exclude).

I

We outline the proof of one subclaim and leave the other as an exercise. We argue:

include - (id x list (R x R))
= {definition of include; functors}
cons - (id x concat - list (outr - (R x R)))

C {products; functors}
cons - (id x concat - list R - list outr)

- {claim: concat - list R C R - concat (exercise)}
cons - (id x R - concat - list outr)

- {since cons is monotonic on R (exercise)}

R - cons - (id x concat - list outr)
= {definition of include}
R - include.
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It remains to refine maz (R x R)-A(include, ezclude) to a function. By Exercise 7.15
this expression is refined by

(maz R - Ainclude, maz R - Aezclude).

Since include is a function, the first term simplifies to include. We will leave it as
a simple exercise to show that the second term refines to

concat - list (maz R - Achoose) - outr.

In summary, we have derived (renaming ezxclude)

party = maz R - Achoose - ((include, ezclude)))
include = cons - (id X (concat - list outr))
exclude = concat - list (maz R - Achoose) - outr.

The program

For efficiency, a list z is represented by the pair (z, sum (list rating z)). The relation
maz R- choose is refined to the standard function dbmaz R that chooses the left-hand
argument in the case of ties. All functions not defined in the following Gofer program
appear in the list of standard functions given in the Appendix. (Actually, bmax r
is a standard function, but is given here for clarity.) Employees are identified by
their conviviality rating:

> party = bmax r . treecata (pair (include, exclude))
> include = cons’ . cross (id, concat’ . list outr)

> exclude = concat’ . list (bmax r) . outr

> cons’ = cross (cons, plus) . dupl

> concat’ = cross (concat, sum) . unzip

>r
> bmax r

leq . cross (outr, outr)
cond (r . swap) (outl, outr)

> data Tree = Node (Int, [Tree])
> treecata f (Node (a,ts)) = f (a, list (treecata f) ts)

Exercises

7.43 Supply the missing proofs in the derivation.
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7.44 Answer the remaining questions in the problem, namely (i) what is the running
time of the algorithm; and (ii) how can the professor ensure that the president gets
invited to his or her own party?

7.4 Shortest paths on a cylinder

The following problem is taken from (Reingold, Nievergelt, and Deo 1977), but is
rephrased slightly to avoid drawing a cylinder in ETEX:

Consider an n x m array of positive integers, rolled into a cylinder around
a horizontal axis. For instance, the array

11 53 34 73 18 53 99 52 31 54
4 72 24 6 46 17 63 82 89 25
— 67 22 10 97 99 64 33 45 81 76 —
24 71 46 62 18 11 54 40 17 51
9 8 57 76 7 51 90 92 51 21

is rolled into a cylinder by taking the top and bottom rows to be ad-
jacent. A path is to be threaded from the entry side of the cylinder
to the exit side, subject to the restriction that from a given square it
is possible to go to only one of the three positions in the next column
adjacent to the current position. The path may begin at any position
on the entry side and may end at any position on the exit side. The cost
of such a path is the sum of the integers in the squares through which
it passes. Thus the cost of the sample path shown above (in boldface)
is 429. Show how the dynamic programming approach to exhaustive
search allows a path of least cost to be found in O(n x m) time.

Once again this exercise in dynamic programming is solvable by the methods given
in this chapter, although it is Theorem 7.1 rather than the greedy theorem that
is the crux. The other feature of interest is that the specification is motivated by
paying due attention to types.

We will suppose that the input is represented as a non-empty cons-list of n-tuples,
one tuple for each column of the array. Let F denote the base functor of non-empty
cons-lists, so F(4,X) = A+ (4 x X), and let L be a convenient abbreviation for
the type functor list*. Finally, let N denote the functor that sends A to the set of
n-tuples over A. In the final program, n-tuples are represented by lists of length n.

Our problem is to compute min R - paths, where R = sum® - leq- sum and paths is a
relation with type paths : PL Nat « LN Nat. Because of the restriction on moves it
is not possible to define paths by the power transpose of a relational catamorphism,
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so that, strictly speaking, the problem does not fall within the class described at
the outset of the chapter. Instead, we will define it in terms of a relation

generate : NPLA « F(NA,NPLA).

In words, generate takes a new tuple and a tuple of sets of paths, and produces
a tuple of sets of extended paths. Thus, the catamorphism (generate] returns an
n-tuple of sets of paths; the set associated with the kth component of the tuple is
the set of valid paths that can start in component %k of the first column. We can
now define

'paths = union - setify - (generate)),
where setify : PA +— NA converts an n-tuple into a set of its components.

Note that the type assigned to gemerate is parameterised by A; the restriction
A = Nat is required only for comparing paths under the sum ordering. Accordingly,
generate will be a lax natural transformation. Recall from Section 5.7 that this
means

NPLR - generate D generate - F(NR,NPLR)

for any relation R. To define generate we will need a number of other lax natural
transformations of different types; what follows is an attempt to motivate their
introduction.

First of all, it is clear that we have to take into account the restriction on moves in
generating legal paths. The relation moves : PNA «+ NA is defined by

movesz = {upz,z,downc},
where up and down rotate columns:

up(a1,02,...,8,) = (@n,01,...,8n_1)
down (a1, az,...,a,) = (ap,03,-..,0n,0a1).

These functions are easily implemented when tuples are represented by lists. The
relation F(id, moves) has type

F(NA,PNPLA) « F(NA,NPLA),
and we will define generate = S - F(id, moves) for an appropriate relation S.

The next step is to make use of a function trans : NPA < PNA that transposes a
set of n-tuples. For example,

tmns{(a’ b, C)’ (:L‘, Y, z)} = ({a’ :II}, {b, y}’ {c’ z})



7.4 / Shortest paths on a cylinder 181

In the final program, when sets and n-tuples are both represented by lists, trans
will be implemented by a catamorphism of type LLA « LLA.
The relation F(id, trans - moves) has type
F(NA,NPPLA) « F(NA,NPLA),
and so F(id, Nunion - trans - moves) has type
F(NA,NPLA) « F(NA,NPLA).

We now have generate = S-F(id, Nunion - trans - moves) for an appropriately chosen
relation S.

The next step is to make use of a function 2ip : NF(A, B) «+ F(NA,NB) that com-
mutes N with F. In the final program zip is replaced by the standard function on
lists. The relation zip - F(id, Nunion - trans - moves) has type

NF(4,PLA) « F(NA,NPLA),

so now we have generate = S - zip - F(id, Nunion - trans - moves) for an appropriate
relation S.

The next step is to make use of the function cp : PF(4, B) « F(A, PB), defined by
cp = AF(id, €). The relation Ncp - zip - F(id, Nunion - trans - moves) has type

NPF(A,LA) « F(NA,NPLA),
so generate = S - Ncp - zip - F(id, Nunion - trans - moves) for some relation S.

Finally, we bring in o : LA «+ F(A, LA), the initial algebra of non-empty cons-lists.
The relation N(Pa - ¢p) - zip - F(id, Nunion - trans - moves) has type

NPLA « F(NA,NPLA),
and is the definition of generate.

The above typing information is summarised in the diagram

t
NPLA <2 E(NA,NPLA)
N(Pa - cp) lF(id, Nunion - trans - moves)
NF(4, PLA) F(NA,NPLA)

zip

We have motivated the definition of generate by following the arrows, but one can
also work backwards.
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The derivation that follows relies heavily on the fact that all the above functions
and relations are lax natural transformations of appropriate type. The monotonicity
condition is that o is monotonic on R and is easy to verify. Since a is a function,
Theorem 7.1 gives us that a distributes over R. Since A(a - F(id, €)) = Pa - cp, we
therefore obtain the inclusion

a-F(id,minR) C minR-Pa-cp.

Armed with this fact, we calculate:

I

2

2

2

min R - paths
{definition of paths}
min R - union - setify - (generate)
{distribution over union (7.11), since R is a preorder}
min R - P(min R) - setify - (generate)
{naturality of setify}
min R - setify - N(min R) - (generate))
{fusion (see below for definition of @)}

min R - setify - (Q).

The condition for fusion is

N(min R) - generate 2 Q- F(id, N(min R)),

and we can use this to derive a definition of Q:

v

V)

N(min R) - generate
{definition of generate}

N(min R - P a - cp) - zip - F(id, N union - trans - moves)
{(7.13); functors}

No - NF(id, min R)) - zip - F(id, N union - trans - moves)
{naturality of zip}

Na - zip - F(Nid, N(min R)) - F(id, N union - trans - moves)
{functors}

Na - zip - F(id, N(min R - union) - trans - moves)
{distribution over union (7.11)}

Ne - zip - F(id, N(min R - P(min R)) - trans - moves)
{functors}

Ne - zip - F(id, N(min R) - NP(min R) - trans - moves)

(7.13)
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2 {naturality of trans}
Na - zip - F(id, N(min R) - trans - PN(min R) - moves)
{naturality of moves}

V)

Na - zip - F(id, N(min R) - trans - moves - N(min R))
= {functors, introducing Q}
Q - F(id,N(min R)),

where @ = Na - 2ip - F(id, N(min R) - trans - moves).

The definition of @ can be simplified. When F is the base functor of non-empty
cons-lists, zip is a coproduct zip = id + zip’, where zip’ : N(A x B) « NA x NB, so
we can write @) as a coproduct

@ = [Nwrap,Ncons - zip’ - (id x N(min R) - trans - moves)).

With this definition of @, the solution is min R - setify - (Q).

The program

In the following Gofer program we replace both N and P by 1ist, thereby represent-
ing both tuples and sets by (non-empty) lists. The function zip’ is then implemented
by the standard function zip. For efficiency, a path z is represented by the pair
(z, sumx). The relation min R - setify is implemented by the standard function
minlist r, whose definition is given in the Appendix. The function catallist
implements catamorphisms on non-empty cons-lists; its definition is also given in
the Appendix.

With that, the Gofer program is:
> path = minlist r . catallist (list wrap’, list comns’ . step)

step = zip . cross (id, list (minlist r) . trans . moves
>r leq . cross (outr, outr)

v

> wrap’ = pair (wrap, id)
> cons’ = cross (cons, plus) . dupl

> moves x = [up x, x, down x]
>up x tail x ++ [head x]
> down x [last x] ++ init x
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Exercises

7.45 Did we use the fact that N was a relator in the derivation?
7.46 What change is needed to deal with a similar problem in which

movesz = {up(upz),up z, T, down z, down (down £)}?

7.47 What if we took moves = 77

7.5 The security van problem

Our final problem illustrates an important idea in the theory of greedy algorithms:
when the desired monotonicity condition is not met, it may nevertheless still be
possible to arrive at a greedy solution by refining the ordering.

The following problem, invented by Hans Zantema, is typical of the sort that can
be specified using the idea of partitioning a list:

Suppose a bank has a known sequence of deposits and withdrawals.
For security reasons the total amount of cash in the bank should never
exceed some fixed amount N, assumed to be at least as large as any
single transaction. To cope with demand and supply, a security van can
be called upon to deliver funds to the bank or to take away a surplus.
The problem is to compute a schedule under which the van visits the
bank a minimum number of times.

Let us call a sequence [a1, ag, ..., a,] of transactions secure if there is an amount
r, indicating the bank’s reserves at the beginning of the sequence of transactions,
such that each of the sums

r, r+a, r+a+ta, ....,r+ta+--+a,

lies between zero and N. For example, taking N = 10, the sequence [2, —5,7] is
secure because the van can take away or deliver enough cash to ensure an initial
reserve of between three and six units. Given the constraint that N is no smaller
than any single transaction, every singleton sequence is secure, so a valid schedule
certainly exists.

To formalise the constraint, define

maz leq - A(sum - prefiz)

ceiling

floor min leq - A(sum - prefiz),
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where sum : Nat + list Nat sums a list of numbers and prefiz is the prefix relation
on non-empty lists. Then a sequence z of transactions is secure if there is an r > 0
such that

0<r+floorr<N and 0<r+celingz <N.

We leave it as a short exercise to show that this condition can be phrased in the
equivalent form

bmaz (ceiling z, ceiling x — floor £) < N.

Let secure be the coreflexive corresponding to this predicate. It is a simple conse-
quence of the definition that if secure holds for a sequence z, then it also holds for
an arbitrary prefix of z; in symbols,

prefic - secure C  secure - prefiz.

A coreflexive satisfying this property is called prefix-closed. For most of the deriva-
tion prefix-closure is the only property of secure that we will need. At the end, and
only to obtain an efficient implementation of the greedy algorithm, we will use the
less obvious fact that secure is also suffix-closed: if z is secure, then any suffix of =
is secure.

Our problem can now be expressed as one of computing
min R - A(list secure - partition),

where R = length® - leq - length and partition : list (list* A) « list A is the combina-
torial relation discussed in Section 5.6.

Recall that one expression for partition is

partition = (nil, new U glue)),
where
new = cons- (wrap x id)
glue = cons - (cons X id) - assocl - (id x cons®).

Appeal to fusion (left as an exercise) shows that
list secure - partition = (nil, new U old)),
where
old = cons - ((secure - cons) x id) - assocl - (id x cons®),

so the task is to compute min R - A(nil, new U old)) efficiently.
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Derivation

A greedy algorithm exists if [nil, new U old] is monotonic on R°. The monotonicity
condition is equivalent to two conditions:

new - (id x R°) C R°-(new U old) (7.14)
old-(id x R°) C R°-(newU old). (7.15)

Well, (7.14) is true but (7.15) is false.
To prove (7.14) we reason:

new - (id X R°)
= {definition of new}
cons - (wrap X R°)
Cc {since cons is monotonic on R° (exercise)}
R° - cons - (wrap X id)
= {definition of new}
R° - new

N

{monotonicity of join}
R° - (new U old).
To see why (7.15) is false, let [z] # zs and [y] H# ys be two equal-length partitions
of the same sequence, so, certainly,
([z] + zs) R° ([y] - ys)-
Suppose also that [a] # z is secure. Then (7.15) states that one or other of the
following two possibilities must hold:
(i) (lla] # =] H =zs) R ([[a]] + [y] + ys)
(i)  ([[a] # ] # zs) R° ([[a] # y] # ys) and secure([a] H y).
Since [z]Hzs and [y]-+Hys have equal length, the first possibility fails, and the second

reduces to secure ([a] # y). But, in general, there is no reason why secure ([a] H# z)
should imply secure ([a] H y).

However, the analysis given above does suggest a way out: if y is a prefix of z, then
secure ([a] + z) does imply secure ([a] H y) because secure is prefix-closed. Suppose
we refine the order R to R ; H, where

H = (head® - prefiz - head) U (nil - nil®).
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Recall from Chapter 4 that
R;H = RN (R°=H)

In words, [](R; H)[] and ([y] + ys) (R ; H) ([z] + zs) if ys is strictly shorter than
zs, or it has the same length and y prefiz z. Since R ; H C R we can still obtain a
greedy algorithm for our problem if we can show that S is monotonic on (R ; H)°
and that (min (R; H) - AS) can be refined to a function. The second task is easy
since old returns a shorter result than new if it returns any result at all; in symbols,
old C (R; H) - new. Hence we obtain

(wrap - wrap, (ok — glue,new)) C (min(R; H)-AS),
where the coreflexive ok holds on (a, zs) if zs # [] and [a] + head zs is secure.

It remains to show that S is monotonic on (R ; H)°, that is,

new- (id x (R; H)°) C (R;H)°-(newU old) (7.16)
old-(id x (R;H)) C (R;H)°-(newU old). (7.17)

Condition (7.16) follows from the fact that
new- (id x II) C H°- new. (7.18)
A formal proof of (7.18) is left as an exercise. Using it, we can argue:

new - (id x (R ; H)®)
{since R; H C R}
new - (id X R°)
{inclusions (7.14) and (7.18)}
(R° - new) N (H® - new)
=  {since new is a function}
(R°N H®) - new
C {since XNY C (X;Y), and converses}
(R; H) - new.

N

N

Condition (7.17) follows from three subsidiary claims, in which |R|, the strict part
of R, is defined by |R| = RN -R°:

old-(idxII) C H°.new (7.19)
old - (id x |R|°) € R°-new (7.20)
old-(id x (RPN H®)) C (R°NH®)-old. (7.21)
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Again, we leave proofs as exercises. Now we argue:

old - (id x (R; H))
{since X; Y =|X|U(XNY) and | X|°=|X°|}
old - (id x (|R°| U (R° N H"®)))
=  {distributing join}
(old - (id x |R°|)) U (old - (id x (R° N H®)))

Il

- {conditions (7.19), (7.20) and (7.21)}
((R°N H®) - new) U ((R°N H®) - old)
- {since X N'Y C X ; Y, and converses}

(R; H)° - (new U old).
The greedy condition is established.

Up to this point we have used no property of secure other than the fact that it
is prefix-closed. For the final program we need to implement the security test
efficiently. To do this, recall from Section 5.6 that the prefix relation prefiz : list A+
list A can be defined as a catamorphism

prefic = (nil, cons U nil)).

Since sum - prefiz = (zero, plus U zero]), two baby-sized applications of the greedy
theorem yield: ,

ceiling = (zero, omaz - plus)
floor = (zero, omin - plus)),

where omaz a = bmaz (a,0) and omin a = bmin (a,0). Recall that z is secure if
bmaz (ceiling z, ceiling x — floorz) < N.

Since bmaz (b,b — ¢) = b — omin ¢, we obtain that [a] # z is secure if
omaz (a +b) —omin(a+¢) < N,

where b = ceiling x and ¢ = floor x. This condition implies omaz b — ominc < N,
so z is secure. This proves that secure is suffix-closed.

In summary, we have derived the following program for computing a valid schedule,
in which schedule is parameterised by N and ok is expressed as a predicate rather
than a coreflexive:

schedule N = (nil,(ok N — glue, new))
ok N (a,[]) false
ok N (a,[z] # zs) omaz (a + ceiling z) — omin (a + floor ) < N.
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The program

In the final Gofer program we represent the empty partition by ([],(0,0)) and a
partition [z] # zs by a pair

([z] H zs, (ceiling z, floor x)).
The standard function cond p (f,g) implements (p — f,g), and catalist is

the standard catamorphism former for cons-lists. The function split implements

cons®.

> schedule n = catalist (start, cond (ok n) (glue’, new’))

> ok n = cond empty (false, (<= n) . minus . outr . glue’)

> where empty = null . outl . outr

> start = ([]: (0,0))

> glue’ = cross (glue, augment) . dupl

> where augment = cross (omax . plus, omin . plus) . dupl
> new’ = cross (new, augment) . dupl

> where augment = pair (omax, omin) . outl

> glue = cons . cross (cons, id) . assocl . cross (id, split)

> new = cons . cross (wrap, id)

> omax = cond (>= 0) (id, zero)

> omin = cond (<= 0) (id, zero)

Exercises

7.48 Prove that 0 < r + floorz < N and 0 < r + ceilingz < N for some r > 0 if
and only if

bmaz (ceiling z, ceiling z — floor ) < N.

7.49 Prove formally that prefix - secure C secure - prefix.

7.50 If z is secure and y is an arbitrary subsequence of z, is it necessarily the case
that y is secure?

7.51 Give details of the appeal to fusion that establishes

list secure - partition = (wrap - wrap, new U old)).

7.52 Prove that cons is monotonic on R°.
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7.53 Justify the claims (7.18), (7.19), (7.20), and (7.21).

7.54 The greedy algorithm produces a minimum length partition with a shortest
possible first component. This means that the security van may be called upon
before it is absolutely necessary to do so. Such a schedule might seem curious to
the security van company. Outline how, by switching to snoc-lists, it is possible to
reverse this phenomenon, obtaining a greedy schedule in which later visits are more
frequent than early ones.

7.55 Give details of the ‘baby-sized’ applications of the greedy theorem to comput-
ing ceiling and floor.

7.56 The paragraph problem is to break a sequence of words into a sequence of non-
empty lines with the aim of forming a ‘visually pleasing’ paragraph. The constraint
is that no line in the paragraph should have a width that exceeds some fixed quantity
W, where the width of a line z is the sum of the lengths of the words in z, plus
some suitable value for the interword spaces. Calling the associated coreflexive fits,
argue that fits is both prefix- and suffix-closed. Why is the following formulation
not a reasonable specification of the problem?:
paragraph C  min R - A(list fits - partition),

where R = length® - leq - length. (Hint: Consider Exercise 7.54.)
7.587 Consider the ordering @ characterised by [] @ ys and

([z] #2s) Q([y) H ys) = (zprefizy) A (yprefixz = 25 Qys).
One can also define @ more succinctly by

Q = (nid°-Y) U (prefiz; (tail® - Q - tail)).

This defines a preorder, and a linear order on partitions of the same sequence. Using
only the fact that secure is prefix-closed, show that both new and old are monotonic
on @Q°. Although it is not true that @ C R, we nevertheless do have

min @ - A(S) C minR-A(S),

provided we also use the fact that secure is suffix-closed. In words, although @ is
not a refinement of R, it is still the case that the (unique) minimum partition under
@ is a minimum partition under R. The proof is a slightly tricky combinatorial
argument. The advantage of taking this @ is that we can replace R by a more
general preorder R = cost® - leq - cost and establish general properties of cost under
which the greedy algorithm works. What are they?
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Bibliographical remarks

Our own interest in optimisation problems originated in the calculus of functions
referred to in earlier chapters. That work culminated in a study of greedy algorithms
(Bird 1990, 1991, 1992a, 1992b, 1992c). Jeuring’s work also concerns various kinds
of greedy algorithm (Jeuring 1990, 1993). A recurring problem with these functional
developments was the inadequate treatment of indeterminate specifications. These
difficulties motivated the generalisation to relations.

The calculus of minimum elements, in the context of categories of relations, was
first explored in (Brook 1977). Most of the ideas found there are also apparent in
earlier work on the relational calculus, for instance (Riguet 1948). Weadapted those
works for applications to optimisation problems in (De Moor 1992a). Of course, the
definitions in relational calculus are obvious, and have also been applied by others,
see e.g. (Schmidt, Berghammer, and Zierer 1989).

Many researchers have attempted a classification of greedy algorithms before. An
overview can be found in (Korte, Lovasz, and Schrader 1991), which proposes a
mathematical structure called greedoids as a basis for the study of greedy algo-
rithms. More recently, (Helman, Moret, and Shapiro 1993) have proposed a refine-
ment of greedoids. Although there are some obvious links to the material presented
in this book, we have not yet investigated the connection in sufficient detail. The
theory of greedoids is much more concerned with structural properties than with
the synthesis of greedy algorithms for given specifications. Also, greedoids can be
characterised by the optimality of the greedy solution for a specific class of cost
functions; no such equivalence is presented here.






Chapter 8

Thinning Algorithms

In this chapter we continue to study problems of the form min R - A(S]). The
greedy theorem of the last chapter gave a rather strong condition under which such
a problem could be solved by maintaining a single partial solution at each stage.
At the other extreme, the Eilenberg—Wright lemma shows that A(S]) can always
be implemented as a set-valued catamorphism. This leads to an exhaustive search
algorithm in which all possible partial solutions are maintained at each stage. Be-
tween the two extremes of all and one, there is a third possibility: at each stage keep
a representative collection of partial solutions, namely those that might eventually
be extended to an optimal solution. Such algorithms are called thinning algorithms
and are the topic of the present chapter.

8.1 Thinning
Given a relation @ : A + A, the relation thin @ : PA + PA is defined by
thin@ = (€\&)N((3- Q)/3). (8.1)

Informally, thin @) is a nondeterministic mapping that takes a set y, and returns
some subset = of y with the property that all elements of y have a lower bound
under @ in z. To see this, note that z(€\€)y means that z is a subset of y, and

z2((3-Q)/3)y = (VWey:3aexz:a@d).

Thus, to thin a set z with thin @ means to reduce the size of z without losing the
possibility of taking a minimum element of z under . Unlike the case of min R,
we can implement thin @ when @ is not a connected preorder (see Section 8.3).

Definition (8.1) can be restated as the universal property
XCthin@Q-AS = €-XCS and X-S°C>-Q,

which, like other universal properties, is often more useful in calculations.
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Properties of thinning

It is immediate from the definition that @ C R implies that thin Q@ C thin R.
Furthermore, it is an easy exercise to show that thin @ is reflexive if @ is reflexive,
and transitive if @ is transitive. We will suppose in what follows that @ is a
preorder, so thin @) is a preorder too.

We can introduce thin into an optimisation problem with the following rule, called
thin-introduction:

minR = minR-thin Q provided that @ C R.

The proof, left as an exercise, depends on the assumption that @ and R are pre-
orders.

We can also eliminate thin from an optimisation problem:
thin@ 2 7-minQ, (8.2)

where 7 : PA A returns singleton sets. However, unless @ is a connected preorder,
the domain of 7-min @ is smaller than that of thin . For instance, thin id is entire
but the domain of 7 - min id consists only of singleton sets. So, use of (8.2) may
result in an infeasible refinement. At the other extreme, thin @ D id, so thin @ can
always be refined to the identity relation on sets.

There is a useful variant of thin-elimination:
thin@Q-AS 2 71-minR-AS provided that RN (S -S°) C Q. (8.3)
For the proof, observe that by the universal property of thin we have to show

€e-T-minR-AS C S8
T-minR-AS-S° C >-Q.

The first inclusion is immediate from € - 7 = id. For the second, we argue:

T-minR-AS-S5°C>-Q
{shunting 7 and € - 7 = id}
minR-AS-S°C Q
{context}
min (RN (S-S°)-AS-S°CQ
&= {since AS - S° C 3}
min (RN (S-8°)-2CQ
< {definition of min}
RN (S-S°) CQ.
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Finally, it is left as an exercise to prove that thin distributes over union:

thin Q - union 2 union - P(thin Q). (8.4)

The basic theorem

The following theorem and corollary show how the use of thinning can be exploited
in solving optimisation problems. Both exhaustive search and the greedy algorithm
follow as special cases. As usual, F is the base functor of the catamorphism.

Theorem 8.1 If S is monotonic on °, then
(thin Q - A(S-Fe€)) C thin Q- A(S).
Proof. By the universal property of thin we have two conditions to check:

€-([thin @-A(S-Fe)) <€ (S)
(thinQ - A(S-Fe))-(S)° < >-Q.

The first is an easy exercise in fusion and, by the hylomorphism theorem, the second
follows if we can show that

thin@-A(S-Fe)-F(3-Q)-S° C 3-Q.
We reason:

thin@-A(S-Fe)-F(3-Q)-S5°

{since FQ - S° C S° - @ by monotonicity and converses}
thinQ-A(S-Fe)-F>-5°-Q

{since AX - X° C 3}
thin@-3>-Q

{since thin @ - > C 3> - Q}
3:-Q-Q
= {transitivity of Q}

3-Q.

iN

N

N

(]

The following corollary is immediate on appeal to thin-introduction:

Corollary 8.1 If @ C R and S is monotonic on Q°, then
min R - (thin Q- A(S-F€)) C minR- A(S).
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Exercises

8.1 Prove that thin id = id.

8.2 Prove that thin Q is a preorder if @ is.

8.3 Prove that min R D min R - thin Q if Q C R.

8.4 Prove that cup - (thin R,thin Q) C thin R by showing more generally that
cup - (thin R, subset) C thin R,

where subset is the inclusion relation on sets. You will need the inclusion
eExe C (g¢€)- cup,

so prove that as well. Does equality hold in the original inclusion when @ = R?

8.5 Prove that minR = 7° - thin R and hence prove the thin-elimination rule.

8.6 Prove that thin Q - AS = thin (Q N (S - §°)) - AS.

8.7 Prove (8.4). Is the converse inclusion true?

8.8 Prove that the greedy algorithm is a special case of Theorem 8.1.
8.9 Show that if Q is well-supported (see Exercise 7.30), then A(mnl Q) C thin Q.

8.2 Paths in a layered network

Let us now give a simple illustration of the ideas introduced so far. The example is
similar to the paths on a cylinder problem given in the preceding chapter.

By definition, a layered network is a non-empty sequence of sets of vertices. A path
in a layered network zs = [19,21,...,Zn] is a sequence of vertices [ag, a1, ..., @s)
where a; € z; for 0 < j < n. With each path is associated a cost, defined by

cost [ag, a1,...,8,] = (+7:0<j <n:wt(aea1)),

where wt is some given function on pairs of vertices. We aim to derive an algorithm
for finding a least cost path in a layered network.

To formalise the problem we will use non-empty cons-lists, thereby building paths
from right to left. The choice is dictated solely by reasons of efficiency in the final
functional program, since snoc-lists would have served equally well. Thus the input
is an element of list*(PA). Our problem takes the form

minpath C min R - A(list™ €),



8.2 / Paths in a layered network 197

where R = cost® - leq - cost. Using the definition of list* as a catamorphism, we
obtain that

minpath C min R - A - F(€, id)),

where o = [wrap, cons] and F is the base bifunctor of non-empty cons-lists.

It remains to define cost. This is not a catamorphism on paths, but we do have
cost = outr - (wrapz, consw))

where wrapz = (wrap, zero) and

consw(a, (z,n)) = (cons(a,z),wt(a,head )+ n).

Thus (wrapz, consw]) = (id, cost).

Derivation

In this example we have S = a - F(€, id). The corollary to the thinning theorem
says that

min R - (thin Q@ - A(a-F(€,€))) € minR-A(a- F(g,1d))
for any @ C R satisfying
a-F(€,Q°) C Q°-a-F(€,id).

Of course, if we can take @ = R, then we can appeal to the greedy theorem,
avoiding thinning altogether. To show that we cannot take ) = R, suppose p
and ¢ are two paths in the network [z;,...,z,] with costp > cost ¢. Then the
monotonicity condition with @ = R says that for any set of vertices 2y, and any
a € 1y, there exists a b € 1y such that

cost ([a) 4 p) = cost([b] # q).

In particular, this condition should hold when zyp = {a}, and so a = b. Using
cost ([a] + p) = wt (a, head p) + cost p, we therefore require

wt (a, head p) — wt (a, head q) > cost ¢ — cost p.

However, since wt(a, head q) can be arbitrarily large, this condition fails unless
head p = head ¢. On the other hand, if head p = head g, then the inequality reduces
to cost p > cost g, which is true by assumption.

It follows that a- F(€, id) is monotonic on Q°, where @ = RN (head® - head). Hence

minpath C  min R - (thin Q- A(a - F(€, €))).
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Operationally speaking, the catamorphism on the right maintains a set of partial
solutions, with at least one solution for each starting vertex. But, clearly, only
one partial solution needs to be maintained for each vertex v, namely, a shortest
path beginning with v. This motivates the following calculation, in which the term
thin @ is eliminated:

thin Q - A(a - F(€, €))
{bifunctors}
thin Q - A(a - F(id, €) - F(€, id))
= {power transpose of composition}
thin Q - union - PA(a - F(id, €)) - AF(€, id)

o) {thin distributes over union (8.4)}
union - P(thin Q - A(a - F(id, €))) - AF(€, id)
o) {thin-elimination (8.3) — see below}

union - P(7 - min R - A(a - F(id, €))) - AF(€, id)
= {since union - Pt = id}

P(min R - A(a - F(id, €))) - AF(€, id)
= {since P = E on functions}

P(min R - Pa - AF(id, €)) - AF(€, id)

To justify the appeal to (8.3) we have to show that RN (S - S°) C @:

RN(S-8°)CcQ
&= {definition of @}
S - 8° C head® - head
{shunting}
(head - S) - (head - 5)° C id
<  {since head - S C [id, outl] (exercise), so head - S is simple}

1]

true.

The above derivation is quite general and makes hardly any use of the specific
datatype. For the base bifunctor F of non-empty cons-lists we have

AF(€,id) = id+cpl
minR -Pa - AF(id,€) = [wrap, step]
step = minR-Pcons - cpr,

where the functions cpl and cpr were defined in Section 5.6. Hence, finally, we have

minpath C min R - (Pwrap, Pstep - cpl)).
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The program

In the Gofer program we represent sets by lists in the usual way, and represent a
path p by (p, (head p, cost p)). The program is parameterised by the function wt:

> path = minlist r . catallist (list wrap’, list step . cpl)
> step = minlist r . list coms’. cpr

>r = leq . cross (cost, cost)

> cost = outr . outr

> wrap’ = pair (wrap, pair (id, zero))

> cons’ = cross (cons, augment) . dupl

> augment = pair (outl, plus . cross (wt, id) . assocl)
Exercises

8.10 Can we replace the cons-list bifunctor with one or both of the following bi-
functors?

F(A,B) = A+ (Ax (B x B))
F(A4,B) = A+ (BxB).

What is the interpretation of the generalised layered network problem?

8.11 The derivation above is an instance of the following more general result.
Suppose @ C R and S = S; - S is monotonic on Q°. Furthermore, suppose
RN (51 . Slo) C @. Then

min R - (P(min R - AS1) - A(S2-F€)) C min R - A(S).

Prove this result.

8.3 Implementing thin

In the layered network example we were fortunate in that the thinning step could
be eliminated, but most often we have to implement thinning as part of the final
algorithm. As with min R we cannot refine thin Q to an implementable function
except when thin @ is applied to finite sets; unlike min R we do not require the sets
to be non-empty, nor that @ be a connected preorder.

The function thinlist @ might be specified by
setify - thinlist Q C  thin Q - setify,
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where setify : PA « list A. However, we want to impose an extra condition upon
thinlist ), namely that

thinlist @ C subseq.

In words, we want thinlist ) to preserve the relative order of the elements in the
list. The reason for this additional restriction will emerge below.

The ideal implementation of thinlist @ is a linear-time program that produces a
shortest possible result. In particular, when @ is a connected preorder and z is a
non-empty list, we want

thinlist Qz = [minlist Q z], (8.5)
where minlist @) was defined in the preceding chapter.

A legitimate, but not useful, implementation is to take thinlist = id. Another is
to remove an element from a list if it is ‘bumped’ by one of its neighbours. This
idea is formalised in the definition

thinlist Q = (nil, bump Q)),
where

bump Q (a,[]) = [a]
bump Q (a,[b] #2) = (aQb— [a] # z, bQa — [b] + =z, [a] H [b] # z).

This gives a linear-time algorithm in the number of evaluations of @, though it is
not always guaranteed to deliver a shortest result. There are other possible choices
for thinlist @}, some of which are explored in the exercises.

Sorting sets

In the main theorem of this section we make use of the idea of maintaining a finite
set as a sorted list. We will use a version of sort from Chapter 6, taking

sort P = ordered P - setify®,

where P : A « A is some connected preorder. Note that sort P is not a function,
even when P is a linear order: for example, sort leg {1, 2, 3} may produce (1,2, 3] or
(1,1, 2, 3], or any one of a number of similar lists.

We will make use of a number of facts about sort P including

thinlist Q - sort P C  sort P - thin Q. (8.6)
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For the proof we argue:

thinlist @ - sort P

= {definition of sort P}
thinlist Q - ordered P - setify®

{claim: thinlist Q - ordered P C ordered P - thinlist Q}
ordered P - thinlist Q - setify®
- {specification of thinlist @ and shunting}
ordered P - setify® - thin Q

{definition of sort P}
sort P - thin Q.

N

For the claim it is sufficient to show that thinlist Q) - ordered P C ordered P:

thinlist Q) - ordered P
{specification of thinlist Q}
subseq - ordered P

N

- {since subseq - ordered P C ordered P if P is connected}
ordered P.

It is important to note that the choice of P can affect the success of the subsequent
thinning process; ideally, sort P should bring together elements that are comparable
under @. In particular, if @ is connected and we take P = @, then thinning is
accomplished by simply returning the first element as a singleton list.

There are five other properties about sort P that we will need. Proofs are left as
exercises. The first four are

minlist Q - sort P C  min Q (8.7)
listf -sort (f°-P-f) C sortP-Pf (8.8)
filterp-sort P C sortP-Ep (8.9)

merge P - (sort P)2 C  sort P - cup. (8.10)

In (8.9) the relation p is assumed to be a coreflexive, and in (8.10) the function
merge P is as defined in Exercise 6.28.

The fifth property deals with an implementation of the general cartesian product
function ¢p (F) = A(F€) described in Section 5.6. We met the special case cp (list)
in the paths in a layered network example. The function cp (F) is a natural trans-
formation of type PF « FP, so we are looking for a function listcp (F) with type
list - F « F - list. Moreover, we want this function to satisfy the condition

listep (F) - F(sort P) C  sort (FP) - cp(F). (8.11)
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Not every functor F admits an implementation of listcp (F) satisfying (8.11); one
requirement is that F distributes over arbitrary joins. It is left as an exercise to
define listep (F) for each polynomial functor F. It follows that if F is polynomial
and distributes over arbitrary joins (such a functor is called linear), then (8.11) can
be satisfied. In what follows we will assume that (8.11) can be satisfied.

Inclusions (8.8), (8.9) and (8.11) are used in the proof of the following lemma, which
is required in the theorem to come:

Lemma 8.1 Iff is monotonic on R and p is a coreflexive, then

filterp - list f - listcp (F) - F(sort R) C sort R- A(p - f - F€).

Proof. The proof is a simple calculation:

sort P-A(p-f - Fe)
{A of composition and cp (F) = AFe}
sort P-E(p-f)-cp(F)
= {E is a functor and agrees with P on functions}
sort P-Ep - Pf - cp (F)

2 {(89)}
filter p - sort P - Pf - ¢p (F)
2 {(88)}
filterp - listf - sort (f°- P - f)- ¢ep (F)
2 {since f is monotonic on P}
filter p - list f - sort(FP) - cp (F)
2 {(81)}

filter p - list f - listep (F) - F(sort P).

Binary thinning
With these preliminaries out of the way, the main theorem of this section can now
be stated. It will be referred to subsequently as the binary thinning theorem.
Theorem 8.2 Suppose the following three conditions are satisfied:

1. S=(p1-fi)U(p2- f2), where p; and p are coreflexives.

2. @ is a preorder with @ C R and such that p; - fi and po- f> are both monotonic
on Q°.
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3. P is a connected preorder such that f; and f; are both monotonic on P.

Then

minlist R - (thinlist Q - merge P - (g1, g2) - listcp) C  min R - A(S),
where g; = filter p; - list f;.
Proof. We reason:

min R - A(S)
2 {thinning theorem since S is monotonic on Q°}
min R - (thin Q - A(S - F€))

2> {(8.7)}
minlist R - sort P - (thin Q - A(S - F€))
D  {fusion}

minlist R - (thinlist Q - merge P - (g1, ga) - listcp)).
The condition for fusion in the last step is verified as follows:

sort P - thin @ - A(S - F€)
{(8.6)}

thinlist Q - sort P - A(S - Fe)

= {definition of S}

thinlist Q - sort P - cup - (A(p1 - i - F€),A(p2 - f2 - F€))
{(8.10)}

thinlist Q - merge P - (sort P - A(p1 - f1 - FE), sort P - A(py - fo - FE))
{Lemma 8.1}

thinlist Q - merge P - (g1, g2) - listcp - F(sort P).

V)

v

V)

O

The theorem can be generalised in the obvious way when S is a collection S =
(p1-A)U---U(py - fn)- Weleave details as an exercise.

Exercises

8.12 Another definition of thinlist Q is as a catamorphism ((id, bump Q) on snoc-
lists. Define bump @ and give an example to show that this version of thinlist Q
differs from that of the text.
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8.13 Yet another definition is

thinlist Q[] = []
thinlist Q@ [a] = |[a]
thinlist Q ([a] # z), if a@Qb
thinlist Q ([a] # [b] #z) = thinlist Q ([b) # z), if bQa

[a] # thinlist Q ([b] # ), otherwise

Give examples to show that this version of thinlist ) may return a shorter or longer
result than that of the text.

8.14 Yet another definition arises from the specification

thinlist Q C list (minlist Q) - min L - A(list™ (connected Q) - partition),

where L = length® - leq - length and the coreflexive connected @ is defined by the
associated predicate

connected Qz = (Va:ainlistz: (Vb: binlistz : aQbV bQa)).

In words, we partition a list into the smallest number of components, each of whose
elements are all connected under ), and then take a minimum under @ of each
component. Use the fact that connected @ is prefix-closed (in fact, subsequence-
closed) to give a greedy algorithm for the optimisation problem on the right. Apply
type functor fusion to obtain a catamorphism for thinlist Q.

How can the catamorphism be expressed as a more efficient algorithm ifit is assumed

that Q- Q° C QU Q°?

8.15 Repeat the above exercise, replacing connected @ by leftmin @), where
leftmin Q ([a]) H+z) = (Vb: binlistz : aQb).

8.16 A best possible implementation of thinlist ) would be an algorithm that re-

turned the subsequence of minimal elements under . Can such an algorithm be
implemented in linear time in the number of @) evaluations?

8.17 Prove that subseq-sort P C sort P-subset provided P is a connected preorder.
8.18 Prove (8.8) and (8.9).

8.19 Give functions for listcp (F x G) and listcp (F + G) in terms of listcp (F) and
listcp (G). What is listcp (F) when F is the identity functor, or the constant functor
KA?

8.20 Can you define listcp (T) for an arbitrary type functor T?
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8.21 Give a counter-example showing that (8.11) fails for non-linear polynomial
relators.

8.22 Formalise and prove a version of binary thinning in which the algebra S takes
the form S = (fi - ;1) U (f2 - p2).

8.4 The knapsack problem

The standard example of binary thinning is the well-known knapsack problem
(Martello and Toth 1990). The objective is to pack items in a knapsack in the
best possible way. Given is a list of items which might be packed, each of which
has a given weight and value, both of which are non-negative real numbers. The
knapsack has a finite capacity w, giving an upper bound to the total weight of the
packed items, and the object of the exercise is to pack items with a greatest total
value, subject to the capacity of the knapsack not being exceeded.

Let Item denote the type of items to be packed and wal, wt : Real < Item the
associated value and weight functions. The input consists of an element z of type
list Item and a given capacity w.

We will model selections as subsequences of the given list of items. The relation
subseq : list A « list A can be expressed in the form

subseq = ([nil, cons] U [nil, outr]).

The total value and weight of a selection are given by two functions value, weight :
Real « list Item, defined by

value = sum - list val
weight = sum - list wt.
Our problem is to find a function knapsack w satisfying

knapsackw C maz R - A(within w - subseg),

where R = wvalue® - leq - value and withinwz = (weight z < w). Equivalently,
replacing R by R° we obtain

knapsackw C min R - A(within w - subseq),
where R = value® - geq - value and geq = leg°.
An appeal to fusion, using the fact that weights are non-negative, gives

within w - subseq = ((within w - [nil, cons]) U [nil, outr]).



206 8 / Thinning Algorithms

Of course, the right-hand side simplifies to (nil, (within w - cons) U outr)); the form
above suggests that binary thinning might be applicable.

Derivation

We first check to see whether (within w - [nil, cons]) U [nil, outr] is monotonic on
R° = value® - leq - value; if it is, then a greedy algorithm is possible. It is easy to
prove that [nil, cons] and [nil, outr] are both monotonic on R°, but the problem is
that within w - [nil, cons| is not. It does not follow that if valuez < wvaluey and
within w ([a] # z), then either within w ([a] # y) or value ([a] H ) < value y.

On the other hand, it is easy to prove that within w - [nil, cons| is monotonic on Q°,
where

Q@ = R N (weight® - leq - weight).

Furthermore, [nil, outr] is monotonic on Q°. Since the base functor of cons-lists
is linear, all the conditions of the binary thinning theorem are in place if we take
P = R, thereby sorting in descending order of value.

The result is that we can implement knapsack w as the function
minlist R - (thinlist Q - merge R - (g1, g2) - listcp)),
where g, = filter (within w) - list [nil, cons] and g, = list [nil, outr).

The implementation can be simplified. For the functor FA = 1+ (Item x A) we
have

listcp = listcp(F) = wrap + cpr.
Furthermore, g1 = [list nil, hi] and g2 = [list nil, hy], where

hy = filter (within w) - list cons

by

An easy simplification now yields:

list outr.

It

knapsackw = minlist R - (nil, thinlist Q - merge R - (hy, hg) - cpr).

Finally, since packings are produced in descending order of value, we can replace
minlist R by head.
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The program

We represent a list z of items by the pair (z, (value z, weight z)). The following
program is parameterised by the functions val and wt:

> knapsack w = head . catalist (start, thinlist q . merge r . step w)

> start £, (0,01
> step w = pair (filter (within w) . list coms’, list outr) . cpr
> within w (<= w) . weight

> cons’ = cross (cons, augment) . dupl
> augment = cross (addin val, addin wt) . dupl
> addin f = plus . cross (f, id)

> r = geq . cross (value, value)

> p = leq . cross (weight, weight)
> q = meet (p,r)
> value = outl . outr

> weight = outr . outr

The algorithm, though it takes exponential time in the worst case, is quite efficient
in practice. The knapsack problem is presented in many text books as an appli-
cation of dynamic programming, in which a recursive formulation of the problem
is implemented efficiently under the assumption that the weights and capacity are
integers. Dynamic programming will be the topic of the next chapter, but the thin-
ning approach to knapsack gives a simpler algorithm that does not depend on the
inputs being integers. Moreover, if the weights and capacity are integers, then the
algorithm is as efficient as the dynamic programming scheme.

8.5 The paragraph problem

The next application of the binary thinning theorem is to the paragraph problem
(Bird 1986; Knuth and Plass 1981). The problem has already been touched on
briefly in Exercise 7.56. Three inputs are given: a non-empty sequence of words,
a function length that returns the length of a word, and a number w giving the
maximum possible line width. The width of a line is the sum of the widths of its
words plus some measure of the interword spaces. It is assumed that w is sufficiently
large that any word will at least fit on a line by itself.
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By definition, a line is a non-empty sequence of words, and a paragraph is a non-
empty sequence of lines; thus

Line = Ulistt Word
Para = listt Line.

We will build paragraphs from right to left, so our lists are cons-lists. Certainly,
no sensible greedy algorithm for the paragraph problem can be based on cons-lists
(see Exercise 7.56), but thinning algorithms consider all possibilities and are not
sensitive to the kind of list being used.

The problem is to find a function paragraph w satisfying

paragraphw C  min R - A(list™ (fits w) - partition),

where R = (waste w)° - leq- (waste w) and waste w is a measure of the waste incurred
by a particular paragraph given the maximum width w.

To complete the specification we need to define waste w, fits w and partition. The
type assigned to partition is Para < listt Word and we can define it as a catamor-
phism on non-empty lists by changing the definition given in Section 5.6 slightly:

partition = (wrap - wrap, new U glue)),
where

new (a,zs) = [[a]] # zs

glue (a,zs) = [[a] # head zs] H tail zs.

Note that glue is a (total) function on non-empty lists, but only a partial function
on possibly empty lists. We will need the fact that glue is a function in the thinning
algorithm to come.

The coreflexive fits w holds on a line z if widthz < w, where width is glven by a
catamorphism on non-empty lists:

width = (length, succ - plus - (length X id))).

It is assumed that interword spaces contribute one unit toward the width of a line,
which accounts for the term succ in the catamorphism above.

Finally, the function waste w depends on the ‘white-space’ that occurs at the end
of all the lines of the paragraph, except for the very last line, which, by definition,
has no white-space associated with it. Formally,

waste w = collect - list (white w) - init,
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Before proceeding Before proceeding
with the derivation with the derivation
of an algorithm, we of an algorithm,
note that the we note that the
obvious greedy obvious greedy
algorithm does not algorithm does
solve this not solve this
specification. specification.

Figure 8.1: A greedy and an optimal paragraph.

where init : list A < list™ A removes the last element from a list, and
whittewz = (w— widthz)

Provided it satisfies certain properties, the precise definition of collect is not too
important, but for concreteness we will take

collect = sum - list sqr,
where sqgr m = m?. This definition is suggested in (Knuth and Plass 1981).

After an appeal to fusion, using the assumption that each individual word will fit
on a line by itself, we can phrase the paragraph problem in the form

paragraphw C  min R - A(wrap - wrap, new U (ok w - glue))),

where ok w holds on ([z] + zs) if width z < w. Since an individual word will fit on
a line by itself, we can rewrite the algebra of the catamorphism in the form

[wrap - wrap, new| U ok w - [wrap - wrap, glue].

Since new and glue are both functions, we see that the problem is of a kind to which
binary thinning may be applicable.

Derivation

Before proceeding with the derivation of an algorithm, we note that the obvious
greedy algorithm does not solve this specification. The greedy algorithm is a left
to right algorithm, filling lines for as long as possible before starting a new line.
The left-hand side of Figure 8.1 shows the output of the greedy algorithm on the
opening sentence of this section, and an optimal paragraph (with the given definition
of collect) on the right.
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One reason why the greedy algorithm fails is that glue is not monotonic on R°.
Even for paragraphs [z] # zs and [y] # ys of the same input, the implication

waste ([z] H# zs) > waste ([y] + ys)
= waste ([[a] 4 2] + 25) > waste ([[a] 4 1] + v3)

does not hold unless £ = y. Even then, we require an extra condition, namely that
cons is monotonic under collect® - leq - collect. This condition holds for the given
definition of collect, among others.

Given this property of collect, we do have that both new and ok w - glue are mono-
tonic on Q°, where

Q@ = R N (head® - head).

We leave the formal justification as an exercise. So all the conditions for binary
thinning are in place, except for the choice of the connected preorder P. Unlike the
case of the knapsack problem we cannot take P = R. The choice of P is a sensitive
one because sorting with P should bring together paragraphs with the same first
line, enabling thinlist @) to thin them to a single candidate. A logical choice is to
weaken the equivalence relation head® - head to a connected preorder, taking

P = heado -L- head,

where L is some linear order on lines. Given context, we can take L = prefiz,
because this is a linear order on first lines of paragraphs of the same input. And it
is easy to show that both new and glue are monotonic on P. However, all this is
overkill because a much simpler choice of P suffices, namely, P = II, the universal
relation. Trivially, all functions are monotonic on II. The reason why II works is
because we have

mergell = cat,

and so the term g¢; in the implementation given below automatically brings together
all partial solutions with the same first line.

With this choice of P the binary thinning theorem gives

paragraphw = minlist R - (thinlist Q - cat - (g1, g2) - listcp)),
where

g1 = list [wrap - wrap, new]

g2 = filter (ok w) - list [wrap - wrap, glue].

For the functor FA = Word + (Word x A) we have

listcp = listcp(F) = wrap + cpr.
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Hence rewriting ¢g; and go as coproducts, we obtain

paragraphw = minlist R - (start, thinlist Q - cat - (h1, hp) - cpr)),
where
start = wrap - wrap - wrap
hy = list new

hy = filter (ok w) - list glue.

The program

For efficiency, a partition [z] + zs is represented by the pair
([z] # zs, (w — width =, waste w zs)).

Since waste w [] is not defined, we will assume that it is some large negative quantity
—o0; then we have that the waste of a partition (zs, (m, n)) is maz{m? + n,0}.

The resulting program is shown below. Some additional input and output format-
ting has been added to make the program more useful: words divides a string
into consecutive words, leaving out spaces and newline characters; unwords does
the opposite, joining the words with single spaces; and unlines joins lists of lines
with single newline characters. These formatting functions are provided in Gofer’s
standard prelude and are also defined in the Appendix:

> paragraph w = unpara . para w . words

> unpara = unlines . list unwords . outl

> para w = minlist r . catallist (start w, thinlist q . step w)

> step w = cat . pair (list (new’ w), filter ok . list glue’) . cpr
> start w = wrap . pair (wrap . wrap, augment)

> where augment = pair ((w-) . length, neginf)

> new’ w = cross (mew, augment) . dupl

> where augment = cross ((w-) . length, waste)

> glue’ = cross (glue, augment) . dupl

> where augment = cross (reduce . swap, outr) . dupl

> reduce = minus . cross (id, succ . length)

> new = cons . cross (wrap, id)

> glue = cons . cross (cons, id) . assocl . cross (id, split)
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> r = leq . cross (waste . outr, waste . outr)
> p =eql . cross (outl . outr, outl . outr)
> q = meet (r,p)

> waste = omax . plus . cross (sqr, id)

> omax = cond (>= 0) (id, zero)

> sqr = times . pair (id, id)

> ok = (>= 0) . outl . outr

> neginf = const (-10000)

Exercises

8.23 Show list* (fits w) - partition = (wrap - wrap, new U (ok w - glue))).

8.24 One possible choice for the function f in the definition of waste is f = sum.
This leads to less pleasing paragraphs, but a greedy algorithm is possible provided
we switch to snoc-lists. Derive this algorithm.

8.6 Bitonic tours

As a final application of thinning we solve a generalisation of the following problem,
which is taken from (Cormen et al. 1990):

The euclidean traveling-salesman problem is the problem of determining
a shortest closed tour that connects a given set of n points in the plane.
On the left in Figure 8.2 is the solution to a 7-point problem. The
general problem is NP-complete, and its solution is therefore believed
to require more than polynomial time.

J.L. Bentley has suggested that we simplify the problem by restricting
our attention to bitonic tours, that is, tours that start at the leftmost
point, go strictly left to right to the rightmost point, and then go strictly
right to left back to the starting point. On the right in Figure 8.2 is the
shortest bitonic tour of the same 7 points. In this case, a polynomial-
time algorithm is possible.

Describe an O(n?)-time algorithm for determining an optimal bitonic
tour. You may assume that no two points have the same z-coordinate.
(Hint: Scan right to left, maintaining optimal possibilities for the two
parts of the tour.)
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Figure 8.2: An optimal and an optimal bitonic tour.

We will solve a generalised version of the bitonic tours problem in which distances
are not necessarily euclidean nor necessarily symmetric. We suppose only that with
each ordered pair (a,b) of points (called cities below) is associated a travelling
cost tc(a, b), not necessarily positive nor necessarily equal to tc (b, a). The final
algorithm will take O(n?) time, where n is the length of the input, assuming that
tc can be computed in constant time.

It does not make sense to talk about a bitonic tour of one city, so we will assume
that the input is a list of at least two cities, the order of the cities in the list being
relevant. We will take the hint in the formulation of the problem and build tours
from right to left, but this is only because cons-lists are more efficient than snoc-lists
in functional programming. Formally, all this means that we are dealing with the
base functor

FA = (City x City) + (City x A)
of cons-lists of length at least two.

We will describe tours, much as a travel agent would, by a pair of lists (z, y), where
z represents the outward journey and y the return (reading from right to left). For
example, the tour that proceeds directly from New York to Rome but visits London
on its return is represented by the itinary

([New York, Rome], [New York, London, Rome])).
This is a different itinary to

([New York, London, Rome],[New York, Romel]),
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because the travelling costs may depend on the direction of travel. As we have
described them, both parts of the tour are subsequences of the input, and have
lengths at least two.

Suppose the first example is extended to include Los Angeles as the new starting
point. This gives rise to two extended tours:

([Los Angeles, New York, Rome],[Los Angeles, London, Rome))
([Los Angeles, Rome), [Los Angeles, New York, London, Rome]).

It is a requirement of a tour that no city should be visited twice, so New York has
to be dropped from either the outward journey or the return.

With these assumptions, we can define tour by
tour = (start,dropl U dropr)),
where start (a, b) = ([a, b], [a, b]) and

dropl (a, (8] # z,9)) = ([a] 4 =,[a] # )
dropr (a,(z,[b] #y)) = ([a] # =, [a] 4 ).

Each partial tour (z, y) maintains the property that the first elements of z and y
are the same, as are the last elements.

The total cost of a tour is given by a function cost defined by

cost (z,y) = outcostz + incosty,
where
outcost [ag, a1,...,a,] = (+3:0<j < n:tc(aj,ai41))
incost [ag, a1,...,an] = (+j:0<j < n:tc(aj,ai-1)).

Our problem now is to find a function mintour that refines min R - Atour, where
R = cost® - leq - cost.

Derivation

As usual, analysis of why [start, dropl U dropr] is not monotonic on R° will help to
suggest an appropriate @ for the thinning step. The monotonicity condition comes
down to two inclusions:

dropl - (id x R°)
dropr - (id x R°)

R° - dropl

-
C R°.dropr.
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To see what these conditions mean, observe that cost (dropl (a, (z, y))) equals
cost (z, y) + tc(a, next z) — tc (head z, next x) + cost (head y, a),

where nezt ([a] H# [b] # ) = b. Dually, cost (dropr (a, (z,y))) equals
cost (z,y) + tc(a, head z) — tc (next y, head y) + tc (next y, a).

Now, the first condition says that if cost (z, y) < cost (u, v), then

cost (z, y) + tc(a, next ) — tc (head z, next z) + cost (head y, a)
< cost (u, v) + tc(a, next u) — tc (head u, next u) + cost (head v, a).

The second condition is similar. Neither holds under an arbitrary function cost
unless

(head z, head y) = (head u, head v) A (nezt z, next y) = (next u, next v).

The first conjunct will hold whenever (z, y) and (u, v) are tours of the same input.
It is now clear that we have to define @ by

Q = R N (next®)°- next?,
for then dropl and dropr are both monotonic under Q° (and Q).

All the conditions for the binary thinning theorem are in place, except for the choice
of the connected preorder P. As in the paragraph problem, we cannot take P = R
because the monotonicity condition is not satisfied. And, also as in the paragraph
problem, we can take P = II. The reason is basically the same as before and
Exercise 8.25 goes into details.

Since merge Il = cat, we can appeal to binary thinning and take
mintour = minlist R - (thinlist Q - cat - (g1, g2) - listcp)),

where g1 = list [start, dropl] and g, = list [start, dropr]. As before, we have listcp =
wrap + cpr, so mintour simplifies to

minlist R - (wrap - start, thinlist Q - cat - (list dropl, list dropr) - cpr)).

The algorithm takes quadratic time because just two new tours are added to the list
of partial solutions at each stage (see Exercise 8.25). If the list of partial solutions
grows linearly and it takes linear time to generate the new tours, then the total
time is quadratic in the length of the input.
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The program

For efficiency a tour ¢ is represented by the pair (¢, cost p). The Gofer program is
parameterised by the function tc:

> mintour = minlist r . cata2list (wrap . start, thinlist q . step)
> step = cat . pair (list dropl, list dropr) . cpr

(([a,b],[a,b]), tc (a,b) + tc (b,a))
((a:tail x, a:y), m + adjustl (a,x,y))
((a:x, a:tail y), m + adjustr (a,x,y))

> start (a,b)
> dropl (a, ((x,y),m))
> dropr (a,((x,y),m))

> adjustl (a, b:c:x, d:y) = tc (a,c) - tc (b,c) + tc (d,a)

> adjustr (a, b:x, d:e:y) = tc (a,b) - tc (e,d) + tc (e,a)
>r = leq . cross (outr, outr)

>p = eql . cross (next2, next2)

>q = meet (r,p)

> next2 = cross (mext, next) . outl

> next = head . tail

> cata2list (f,g) [a,b] = £ (a,b)

> cata2list (f,g) (a:x) = g (a, cata2list (f,g) x)

Exercises

8.25 Determine next (dropl (a, (z,y))) and next (dropr (a,(z,y))). Hence show by
induction that the next values of the list of tours maintained after processing the
input [ag, a1,..., a,] are:

(a'nya'l), (an—l,al)a "'5(0'2,‘11)7 (alaaQ)a“',(al,an)-

8.26 Consider the case where tc is symmetric, so the tour (y, z) is essentially the
same as (z,y). Show how dropl and dropr can be modified to avoid generating the
same tour twice. What is the resulting algorithm?

8.27 One basic assumption of the problem was that a city could not be visited
both on the outward and inward part of the journey. Reformulate the problem to
remove this restriction. What is the algorithm?

8.28 The other assumption was that each city should be visited at least once.
Reformulate the problem to remove this restriction. What is the algorithm?
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8.29 The longest upsequence problem is to compute maz R - A(ordered - subseq),
where R = length® - leq - length. Derive a thinning algorithm to solve this problem.

8.30 The rally driver’s problem is described as follows: imagine a long stretch of
road along which n gas stations are placed. At gas station (1 < ¢ < n) is a
quantity of fuel f;. The distance from station ¢ to station i +1 (or to the end of the
road if ¢ = n) is a known quantity d;, where both fuel and distance are measured
in terms of the same unit. Imagine that the rally driver is at the beginning of the
road, with a quantity fy of fuel in the tank. Suppose also that the capacity of the
fuel tank is some fixed quantity c. Assuming that the rally driver can get to the
end of the road, devise a thinning algorithm for determining a minimum number of
stops to pick up fuel. (Hint: model the problem using partitions.)

8.31 Solve the following exercise from (Denardo 1982) by a thinning algorithm: A
long one-way street consists of m blocks of equal length. A bus runs ‘uptown’ from
one end of the street to the other. A fixed number n of bus stops are to be located
so as to minimise the total distance walked by the population. Assume that each
person taking an uptown bus trip walks to the nearest bus stop, gets on the bus,
rides, gets off at the stop nearest his or her destination, and walks the rest of the
way. During the day, exactly B; people from block j start uptown bus trips, and
C; complete uptown bus trips at block j. Write a program that finds an optimal
location of bus stops.

Bibliographical remarks

The motivation of this chapter was to capture the essence of sequential decision
processes as first introduced by Bellman (Bellman 1957), and rigorously defined
by (Karp and Held 1967). In particular, Theorem 8.2 could be seen as a ‘generic
program’ for sequential decision processes (De Moor 1995). In that paper it is
indicated how the abstract relational expressions of Theorem 8.2 can actually be
written as an executable computer program.

The relation passed as an argument to thin corresponds roughly to what other au-
thors call a dominance relation. Dominance relations have received a lot of attention
in the algorithm design literature (Eppstein, Galil, Giancarlo, and Italiano 1992;
Galil and Giancarlo 1989; Hirschberg and Larmore 1987; Yao 1980, 1982). Most
of this work is concerned with improving the time complexity of naive dynamic
programming algorithms.

In programming methodology, our work is very much akin to that of (Smith and
Lowry 1990; Smith 1991). Smith’s notion of problem reduction generators is quite
similar to the generic algorithm presented here in fact, but bears a closer resem-
blance to the results of the following chapter.
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The idea of implementing dynamic programming algorithms through merging is
well known in operations research. In the context of the 0/1 knapsack problem, it
was first suggested by (Ahrens and Finke 1975). Recently, this method has been
improved (through an extension of methods described in this book) to obtain a
novel solution to the 0/1 knapsack problem that outperforms all others in practice
(Ning 1997).



Chapter 9

Dynamic Programming

We turn now to methods for solving the optimisation problem
min R - A((S) - (TD°).

However, we will only consider the case where S = h, a function. This chapter
discusses dynamic programming solutions, while Chapter 10 considers another class
of greedy algorithms. In outline, dynamic programming is based on the observation
that, for many problems, an optimal solution is composed of optimal solutions to
subproblems, a property known as the principle of optimality.

If the principle of optimality is satisfied, then one can decompose the problem in
all possible ways into subproblems, solve the subproblems recursively, and assemble
an optimal solution from the partial results. This is the content of Theorem 9.1.
Sometimes it is known that certain decompositions can never contribute to an op-
timum solution and can be discarded; this is the content of Theorem 9.2. In the
extreme case, all but a single decomposition can be discarded, leading to a class of
greedy algorithms to be studied in Chapter 10.

The sets of decompositions associated with different subproblems are usually not
disjoint, so a naive approach to solving the subproblems recursively will involve
repeating work. For this reason there is a second phase of dynamic programming in
which the subproblems are solved more efficiently. There are two complementary
schemes: memoisation and tabulation. (The terminology is standard, but tabulation
has nothing to do with tabular allegories.)

The memoisation scheme is top-down; the computation follows that of the recursive
program but solutions to subproblems are recorded and retrieved for subsequent
use. Some functional languages provide a built-in memoisation facility as an op-
tional extra. By contrast, the tabulation scheme is bottom-up; using an analysis
of the dependencies between subproblems, the problems are solved in order of de-
pendency, and stored in a specially constructed table to make subsequent retrieval
easy. Although the dependency analysis is usually simple, the implementation of
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a tabulation scheme can be rather complicated to describe and justify. We will,
however, give full details of tabulations for two of the applications described in this
chapter.

9.1 Theory

As mentioned above, we consider only the case that S = h, a function. To save ink,
define H = (h)) - (T)° in all that follows, where h and T are F-algebras. The basic
theorem about dynamic programming is the following one.

Theorem 9.1 Let M = min R- AH. If h is monotonic on R, then
(uX :minR-P(h-FX)-AT°) C M.

Proof. It follows from Knaster—Tarski that the conclusion holds if we can show
that

minR-P(h-FM)-AT° C M. (9.1)
Using the universal property of min we can rewrite (9.1) as two inclusions:
minR-P(h-FM)-AT° C H (9-2)
minR-P(h-FM)-AT°-H° C R. (9.3)
To prove (9.2) and (9.3) we will need the rule
minR-PX C (X-€) N ((R-X)/3) (94)
proved in Chapter 7.
For (9.2) we argue:
minR-P(h-FM)-AT®
{since (9.4) gives min R-PX C X - €}
h-FM-€-AT°
= {A cancellation}
h-FM-T°
- {definition of M and universal property of min}
h-FH -T°
=  {definition of H and hylomorphism theorem (Theorem 6.2)}
H.

N
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To prove (9.3) we argue:

min R - P(h-FM)-AT® . H°
{since (9.4) gives min R-PX C (R - X)/3}
(R-h-FM)/3)-AT°.H®
= {definition of H and hylomorphism theorem}
((R-h-FM)/3)-AT°. T -FH® - h°
C  {since AX°- X C 3; division; functors}
R-h-F(M-H°)-k°

()]

- {definition of M and universal property of min}
R-h-FR-R°

- {assumption h - FR - h° C R}
R-R

c {since R is transitive}
R.

(]

Theorem 9.1 describes a recursive scheme in which the input is decomposed in all
possible ways. However, with some problems we can tell that certain decompositions
will never lead to better results than others. The basic theorem can be refined by
bringing in a thinning step to eliminate unprofitable decompositions. This leads to
the following version of dynamic programming; the proof follows the preceding one
very closely, and we leave it as an exercise:

Theorem 9.2 Let M = min R- AH. If h is monotonic on R and @ is a preorder
satisfying h - FH - Q° C R° - h-FH, then

(uX :minR-P(h-FX)-thin@-AT°) C M.

Both theorems conclude that an optimal solution can be computed as a least fixed
point of a certain equation. Theorem 6.3 says that the equation has a unique fixed
point if member (F)- T° is an inductive relation. Furthermore, if AT° returns finite
non-empty sets and R is a connected preorder, then the unique solution is entire.
By suitably refining min R and thin @ - AT°, we can then implement the solution
as a recursive function.

Since Q is a relation on FA (for some A), and FA is often a coproduct, we can
appeal to the following proposition to instantiate the conclusion of Theorem 9.2.
The proof is left as an exercise.
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Proposition 9.1 Suppose that V; and V; have disjoint ranges, that is, suppose
that V1°- Vo = 0. Then

min R - P[Uy, Uz] - thin (Q1 + Q2) - A[V1, V2]° = (ran Vi - Wi, Wa),
where W; = minR-PU; - thin Q; - AV;° for i = 1,2.

Checking the conditions

The two conditions of dynamic programming are:

h-FR C R-h
h-FH-Q° C R°-h-FH.

To ease the task of checking these conditions, we can often appeal to one or other
of the following results; the first could have been given in an earlier chapter.

Proposition 9.2 If for some functions cost and k& we have

R = cost® - leq- cost
cost-h = k-Fcost
k-Fleq C leq-k,

then h-FRCR- h.

Proof. We argue:

h-FRCR-h
= {definition of R and shunting}
cost-h-FR Cleq- cost-h

{assumption on cost}

k- F(cost-R) C leq-k-F cost
& {since cost - R C leg - cost}

k - F(leg - cost) C leq - k - F cost
&= {functors}

k-FlegqCleg-k
&= {assumption that k is monotonic on leg}

true.
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The following result establishes a monotonicity in context property (see also Exer-
cise 9.2).

Proposition 9.3 If for some functions cost and k we have

R cost® - leq - cost
cost-h = k-F(cost,H°)
k-F(legx id) C leq-k,

and if H° is simple, then h- F(R N (H - H°)) CR- h.

Proof. We argue:

h-F(RN (H-H°))CR-h
{definition of R and shunting}
cost - h - F((cost® - leq - cost) N (H - H®)) C leg - cost - h
{products}
cost - h - F({cost, H°)° - (leq - cost, H°)) C leq - cost - h
{assumption on cost}
k - F({cost, H®) - (cost, H®)® - (leq - cost, H°)) C leq - k - F{cost, H®)
< {since H° simple implies (cost, H°) simple}
k- F(leq - cost, H°) C leq - k - F{cost, H®)
< {products; functors}
k-F(leg x id) C leg - k
<  {assumption on k}

true.
O

In the next result we take F to be a bifunctor, writing F(id, X) rather than FX.

Proposition 9.4 Suppose U and V are two preorders such that
h-F(U,R)CR-h and H-V°CR°-H.

Then the conditions of Theorem 9.2 are satisfied by taking @ = F(U, V).
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Proof. Monotonicity follows at once from the reflexivity of U. For the second part
we argue as follows:

h-F(id, H) - Q°
{taking @ = F(U, V); converse; bifunctors}
h-F(U°,H - V°)
- {assumption on V'}
h-F(U°, R° - H)
C  {bifunctors}
h-F(U°, R°) - F(id, H)
c {assumption on h (taking converse and shunting)}
R° - h-F(id, H).

Exercises

9.1 Why is Theorem 9.1 a special case of Theorem 9.27

9.2 The conditions of dynamic programming can be weakened by bringing in con-
text. More precisely, it is sufficient to show that

h-F(RN (H-H°)) C R-h
h-FH-(Q N (T°-T))° C R°-h-FH.
Prove this result.
9.3 Prove Theorem 9.2.

9.4 Prove that the thinning condition of Theorem 9.2 can be satisfied by taking
Q =F(M° - R- M). Why may this not be a good choice in practice?

9.5 This exercise deals with the proof of Proposition 9.1. Relations V; and V, have
disjoint ranges if ran Vo C~ ran Vi, where ~ is the complementation operator on
coreflexives. Show that V; and V; have disjoint ranges if and only if

ran Vo = ran Va-~ran V;.
Use this result to show that

AV, o)° = (ran Vi = A(inl - V1°), A(inr - V2°)).
Now show that

thin (@1 + @Q2) - Einl = Einl- thin Q1
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thin (Q1 + Q2) - Einr = Einr - thin Qs.

Using these results, prove Proposition 9.1.

9.2 The string edit problem

In the string edit problem two strings £ and y are given, and it is required to
transform one string into the other by performing a sequence of editing operations.
There are many possible choices for these operations, but for simplicity we assume
that we are given just three: copy, delete and insert. Their meanings are as follows:

copya  copy character a from z to y;
delete a  delete character a from z;
insert @  insert character a in y.

The point about these operations is that if we swap the roles of delete and insert,
then we obtain a sequence transforming the target string back into the source.
In fact, the operations contain enough information to construct both strings from
scratch: we merely have to interpret copy a as meaning “append a to both strings”;
delete a as “append a to the left string”; and insert ¢ as “append a to the right
string”. Since there are many different edit sequences from which the two strings
can be reconstituted, we ask for a shortest edit sequence.

To specify the problem formally we will use cons-lists for both strings and edit
sequences; thus a string is an element of list Char and an edit sequence is an element
of list Op, where

Op := cpy Char | del Char | ins Char.
The function edit : (list Char X list Char) <+ list Op reconstitutes the two strings:
edit = (base, step),

where base returns the pair ([],[]) and

step (cpy o, (2,y)) = ([a}+ =, [a] Hy)
step (del a, (z,y)) = ([a] # z,v)
step (ins a, (2,y)) = (=, [a] +y).

The specification of string edit problem is tofind a function mle (short for “minimum
length edit”) satisfying

mle C minR- Aedit°®,

where R = length® - leq - length.
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Derivation

To apply basic dynamic programming we have to show that a = [nil, cons] is
monotonic under R. But this is immediate from Proposition 9.2 using

length = ([zero, succ - outr)
and the monotonicity of succ under leg.

For this problem we can go further and make good use of a thinning step. The
intuition is that a copy operation, when available, leads to a shorter result than
delete or insert. We therefore investigate whether we can find a preorder @ over
the type F(Op, String x String), where F(A, B) =1+ (A x B), satisfying

a-F(id,edit’) - @° C R°-a-F(id, edit®).

From Proposition 9.4 we know that it is sufficient to take @ = F(U, V) for some
preorders U and V satisfying the two conditions:

a-F(U,R)CR-a and V -edit C edit-R.

Since o - F(II,R) C R - a (exercise) we can always take U = II. There is also an
obvious choice for V: take V = suffiz x suffiz. With this choice of V', the second
condition can be broken down into two inclusions:

(id x suffiz) - edit C edit-R
(suffiz x id) - edit C edit- R.

Since suffiz = tail*, it is sufficient to show that

(¢d x tail) - edit C edit-R
(tail x id) - edit C edit- R,

because A- B C B - C implies A* - B C B - C*. We give an informal proof of the
first inclusion (a point-free proof is left as an exercise); the second one follows by a
symmetrical argument. Suppose edit es = (z, cons (b, y)), and let e be the element
of es that produces b. If e = cpy b, then replace e by del b in es; if e = ins b, then
remove e from es. The result is an edit sequence fs that is no longer than es and
satisfies edit fs = (z,y).

The result of this analysis is that a shortest edit sequence can be obtained by
computing the least fixed point of the recursion equation

X = minR-P[nil,cons - (id x X)] - thin Q - A[base, step]°,
where Q = id + (U x V), and U and V are given above.
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Since base and step have disjoint ranges we can appeal to Proposition 9.1 and obtain
X = (empty — nil, min R - P(cons - (id X X)) - thin (U x V) - Astep®),
where empty (z,y) holds if both z and y are empty lists.

We can implement thin (U x V) - Astep® as a list-valued function unstep, defined by

[(del g, (z,[]))]
[(ns b, ([}, 9))]

unstep ([a] H =, [])
unstep ([}, [b] + y)

and

unstep ([a] H z,[b] # y) =

{ [(cpy a, (2, 9))], ifa=0b
[(del a, (z, [b] # y)), (ins b, ([a] H =, y))], otherwise.

The relation min R is implemented as the function minlist R on lists. The result is
that mle can be implemented by the program

mle = (empty — nil, minlist R - list (cons - (id x mle)) - unstep).

The program terminates because the second components of unstep (z, y) are pairs
of strings whose combined length is strictly smaller than that of z and y.

The problem with this implementation is that the running time is an exponential
function of the sizes of the two input strings. The reason is that the same subprob-
lem is solved many times over. A suitably chosen tabulation scheme can bring this
down to quadratic time, and this is the next part of the derivation.

Tabulation

The tabulation scheme for mle is motivated by the observation that in order to
compute mle (z, y) we also need to compute mle (u, v) for all tails u of z and tails
v of y. It is helpful to imagine these values arranged in columns: for example,

mle (a1a2a3, b1bz) mle (a1azas, ba) mle (a1azas, [])
mle (azas, b1b2) mle (azag, by) mle (azas, [])
mie (as, b1 b2) mle (as, bg) mle (a3, [])

mle ([], b1b2) mie ([], b) mie ([}, [])-

If we define the curried function

columnzy = [mle(u,y) | u ¢+ tailsz],
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then the rightmost column is column z [] and the leftmost one is column zy. The
topmost entry in the leftmost column is the required value mle (z, y). We will build
the columns one by one from right to left, using each column to construct the next
one. Thus, we aim to express column z as a cons-list catamorphism

columnz = ([fstcol z, nextcol z)).

It is easy to check from the definition of mle that fstcol = tails-list del. The function
neztcol is to satisfy the equation

columnz ([b) #+y) = nezteolz (b, column z y).

The general idea is to implement nextcol as a catamorphism, building the next
column from bottom to top. From the recursive characterisation of mle we have

[epy a] H# mie (u, y), ifa="0
mile ([a] H u, [b) Hy) = [del a] + mle (u, [b) #y), ifm<n
[ins b] # mle ([a] # u,y), otherwise,

where m and n are the lengths of mle (u, [b] # y) and mle ([a] # u, y) respectively.
In terms of column entries the picture is

column z ([b] # y) columnz y

‘mle ([a] # u, [b] # ¥) ;nle ([a] # u, y)
mle (u, [b] H y) mie (u, y)

Thus, each entry in the left column may depend on the one below it (if a delete is
best), the one to the right (if an insert is best), and the one below that (if a copy
is best).

In order to have all the necessary information available in the right place, the
catamorphism for nezxtcol is applied to the sequence

zip (z, zip (init (column z y), tail (column z y))).

The elements of = are needed for the case analysis in the definition of mle, and adja-
cent pairs of elements in column r y are needed to determine the value of mle. The
bottom element of nextcol = (b, column z y) is obtained from the bottom element of
column = y as a special case. With this explanation, the definition of neztcol is

nextcol z (b,us) = (base (b, last us), step b)) zus,
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where

zus = zip (z, zip (init us, tail us))
base (b, u) [[ins b] + u],

Il

and

step b ((a, (u,v)), ws) =

[[epy a] H# v] H ws, ifa="b
[bmin R ([del a] # w, [ins b] # u)] H ws, otherwise
where w = head ws.

The program

The only change in the Gofer program is that an edit sequence v is represented by
the pair (v, length v) for efficiency. The program is

> data Op = Cpy Char | Del Char | Ins Char

> mle (x,y) = outl (head (column x y))

> column x = catalist (fstcol x, nextcol x)

> fstcol x = zip (tails (list Del x), countdown (length x))
> nextcol x (b,us) = catalist ([ins b (last us)], step b) xus
> where xus = zip (x, zip (init us, tail us))
> step b ((a, (u,v)),ws)

> = [cpy a v] ++ wus, if a ==
> = [bmin r (del a w, ins b u)] ++ ws, otherwise
> where r = leq . cross (outr, outr)

> w = head ws

v

cpy b (ops,n) = (Cpy b : ops, n+l)
del a (ops,n) (Del a : ops, n+l)
> ins a (ops,n) = (Ins a : ops, n+l)

v

fo]

(n+1) : countdown n

> countdown 0
> countdown (n+1)

Finally, let us show that this program takes quadratic time. The evaluation of
column = y requires ¢ evaluations of nexrtcol, where q is the length of y, and the
time to compute each evaluation of nextcol is O(p) steps, where p is the length of
z. Hence the time to construct column z y is O(p X ¢) steps.
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Exercises

9.6 Prove that cons - (Il x R) C R - cons where R = length® - leq - length.
9.7 Prove formally that (id X tail) - edit C edit - R, where R = length® - leq - length.

9.3 Optimal bracketing

A standard application of dynamic programming is to the problem of building a
minimum cost binary tree. The problem is often formulated as one of bracketing
an expression a; @ az @ -+ - @ a, in the best possible way. It is assumed that &
is an associative operation, so the way in which the expression is bracketed does
not affect its value. However, different bracketings may have different costs, and
the objective is to find a bracketing of minimum cost. Specific instances of the
bracketing problem are explored in the exercises.

The obvious choice of datatype to represent bracketings is a binary tree with values
in the tips:

tree A = tip A | bin(tree A, tree A).

For example, the bracketing (a; @ a2) ® (a3 @ a4) is represented by the tree
bin (bin (tip a1, tip ag), bin (tip a3, tip a4)),

while the alternative bracketing a; @ ((a2 ® a3) ® a4) is represented by the tree
bin (tip a1, bin (bin (tip ap, tip a3), tip aq)).

A tree can be flattened by the function flatten : listt A « tree A defined by
flatten = (wrap, cat)),

where cat : listt A « (list* A)?. This function produces the list of tip values in
left to right order. Our problem, therefore, is to find a function mect (short for
“minimum cost tree”) satisfying

mct C  min R - A(wrap, cat)°,
where R = cost® - leq - cost.

The interesting part is the definition of cost. Here is the general scheme:

cost (tipa) = 0
cost (bin (z,y)) = cb(sizez,sizey) + costz + costy
size (tipa) = sta

size (bin (z,y)) = sb(sizez, sizey).
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In words, the cost of building a single tip is zero, while the cost of building a node
is some function cb of the sizes of the expressions associated with the two subtrees,
plus the cost of building the two subtrees. The function size (which, by the way,
has no relation to the function that returns the number of elements in a tree) is a
catamorphism on trees, where st gives the size of an atomic expression and sb the
size of a compound expression in terms of its two subexpressions. Formally,

(cost,size) = (opt, opb),
where opt = (zero, st) and
opb ((cz, sz), (cy, sy)) = (cb (sz,sy) + cx + cy, sb (sz, sy)).

We illustrate the abstract definition of cost with one specific example. Consider
the problem of computing z; H 22 # --- H# z, in the best possible way. If H is
implemented on cons-lists, then the cost of evaluating  H y is proportional to the
length of z, and the size of the result is the sum of the lengths of z and y. For this
problem, cb (m, n) = m, sb(m,n) = m + n, and st = length. It turns out in this
instance that the bracketing

71 H (22 H (- H (Taz1 H 2n)))

is always optimal, which is one reason why concat is defined as a catamorphism on
cons-lists in functional programming.

Derivation

For this problem we have h = [tip, bin] and (T])) = flatten, a function. There is no
obvious criterion for preferring some decompositions over others, so the thinning
step is omitted and we will aim for an application of Theorem 9.1. To establish the
monotonicity condition we will need the assumption that the size of an expression
is dependent only on its atomic constituents, not on the bracketing. This condition
is satisfied if the function sb in the definition of size is associative. It follows that
size = sz - flatten for some function sz.

For the monotonicity condition we will use Proposition 9.3 and choose a function g
satisfying

cost - [tip, bin) = g - (id + (cost, flatten)?) (9-5)
g-(id + (leg x id)?) C leg-g. (9-6)
We take
g = |[zero,outl- opb - (id x sz)?],

where sz is the function introduced above.
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For (9.5) we argue:

g - (id + (cost, flatten)?)

= {definition of g; coproducts and products}
[zero, outl - opb - {cost, sz - flatten)?]

= {assumption sz - flatten = size}
[zero, outl - opb - {cost, size)?]

= {since (cost, size) = (opt, opb)}
[zero, outl - (cost, size) - bin)

= {since cost - tip = zero; products}
[cost - tip, cost - bin]

=  {products}
cost - [tip, bin).

For (9.6) we argue:

g - (id + (leg x id)?)
= {definition of g}
[zero, outl - opb - (leg x s52)?
c {definition of opb and + monotonic}
[zero, leq - outl - opb - (id x sz)?]
C {leg reflexive}
leg - [zero, outl - opb - (id x sz)?]
= {definition of g}
leg- g.
The dynamic programming theorem is therefore applicable and says that we can

compute a minimum cost tree by computing the least fixed point of the recursion
equation

X = minR-P[tip,bin- (X x X)] - Alwrap, cat]’.
Since wrap and cat have disjoint ranges appeal to Proposition 9.1 gives
X = (single = tip - wrap®, min R - P(bin - (X x X)) - Acat®),

where single z holds if z is a singleton list. The recursion can be implemented by
representing Acat® as the function splits, where

splits = zip - (inits™, tails™),

and initst and tails™ return the lists of proper initial and tail segments of a list;
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initsT is an implementation of Ainitt, where initT is the transitive closure of init
and describes the proper prefix relation; dually, tailst is an implementation of
Atailt.

Then we can implement mct by the recursive program:
met = (single — tip - head, minlist R - list (bin - (mct x mct)) - splits).

The program terminates because the recursive calls are on shorter arguments: if
(v, 2) is an element of splits z, then both y and z are shorter than z. As in the
case of the string editing problem, multiple evaluations of the same subproblem
mean that the program has an exponential running time, so, once again, we need a
tabulation scheme.

Tabulation

In order to compute mct z we also need to compute mct y for every non-empty
segment y of z. It is helpful to picture these values as a two-dimensional array:

met (a;)

mect (a; az) mct (az)

mct (a1 aza3) met (azaz) mect (ag)

mct (ayapazaq) mct (azazaq) mect (azay) met (ag).

The object is t o compute the bottom entry of the leftmost column. We will represent
the array as a list of rows, although we will also need to consider individual columns.
Hence we define

array = list row - inits
row = list mct - tails
col = list met - inits.

The functions inits and tails both have type list*(list* A) « list* A; the function
inits returns the list of non-empty initial segment in increasing order of length, and
tails the tail segments in decreasing order of length.

In order to tackle the main calculation, which is to show how to compute array, we
will need various subsidiary identities, so let us begin by expressing mct in terms
of row and col. For the recursive case we can argue:

mct
= {recursive case of mct and definition of splits}
minlist R - list (bin - (mct X mct)) - zip - (inits™, tails™)
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{since list (f x g) - zip = zip - (list f x list g)}
minlist R - list bin - zip - (list mct - inits™, list mct - tails™)
= {introducing miz = minlist R - list bin - zip}
miz - (list mct - initst, list mct - tails™)
= {since inits* = inits - init and tails™ = tails - tail}
miz - (list mct - inits - init, list mct - tails - tail)
= {definition of row and col}
miz - (col - init, row - tail).

Hence
mct = (single — tip - head, mix - (col - init, row - tail)) 9.7
miz = minlist R - list bin - 2ip.

Next, let us express col in terms of row and col. For the recursive case, we argue:

col
= {definition of col}
list mct - inits
= {since inits = snoc - (inits - init, id) on non-singletons}
list met - snoc - (inits - init, id)
= {since list f - snoc = snoc - (list f x f)}
snoc - (col - init, met)
= {(9.7) on non-singletons}
snoc - (col - init, mig - (col - init, row - tail))
= {introducing nezxt = snoc - (outl, miz)}

next - (col - init, row - tail).
Hence

col = (single > wrap - tip - head, next - (col - init, row - tail)) (9.8)

next = snoc - (outl, miz).

Equation (9.8) can be used to justify the implementation of col as a loop (see
Exercise 9.13):

col = loopnext- (wrap - tip - head, list row - inits - tail).
Below, we will need this equation in the equivalent form:

col -cons = process - (id X array) (9.9)
process = loop next - ((wrap - tip) x id).
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As a final preparatory step, we express row in terms of mct and col. For the
recursive case we can argue:

row
= {definition of row}
list mct - tails
=  {since tails = cons - (id, tails - tail) on non-singletons}
list mct - cons - (id, tails - tail)
= {since list f - cons = cons - (f x list f)}
cons - (mct, row - tail).
Hence

row = (single = wrap - tip - head, cons - (mct, row - tail)) (9.10)

Now for the main calculation. We will compute array as a catamorphism on cons-
lists, building columns from right to left, and then using the column entries to
extend each row. Hence we want

array = (fsteol, addcol)),

for appropriate functions fstcol and addcol. It is easy to check that
fstcol = wrap - wrap - tip,

so the problem is to compute addeol. We reason:

array - cons

Il

{definition of array}
list row - inits - cons
= {since inits - cons = cons - (wrap - outl, tail - inits - cons)}
list row - cons - (wrap - outl, tail - inits - cons)
=  {since list f - cons = cons - (f x list f)}
cons - (row - wrap - outl, list row - tail - inits - cons)
= {(910)}

cons - {(wrap - tip - outl, list (cons - (mct, row - tail)) - tail - inits - cons).
We continue by simplifying the second term, abbreviating tail - inits - cons by tic:

list (cons - (mct, row - tail)) - tic
= {since list (f, g) = zip - (list f, list g) }
list cons - zip - (list mct, list (row - tail)) - tic
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{

{products}
list cons - zip - (list mct - tic, list (row - tail) - tic)
= {since list f - tail = tail - list f; definition of col}
list cons - zip - (tail - col - cons, list (row - tail) - tic)
= {since list tail - tic = inits - outr; definition of array}
list cons - zip - (tail - col - cons, array - outr)
= {99}
list cons - zip - (tail - process - (id X array), array - outr)
= {products}
list cons - zip - (tail - process, outr) - (id x array).

Summarising, we have shown that array - cons = addcol - (id x array), where
addcol = cons - (wrap - tip - outl, step)
step = list cons - zip - (tail - process, outr).
The program
The following Gofer program follows the above scheme, except that we label the

trees with cost and size information. More precisely, the tree bin (z, y) is represented
by bin (¢, s) (z,y), where ¢ = cost (bin (z,y)) and s = size (bin (z,y)):

> data Tree a = Tip a | Bin (Int,a) (Tree a, Tree a)

> mct = head . last . array

> array = catallist (fstcol, addcol)

> fstcol = wrap . wrap . tip

> addcol = coms . pair (wrap . tip . outl, step)

> step = list cons . zip . pair (tail . process, outr)
> process = loop next . cross (wrap . tip, id)

> next = snoc . pair (outl, minlist r . list bin . zip)
> where r = leq . cross (cost, cost)

> cost (Tip a) =0

v

cost (Bin (c,s) ts) = ¢

> size (Tip a) =a
> size (Bin (c,s) ts) = s
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> tip = Tip

> bin (x,y) = Bin (c,s) (x,y)

> where ¢ = cb (size x, size y) + cost x + cost y
> s = sb (size x, size y)

Finally, let us estimate the running time of the program. To build an (n X n) array,
the operation addcol is performed n — 1 times. For execution of addcol on an array
of size (m x m), the operation step takes O(m?) steps since nezt is executed m
times and takes O(m) steps. So the total is O(n3) steps.

Exercises

9.8 Consider the problem of computing the sum z; + 75 + --- + z, in the most
efficient manner, where each z; is a decimal numeral. What are the functions cost
and size for this bracketing problem?

9.9 Same questions as in the preceding exercise, but for the problem of computing
the product z; X zp X - -+ X T,.

9.10 Same questions, but for matrix multiplication in which we want to compute
M, x Mz x --- My, where M; is an (rj_1, 7;) matrix.

9.11 Prove the claim that concat is best evaluated in terms of a catamorphism on
cons-lists.

9.12 Show that if h is associative, then
([9, hD : (Ime, cat]) = ([g, h]),

where the catamorphism (g, h]) on the left is over non-empty lists, and (g, k] on
the right is over trees.

9.13 The standard function loop f is defined in the Appendix by the equations

loopf - (id x nil) = outl
loop f - (id x cons) = loopf - (f x id) - assocl.

An equivalent characterisation of loop f in terms of snoc-lists is:

loopf - (id x nil) = outl
loop f - (id x snoc) = f-(loopf x id) - assocl.

Using this characterisation, prove that

k = loopf - (g x listh - inits)
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if and only if

k-(idxmnil) = g-outl
k- (id x snoc) = f-(k-(id x outl),h - snoc - outr).

Hence prove (9.9).

9.14 The optimal bracketing problem can be phrased, like the knapsack problem,
in terms of catamorphisms. Using the converse function theorem, express flatten®
as a catamorphism, and hence find a thinning algorithm for the problem. (This is
a research problem.)

9.15 Explore the variation of the bracketing problem in which & is assumed to be
commutative as well as associative. This gives us the freedom to choose an optimal
bracketing from among all possible permutations of the input [ay, az, . .., an].

9.4 Data compression

In the method of data compression by textual substitution the data to be compressed
is a string of characters. The compressed data is an element of list Code, where an
element of Code is either a character or a pointer to a substring of the part of the
string already processed:

Code := sym Char | ptr (String, String™).

A pointer is defined as a pair of strings (but see below), the idea being that the
second string identifies the non-empty portion of the input concerned, while the
first indicates where it is to be found. We make this idea precise by describing the
process of decoding a code sequence.

We will need to use snoc-lists, so for this section suppose that

list A == mnil| snoc(list A, A)
lisst A == wrap A | snoc (list* A, A).

In particular, String = list Char and String™ = list* Char. The partial function
decode : String + list Code is defined as the catamorphism

decode = (nil, extend)),
where

extend (z,syma) = =z + [a]
extend (z,ptr (y,2)) = z+ 2, provided (y + 2)init* (z + 2).
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The relation init* is the transitive closure of init and describes the proper prefix
relation. Note in the second equation that it is not required that y H z be a prefix
of z; in particular, we have

extend (“aba”, ptr (“a”, “bab”)) = “ababab”.

The function decode is partial — if the very first code element is a pointer, then
decode is undefined since there is no y for which y H 2 is a proper prefix of 2. Note
also that the range of decode is the set of all possible strings, so all strings can be
encoded.

We have chosen to define pointers as pairs of strings, but the success of data com-
pression in practice results from representing each pointer (y, 2) simply by the
lengths of y and 2. For this new representation, the decoding of a pointer is given by

extend (z, ptr (m,n)) = zQ (m,n),
where the operator ® is defined recursively:

z®(m,0) = =z
z@(m,n+1) = (z+H [zn])® (m+1,n).

Here, z,, is the mth element of z (counting from 0). This change of representation
yields a compact representation of strings. For instance,

decode [‘a’,(0,9)] = “aaaaaaaaaa’.
A slightly more involved example is
decode[@’,a’,b’, (1,3),°c’,(1,2)] = “aababacab”.

Bearing the new representation of pointers in mind, we define the size of a code
sequence by

size = ([zero,plus - [id X c, id x p] - distr]),

where c and p are given constant functions returning the amount of space to store
symbols and pointers. Typically, symbols require one byte, while pointers require
four bytes (three bytes for the first number, and one byte for the second). Both
¢ and p are determined by the implementation of the algorithm on a particular
computer.

The function size induces a preorder R = size® - leq - size, so our problem is to
compute a function encode satisfying

encode C min R - A decode®.
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Derivation

The monotonicity condition is easy to verify, so the basic form of dynamic program-
ming is applicable. But we can do better with a suitable thinning step. For general
¢ and p it is not possible to determine at each stage whether it is better to pick a
symbol or a pointer, assuming that both choices are possible. On the other hand,
it is possible to choose between pointers: a pointer (y, z) should be better than
(y', 2') whenever z is longer than 2’ because a longer portion of the input will then
be consumed. More precisely, suppose

w = extend (z, ptr (y,2)) and w = extend (z', ptr (v, 2')),

sow =z H# z==z'H 2. Now, z is longer than 2’ if and only if 2z’ is a suffix of z.
Equivalently, z is longer than 2’ if and only if z is a prefix of z'.

This reasoning suggests one possible choice for the thinning relation Q: take

Q = F(H + H,preﬁa:),

where the first II is the universal relation on symbols, and the second II is the
universal relation on pointers. The functor F is given by

F(Code, String) = id + (String x Code).
By Proposition 9.4 we have to check that
a-FII+ILR)C R-a and prefiz - decode C decode - R.

The first condition is routine using the fact that the sizes of symbols and pointers
are constants (i.e. [¢, d] - (II+II) = [¢, d]), and we leave details as an exercise. The
second condition follows if we can show

init - decode C decode - R.

We give an informal proof. Suppose decode cs = snoc (z, a); either cs ends with the
code element sym a, in which case drop it from cs, or it ends with the code element
ptr (y, 24 [a]) for some y and z; in the second case, replace it by ptr (y, 2) if z # [],
or drop it if z = []. The result is a new code sequence that decodes to z, and which
has cost no greater than cs.

The dynamic programming theorem states that the data compression problem can
be solved by computing the least fixed point of the equation

X = minR-P[nil, snoc - (X x id)] - thin Q - A[nil, extend)®,

where Q@ = id + (U x V) and U = prefizr and V = I1 + II. Since nil and extend
have disjoint ranges, we can appeal to Proposition 9.1 and obtain

X = (null > nil, min R -P(snoc- (X x id)) - thin (U x V) - Aextend®).
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The final task is to implement thin (U x V) - Aextend®. Since
(Aextend®) (w + [a]) =
{(w,sym a)} U {(z,ptr (y,2)) | z 2 = w+ [a] A (y + 2) prefic w},
we can define It (short for “longest repeated tail”) by
Irtw = min(Ux V){(z,(y,2)) |z H2z=w A (y+ 2)initT v},

and so implement thin (U x V) - Aextend® by a function reduce defined by

[(w, sym a), (z, ptr (y,2))], if z # ]
reduce (w # [a]) = [(w, sym a)], otherwise
where (z, (y,2)) = Irt (w + [a]).

There is a fast algorithm for computing Irt (Crochemore 1986) but we give only a
simple implementation.

Summarising, we can compute encode by the recursive program
encode = (null — nil, minlist R - list (snoc - (encode x id)) - reduce).

As with preceding problems, the computation of encode is inefficient since the same
subproblem may be computed more than once. We will not, however, go into
the details of a tabulation phase; although the general scheme is clear, namely, to
compute encode on all initial segments of the input string, the details are messy.

The program
In the following program a code sequence z is stored as a pair (z, sizez). The

program is parameterised by the function bytes : Nat + Code that returns the sizes
of symbols and pointers:

> data Code = Sym Char | Ptr (String, String)

> encode = outl . encode’

> encode’ = cond null (nil’, minlist r . list f . reduce)

> where £ = snoc’ . cross (encode’, id)

> r = leq . cross (outr, outr)

> nil’ = const ([1,0)

> snoc’ = cross (snoc, plus . cross (id, bytes)) . dupr

> reduce w = [(init w, Sym (last w)), (x, Ptr (y,2))], if z /= [0
> = [(init w, Sym (last w))], otherwise
> where (x,(y,z)) =1lrt w
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> 1rt w = head [(x,(y,2)) | (x,2) <- splits w, y <- locs (w, 2)]
> locs (w,2z) = [y | (y, v) <- splits (init w), prefix (z, v)]

> prefix ([1, v) = True

> prefix (z, []) = False

v

prefix (a:z,b:v) = (a == b) && prefix (z,v)

Exercises

9.16 Prove that a- F(II+1II,R) C R a.
9.17 Prove formally that init - decode C decode - R.

9.18 Why can’t we take Q = F(II, prefiz), where II is the universal relation on code
elements?

9.19 What simplification to the algorithm is possible if it is assumed that ¢ = p?

9.20 We can turn decode into a total and surjective function by redefining code
sequences so that if such a sequence is not empty, then it always begins with a
symbol. This means that the converse function theorem is applicable, so decode®
can be expressed as a catamorphism. Develop a thinning algorithm to solve the
dictionary coding problem. (This is a research problem.)

Bibliographical remarks

In 1957, Bellman published the first book on dynamic programming (Bellman 1957).
Bellman showed that the use of dynamic programming is governed by the principle
of optimality, and many authors have since considered the formalisation of that
principle as a monotonicity condition, e.g. (Bonzon 1970; Mitten 1964; Karp and
Held 1967; Sniedovich 1986). The paper by Karp and Held places a lot of emphasis
on the sequential nature of dynamic programming, essentially by concentrating on
list-based programming problems. The preceding chapter deals with that type of
problem.

(Helman and Rosenthal 1985; Helman 1989a) present a wider view of dynamic pro-
gramming, generalising from lists to more general tree-like datatypes. Our approach
is a natural reformulation of those ideas to a categorical setting, making the def-
initions and proofs more compact by parameterising specifications and programs
with functors. Furthermore, the relational calculus admits a clean treatment of
indeterminacy.
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The work of Smith (Smith and Lowry 1990; Smith 1991) shows close parallels with
the view of dynamic programming put forward here: in fact the main difference is
in the style of presentation. Smith’s work has the additional aim of mechanising the
algorithm design process. To this end, Smith has built a system that implements
his ideas (Smith 1990), and has illustrated its use with an impressive number of
examples. As said before, we have not investigated whether the results of this book
are amenable to mechanical application, although we believe they are. The ideas
underlying Smith’s work are also of an algebraic nature (Smith 1993), but, again,
this is rather different in style from the approach taken here.

Another very similar approach to dynamic programming is that of (Gnesi, Monta-
nari, and Martelli 1981), which also starts with algebraic foundations. There it is
shown how dynamic programming can be reduced to a graph searching problem.
It is in fact possible to view our basic theorem about dynamic programming in
these terms (Ning 1997). One advantage of that view is that it allows a smooth
combination of branch-and-bound with dynamic programming. Branch-and-bound
has been studied in a calculational style by (Fokkinga 1991).

Besides Bellman’s original book, there are many other texts on dynamic program-
ming, e.g. (Bellman and Dreyfus 1962; Denardo 1982; Dreyfus and Law 1977).

There is a fair amount of work on tabulation, and on ways in which tabulation
schemes may be formally derived (Bird 1980; Boiten 1992; Cohen 1979; Pettorossi
1984). These methods are, however, still ad-hoc, and a more generic solution to the
problem of tabulation remains elusive.

Finally, a few remarks on the applications considered in this chapter. In the special
case of matrix chain multiplication, the bracketing problem admits a much better
solution than the one derived here (Hu and Shing 1982, 1984; Yao 1982). The
part of the data compression algorithm that we have ignored (finding the longest
repeated tail) is discussed in a functional setting by (Giegerich and Kurtz 1995).






Chapter 10

Greedy Algorithms

As wesaid in the preceding chapter, greedy algorithms can be viewed as an extreme
case of dynamic programming in which all but a single decomposition of the input
are weeded out. The theory is essentially the same as that given in Chapter 9, so
most of what follows is devoted to applications.

10.1 Theory

As in the preceding chapter, define H = (h]) - (T')°, where h and T are F-algebras.
The proof of the following theorem is very similar to that of Theorem 9.2 and is left
as an exercise:

Theorem 10.1 Let M = min R - AH. If h is monotonic on R and @ satisfies
h-FH-Q° C R°-h-FH, then

(uX:h-FX -minQ-AT°) C M.

Theorem 10.1 has exactly the same hypotheses as Theorem 9.2 but appears to give
a much stronger result. Indeed it does, but the crucial point is that it is much
harder to refine the result to a computationally useful program. To do so, we need,
in addition to the conditions described in the preceding chapter, the further—and
very strong—condition that @ is a connected preorder on sets returned by AT®.
This was not the case with the examples given in the preceding chapter. Since @
is a relation on FA (for some A) and FA is often a coproduct, we can make use of
the following result, which is a variation on Proposition 9.1.

Proposition 10.1 Suppose that Vi and V> have disjoint ranges, that is, suppose
that V1°- V5 = (. Then

(U1, Uo) - min (@1 + @) - A[V1, Vo]° = (ran Vi — Wy, Wa),
where W; = U; - min Q; - AV;° for i =1, 2.
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Recall also Proposition 9.4, which states that the hypotheses of the greedy theorem

can be satisfied by taking Q@ = F(U, V), where U and V are preorders such that
h-F(U,R)CR-h and H-V°CR°-H.

However, such a choice of @ is not always appropriate when heading for a greedy
algorithm since we also require min @ - AT° to be entire.

10.2 The detab—entab problem

The following two exercises are taken from (Kernighan and Ritchie 1988):

Exercise 1-20. Write a program detab that replaces tabs in the input
with the proper number of blanks to space to the next tab stop. Assume
a fixed set of tab stops, say every n columns. Should n be a variable or
a symbolic parameter?

Exercise 1-21. Write a program entab that replaces strings of blanks
by the minimum number of tabs and blanks to achieve the same spacing.
Use the same tab stops as for detab. When either a tab or a single blank
would suffice to reach a tab stop, which should be given preference?

Our aim in this section is to solve these two exercises. They go together because
entab is specified as an optimum converse to detab.

Detab

The function detab is defined as a catamorphism over snoc-lists:

detab = (nil, expand)),
where
expand (z,a) = (a= TB - fillz, z + [a])
fillz = =z 4 blanks (n — (col ) mod n),
and
col = (zero, count)
count (c,a) = (a=NL—-0, c+1).

The expression blanks m returns a string of m blanks, TB denotes the tab character,
and NL the newline character. The function col counts the columns in each line of
the input, and tab stops occur every n columns.
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The specification of detab is an executable program, except that it isn’t particularly
efficient. For greater efficiency we can tuple detab and col - detab to give

(detab, col - detab) = ((base, step)),

where base returns ([],0) and

(z + [NL],0), if a = NL
tep ((z,c),a) — (z # blanks m,c+m), ifa=TB
FpARCHE) = (z # [a],c +1), otherwise

where m = n — ¢ mod n.

In the following functional program, we implement the snoc-list catamorphism by
a loop:

(base, step)) - convert = loop step - (base, id),

where convert converts cons-lists to snoc-lists. The resulting Gofer program is:

> detab = outl . loop step . pair (pair (mil, zero), id)
> step ((x,¢),a) = (x ++ [’\n’], 0), if a == ’\n’

> = (x ++ blanks m, c+m), if a == ’\t’

> = (x ++ [a], c+1), otherwise

> where m = n - (¢ ‘mod‘ n)

> blanks 0 =[]

> blanks (m+1) =’ ’ : blanks m

There is another optimisation that improves efficiency still further. Observe that
base and step take a particular form, namely,

base = (nil, cp)
step((z,c),a) = (z+f(c,a),9(c,a)),

for some constant cy and functions f and g. When base and step have this form,
we have

outl - loop step - (base,id) = loop’ (f,g) - (co, id),
where loop’ (f, g) is defined by the two equations

loop’ (f,9) (c;[]) =[]
loop'(f,g)(c,[a]ﬂ-z) = f(c,a)-I-+-loop'(f,g)(g(c,a),a:).

The proof is left as an exercise.
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To see what this transformation buys, let ¢;+1 = g (¢i, ;) and z;4+1 = f (¢, as) for
0 < ¢ < n. Then,

hlag,a1,---,8n-1] = ((z1 + 22)H ) H 2,
b [ag, a1, 8n-1]) = = H (22 H (- H2)),
where h = outl - loop step - (base, id) and k' = loop’ (f, g) - (co, id). The second form

is asymptotically more efficient to compute in any functional language in which +
is defined in terms of cons.

Applying this transformation, and writing detab’ = loop’ (f, g), we obtain the fol-
lowing program:

> detab x = detab’(0,x)

> detab’(c,[]1) = (1

> detab’(c,a:x) = [’\n’] ++ detab’ (0,x), if a == ’\n’
> = blanks m ++ detab’(c+m,x), if a == ’\t’
> = [a] ++ detab’(c+1,x), otherwise

> where m = n - ¢ ‘mod‘ n

Entab

The more interesting problem is that of computing entab. We begin by specifying
entab formally. The statement that ‘strings of blanks are to be replaced by the
minimum number of tabs and blanks to achieve the same spacing’ can be interpreted
as asking for a shortest possible output. The other condition on entab is that
detab - entab = id. These two conditions can be combined to give our specification:

entab C min R - Adetab®,

where R = length® - leq - length.

Derivation

We aim to solve the problem with a greedy algorithm. Since nil and ezpand
have disjoint ranges we can try to express @ as a coproduct @ = F(U, V), where
F(U,V) = id + (V x U). Furthermore, according to Proposition 9.4, the greedy
condition holds if we can find U and V to satisfy the two conditions

a-F(U,R)CR-a and V -detab C detab- R,

where a = [nil, snoc]. Bear in mind, however, the additional requirement that
min Q - A[nil, expand]® be entire.
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Let us see whether we can take @ = F(U, V) for appropriate U and V. Since
a-F(IL,R) C R a (see Exercise 10.3), we can choose U to be any preorder we like
on characters, including aUb if a = TB or a = b. This choice prefers tabs over
blanks. It might seem reasonable to choose V = prefiz, but this idea doesn’t work.
To see why, suppose n = 8 and consider the following example:

detab[a, b, c,d, e, TB] = [a,b,c, d,e, BL, BL, BL].

Although [a, b, ¢, d, e, BL, BL] is a prefix of the right-hand side, it is longer than
[a, b, ¢, d, e, TB], so the condition prefiz - detab C detab - R fails.

The resolution is to allow only those prefixes that do not cross tab stops; more
precisely, define

V = prefic N (fill° - fill).
To prove V - detab C detab - R we reason:

V - detab
= {since detab is a catamorphism}
V - [nil, expand] - F(id, detab) - [nil, snoc|®
=  {coproducts and V - nil = nil}
[nil, V - ezpand) - F(id, detab) - [nil, snoc]®
C {claim: V - ezpand C ezpand U (V - outl)}
[nil, expand U (V - outl)] - F(id, detab) - [nil, snoc|’
= {distributing U; catamorphisms and definition of F}
detab U (V - outl - (detab x id) - snoc®)
= {naturality of out! and init = outl - snoc®}
detab U (V - detab - init).
Leaving aside the claim for the moment, we have shown that X = V - detab is a
solution of the inequation X C detabU (X -init). But init is an inductive relation, so
the greatest solution of this inequation is the unique solution of the corresponding

equation, namely X = detabU(X -init). But the unique solution is X = detab-prefiz,
so V - detab C detab - prefix. It is immediate that prefix C R, so we are done.

It remains to prove the claim. We argue:

V - expand
=  {definition of expand}
V - (istab - outr — fill - outl, snoc)
= {conditionals}
(istab - outr — V - fill - outl, V - snoc)
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= {claim: V - fill = fill (exercise)}
(istab - outr — fill - outl, V - snoc)
{claim: V - snoc C snoc U (V - outl) (exercise)}
(istab - outr — fill - outl, snoc U (V - outl))
C {definition of ezpand}
ezpand U (V - outl).

N

The conditions of the greedy theorem are established, so we can solve our problem
by computing the least fixed point of the equation

X = |[nil,snoc]- (id + (X x id)) - min Q - A[nil, expand)°,
where @ = id + (V x U). Appeal to Proposition 10.1 gives

X = (null > nil, snoc- (X x id) - min (V x U) - Aezpand®).
It remains to implement min (V x U) - Aezpand®. Since

Aezpand® (z 4 [a]) = {(y,TB) | filly =z 4 [a]} U {(z,0)},
and

Qy:fily=z+[a]) = a=BL A col(z+ [a]) mod n =0,
we have

(min (V x U) - Aezpand®) (z + [a]) =
min V'S, if a = BL and col (z + [a]) mod n =0
(z, a), otherwise
where S = {(y, TB) | filly = z + [a]}.

Furthermore,
min V{(y, TB) | filly =z # [a]} = (unfillz, TB),
where unfill z is the shortest prefix of z satisfying
fill (unfillz) = fillz.
We can define unfill by
unfill[] =[]

unfill (z + [a]) = { unfill 3, if a = BL and col (z + [a]) mod n #0

z 4 [a], otherwise

Writing the resulting greedy algorithm as a Gofer program, we obtain
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> entab x = [], if null x

> = entab y ++ [al]l, otherwise

> where (y,a) = contract x

> contract x

> = (unfill y,’\t’), if a == * ’ && (col x) ‘mod‘ n ==
> = (y,a), otherwise

> where (y,a) = (init x,last x)

> unfill x = (], if null x

> = unfill y, if a == > ’ &% col x ‘mod‘ n /=0
> = x, otherwise

> where (y,a) = (init x,last x)

> col = loop op . pair (zero, id)

op (c,a) = 0, if a == ’\n’
= c+1, otherwise

v Vv

The program for entab involves recomputations of col. To improve efficiency, we
will express a generalisation of entab as a snoc-list catamorphism, and then apply
the same transformation that we did for detab.

The idea is to define a function tbc (short for ‘trailing blanks count’) satisfying
entabz = entab (unfill z) # blanks (tbe z). (10.1)
Using the definition of entab we obtain
the[] = 0
{0, if a = BL and col (z + [a]) mod n =0

tbe (z + [a]) thcz +1, otherwise.

The pair (tbc, col) can now be defined as a snoc-list catamorphism:
(tbc,col) = (base, op),
where base returns (0,0) and

(t+1,c+1), ifa=BLand (c+1) modn #0

0,c+1), ifa=BLand (c+1)modn=0
op((t,c),e) = Eo 0) ) if a = NL ey
(0,¢+1), otherwise.

Furthermore, the function triple = (entab - unfill, (tbe, col)) can also be expressed
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as a snoc-list catamorphism:
triple = ((base, op)),
where base returns ([], (0,0)) and

op((z,(t,¢)),a) =
(z,(t+1,c+1)), if a= BL and (c + 1) mod n # 0
(z # [TB],(0,c + 1)), if a=BLand (c+1) modn=0
(z 4 blankst + [NL],(0,0)), ifa= NL
(z + blankst + [a], (0,c + 1)), otherwise.

Using (10.1) we have
entab = cat - (id X blanks) - outl - assocl - triple.

Finally, applying the same transformation to triple as we did to detab, we obtain

> entab x = entab’(0,0,x)

> entab’(t,c,[]) = blanks t
> entab’(t,c,a:x)

> = entab’ (t+1,c+1,x), ifa==""&&d /=0
> = [’\t’] ++ entab’(0,c+1,x), ifa==""8%&d==0
> = blanks t ++ [’\n’] ++ entab’(0,0,x), if a == ’\n’

> = blanks t ++ [a] ++ entab’(0,c+1,x), otherwise

> where d = (c+1) ‘mod‘ n

Exercises

10.1 Justify outl - loop step - (base, id) = loop’ (f, g) - {co, id).

10.2 In the specification of entab why not say that the number of tabs in the output
should be maximised?

10.3 Prove that o - F(II, R) C R - o. How does the algorithm for entab change if a
single blank is to be preferred over a single tab?

10.4 For V = prefiz N (fill° - fill) prove that
V.nii = nil

V.-fill = fill
V-snoc C snoc U (V - outl).

Which of these conditions does not hold for V = prefiz?
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10.3 The minimum tardiness problem

The minimum tardiness problem is a scheduling problem from Operations Research
(Hochbaum and Shamir 1989; Lawler 1973). Given a bag of jobs, it is required to
find some permutation of the bag that minimises the maximum penalty incurred
if jobs are not completed on time. The permutation is called a schedule, so the
specification is

schedule C min R - Abagify°®
R

cost® - leq - cost,

where bagify turns a list into a bag. The function cost is defined in terms of three
positive quantities associated with each job j: (i) the completion time ct j, which
determines how long the job j takes to complete; (ii) the due time dtj, which
determines the latest time at which j should be completed (measured from the
start of the schedule); and (iii) a weighting wt j, which measures the importance
attached to job j. Given these quantities, the penalty penalty (z,5) incurred when
j is placed at the end of schedule z is defined by

penalty (z,5) = (sum (listctz)+ ctj—dtj) x wtj.

The term sum (list ct z) gives the completion time of schedule z. If, when added
to ctj, this gives a time for completing j that is greater than the due time of
j, then a penalty is incurred, its size being proportional to the importance of j.
If the completion time is less than the due time, then the penalty is negative.
Negative penalties are bonuses, but bonuses are ignored in the definition of cost,
which measures only the maximum penalty incurred:

cost = maz leg - P([zero, penalty] - o°) - Aprefiz,
where a = [nil, snoc]. We can also describe cost recursively by:

cost[]] = 0
cost (z # [j]) = bmaz (cost z, penalty (z,j)).

It follows that costs are never negative, and a schedule costing zero is one in which
all jobs are completed by their due time.

To illustrate the tardiness problem, consider the following three jobs:

1 2 3
ct| 5 10 15
dt |10 20 20
wtl 1 3 3
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The best schedules are [2, 3, 1] and [3, 2, 1], each with a cost of 20; for example:

2 3 1
time | 10 25 30
dt {20 20 10
penalty | 0 15 20

The definition of cost is given in terms of snoc-lists, although we can use either
snoc-lists or cons-lists to build schedules.

As we have seen in Chapter 7 the choice of what kind of list to use can be critical in
the success of a greedy approach. Suppose we did go for snoc-lists. Then the final
greedy algorithm, if it exists, will take the form

, if emptybag u
scheduleu = schedule v + [j], otherwise
where (v,j) = pick u

for some function pick. At each stage, therefore, we pick the job that is best
placed at the end of the schedule. Such algorithms are known as backward greedy
algorithms. If schedules are described by cons-lists, then the greedy algorithm would
involve picking a job that is best placed first in the schedule. In general, it does
not follow that if a greedy algorithm exists for snoc-lists, then a similar algorithm
exists for cons-lists.

However, armed with foresight, we will use snoc-lists in building schedules. As a
function on snoc-lists, bagify is defined by the catamorphism

bagify = (nal,smag),

where nil returns the empty bag, and snag (a contraction of snoc and bag, somewhat
more attractive than bsnoc) takes a pair (u,j) and places j in the bag u, thereby
‘snagging’ it.

There is another strategic decision that should be mentioned at this point. In the
final algorithm the input will be presented as a list rather than a bag. That means
we are, in effect, seeking a permutation of the input that minimises cost, so we
could have started out with the specification

schedule C min R - Aperm.

With this specification another avenue of attack is opened up. The relation perm
can be defined as a snoc-list catamorphism (see Section 5.6):
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perm = (nil, add)),
where add (z,5) = y + [j] # 2 for some decomposition z = y + z.

In this form, the minimum tardiness problem might be solvable by the greedy
method of Chapter 7. However, no greedy algorithm based on catamorphisms
exists—or at least no simple one, which is why the problem appears in this chapter
and not earlier. To appreciate why, recall that a greedy method based on snoc-
list catamorphisms solves not only the problem associated with the given list, but
also the problems associated with all its prefixes. Dually, one based on cons-list
catamorphisms solves all suffixes of the input.

Now, consider again the three example jobs described above. With the input pre-
sented as [1, 2, 3], the best schedule for prefix [1,2] is [1, 2] itself, incurring zero cost.
However, this schedule cannot be extended to either [2, 3, 1] or [3, 2, 1], the two best
solutions for the three jobs. Dually, with a cons-list catamorphism, suppose the in-
put is presented as [3, 2, 1]; again a best schedule for [2, 1] is [1,2], but [1,2] cannot
be extended to either [2, 3, 1] or [3,2,1].

Derivation

Although nil and snag have disjoint ranges, a development along the lines of the
detab—entab problem does not work here. For this problem we need to bring context
into both the monotonicity and greedy conditions. As a result, the proof of the
greedy condition is a little tricky.

With a = [nil, snoc|, B = [nil,snag] and FX = 1+ (X x Job), the monotonicity
and greedy conditions read:

a - F(R N (bagify® - bagify))
a - Fbagify® - (Q° N (B8°-B))

To prove (10.2) we need the fact that cost can be expressed in the form

R o (10.2)

-
C R°-a-Fbagify°, (10.3)

cost[] = 0
cost (z 4 [j]) = bmaz (cost x, penalty (perm z,3)).

This is identical to the earlier recursive characterisation of cost, except for the term
perm z. It holds because penalty (z,;j) depends only on the jobs in the schedule z,
not on their order. The reason is that penalty (z,j) is defined in terms of the sum
of the completion times of jobs in z, and sum applied to a list returns the same
result as sum applied to the underlying bag.
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Using perm = bagify° - bagify, the new expression for cost can be put in the form
for which Proposition 9.3 applies:

cost-a = k- F(cost, bagify)
k = [zero,bmaz - (id x (penalty - (bagify® x id))) - assocr].

It is easy to check that
k-F(legxid) C leg-k
so (10.2) follows on appeal to Proposition 9.3.

For the greedy condition (10.3) we will need the fact that the original definition of
cost can be rewritten in the form

cost-a = bmaz-(g,h) (10.4)
g = |[zero, penalty] (10.5)
h = [zero, cost - outl). (10.6)

We will also need two additional facts. Firstly, the cost of a schedule can only
increase when more jobs are added to it. In symbols,

add C R°-outl, (10.7)

where add is the relation for which perm = (nil, add]). A formal proof of (10.7) is
left as Exercise 10.7.

The second fact is that bagify® is a catamorphism on bags, that is,

bagify® - B = [nil, add) - Fbagify°. (10.8)
The proof is left as Exercise 10.8. Putting (10.7) and (10.8) together, we obtain
bagify® - B
= {(10.8)}
[nil, add] - Fbagify®
- {(10.7)}

[nil, R® - outl] - Fbagify®
{definition of R and nil C cost® - geq - zero}
cost® - geq - [zero, cost - outl] - Fbagify®
= {definition of h}
cost°® - geq - h - Fbagify®.

N

Now for the proof of (10.3). We start by reasoning:
a - Fbagify® - (@° 0 (8°- B))
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- {monotonicity of composition}
(a - Fbagify® - Q°) N (a - Fbagify® - 5° - B)
{catamorphisms, since bagify = ()}
(- Fbagify® - @°) N (bagify® - B)
€  {calculation above}
(a - Fbagify® - Q°) N (cost® - geq - h - Fbagify®)
{modular law}
a - ((Fbagify® - Q° - Fbagify) N (a° - cost® - geq - h)) - Fbagify®
= {choose @ to satisfy Fbagify® - Q° - Fbagify = g° - geq - g}
a-((9°-geg-g) N (a°- cost® - geq - h)) - Fbagify®
= {products}
- (g, cost - )° - (geq - g, geq - h) - Fbagify®

N

The choice Q = f° - leg - f, where f = [zero, penalty - (bagify® x id)], satisfies the
required specification. In words, a minimum under @ identifies a job with the least
penalty.

To complete the proof it is sufficient to show
a-(g,cost-a)’-(geg- g,geg-h) C R°-a.
Shunting cost® to the left-hand side, we reason:

cost - a - (g, cost - a)° - (gegq - g, geg - h)
- {since cost - & = bmaz - (g, cost - &) and (g, cost - ) is simple}

bmaz - (geq - g, geq - h)

- {monotonicity of bmaz}
geq - bmaz - (g, h)

= {(10.4)}

geq - cost - a.

The greedy condition (10.3) is now established, so we can solve our problem by
computing the least fixed point of

X = [nil,snoc]- (id + (X x id)) - min Q - A[nil, snag|°.
Appeal to Proposition 10.1 gives

X = (null = nil,snoc- (X x id) - min Q' - Asnag®),
where Q' = f°-leq - f and f = penalty - (bagify°® x id).



258 10 / Greedy Algorithms

Refining min @ - Asnag® to a partial function pick, we obtain

schedule = (null — nil, snoc - (schedule x id) - pick).

The program

In the Gofer program we represent bags by lists and represent a list z by the pair
(z, sum (list ct z)). The function pick is implemented by choosing the first job in
the list with minimum penalty.

> schedule = schedule’ . pair (id, sum . list ct)

> schedule’ (x,t) = [], if null x
> = schedule’ (x’,t’) ++ [j], otherwise
> where x’ = delete j x

> t’ =t -ctj

> j = pick (x,t)

> pick (x,t) = outl (minlist r [(j, (t - dt j) * wt j) | j <= x])
> where r = leq . cross (outr, outr)

> delete j [] =[]

> delete j (k:x) = x, if j ==

> = k : delete j x, otherwise

The running time of this program is quadratic in the number of jobs.

Exercises

10.5 Prove that k - F(leq x id) C leq - k, where

k = [zero,bmaz - (id x (penalty - (bagify® x id))) - assocr].

10.6 Prove that cost - a = bmaz - (g, h).

10.7 To show that add C R° - outl we can use a recursive characterisation of add:
add = (uX :snoc U (snoc- (X x id) - exch - (snoc® x id))),

where exch: (Ax C)x B+ (Ax B)« C.



10.4 / The TEX problem — part two 259

Prove that add C R° - outl using fixed-point induction (see Exercise 6.4) and the
fact that

penalty - (add x id) C geq - penalty - (outl x id).

10.8 Using the fact that perm = bagify® - bagify = (nil, add]), prove that

bagify® - B = [nil, add] - Fbagify®.
10.9 Assuming all weights are the same, give an O(n log n) algorithm for computing
the complete schedule.

10.10 The minimum lateness problem is similar to the minimum tardiness problem,
except that the cost function is defined by

cost[] = —oo
cost (z +[j]) = bmaz (penalty (z,7), cost z).

It follows that costs can be negative. How does this change affect the development?
10.11 Does the problem in which cost is defined by

cost[]] = 0
cost (z # [j]) = plus (penalty (z,j), cost ),

have a greedy solution?

10.4 The TEX problem — part two

As a final example, let us solve the second of the TEX problems described in Chap-
ter 3. Recall that the task is to convert between decimal fractions and integer
multiples of 2716. The function extern has type Decimal « [0,2'¢) and is speci-
fied by the property that extern n should be some shortest decimal whose internal
representation is n:

ertern C min R - Aintern®
R

length® - leq - length.

The function intern is defined by the equations

intern = round - val
roundr = |2'%r+1/2]
val = (zero, shift)

shift (d,r) (d +r)/10,

Il
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in which val is a catamorphism on cons-lists. In Chapter 3 we showed how to com-
pute intern using integer arithmetic only; this restriction also has to be maintained
in the computation of extern.

The first job is to cast the problem of computing eztern into the standard mould.
Installing the definition of intern, we obtain

extern C  min R - A(val® - round®).

Since round® is not a function we cannot simply take it out of the A expression.
Instead, we use the fact that

n=|2%+1/2] = 2n-1<2""r<2n+1
to express round® in the form

round® = inrange - interval,
where

interval n

((2n—1)/2",(2n +1)/2")
rinrange (a,b) = (a <r<b).

Since interval is a function, we can rewrite the specification of extern to read

extern C  min R - A(val® - inrange) - interval.

Finally, we appeal to fusion to show that inrange® - val can be expressed as a
catamorphism on cons-lists:

inrange® - val = (arb, step)).
The conditions to be satisfied are

inrange® - zero = arb
inrange® - shift = step - (id X inrange®).

The first condition determines arb and to determine step we argue:

(a, b) (inrange® - shift) (d, r)
{definition of inrange and shift}
a<(d+r)/10< b
{arithmetic and definition of inrange}
(10a — d,10b — d) inrange® r
{arithmetic}
(Fa’,b' :a=(d+4a')/10 A b= (d + b')/10: (a’, V') inrange® r)
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=  {introducing step (d,(a’,b")) = ((d + a)/10,(d + b’)/10)}
(a, b) (step - (id x inrange®)) (d, ).

Summarising, we now want to determine a function extern satisfying
extern C  min R - A(arb, step))® - interval.

So far we haven’t considered the restriction on the problem, namely, that the ar-
gument to extern is an integer n in the range 0 < n < 216, For n in this range we
have interval n = (a, b), where a and b have the property that

0<b<1l and a<b. (10.9)

The important point is that if a’ and b’ satisfy (10.9), then so do a and b, where
(a, b) = step (d,(a’,b')) and d is a digit. Furthermore, we can always restrict arb
so that it returns an interval (a, b) satisfying (10.9). Hence, defining Interval to be
the set of pairs (a, b) satisfying (10.9), we have

[ard, step] : Interval «+ 1 + (Digit X Interval).

This type restriction is exploited in the derivation.

Derivation

It is easy to check that a = [nil, cons] is monotonic under R, so this leaves the
greedy condition. From above, it is sufficient to find a @ over the type FInterval,
where FA = 1 + (Digit x A), satisfying

Q-Fh-a° C Fh-a°-R,
where h = (arb, step).

For this problem a simple choice of ¢ suffices. To see why, consider the expression
Alarb, step]®. Writing * for the sole inhabitant of the terminal object, we have for
(a, b) of type Interval that

(Aarb®) (a,0) = (a<0—{+},{})
(Astep®) (a,b) = {(d,(10a — d,10b — d))|0 < 105 — d < 1}.

But for digits d; and d, bearing (10.9) in mind,
0<10b-—di<1) A(0<10b—dp<1) = d=d,.
Hence step® : (Digit X Interval) < Interval is, in fact, a function

step® (a,b) = (d,(10a — d,10b — d)), where d = |10b].
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It follows that

(Alarb, step]®) (a, b) =
{inl (*), inr (d,(10a — d,10b — d))}, ifa <0
{inr (d,(10a — d,10b — d))}, otherwise,

and so @ need only choose between two alternatives. The appropriate definition of

Qis
Q@ = (inl-!-inr°) U id,

where ! : 1+ (Digit X Interval). With this choice of  the inhabitant of the terminal
object is preferred whenever possible.

To establish the greedy condition, we argue:

Q-Fh-a®°CFh-0°-R
= {definition of Q}

((inl -1 inr°) U id)-Fh-a° CFh-a°- R
= {since R is reflexive}
inl-1-inr°-Fh-a° CFh-a°-R

{definition of F}
inl-!-(id x h)-inr°-a° CFh-o°- R
{universal property of ! and « - inr = cons}
nl-! cons° CFh-a°-R
{shunting}
id C1°-inl°-Fh-a°- R cons
{definition of F}
id C1°-inl°-a°- R- cons

= {since a - inl = nil}
id C1°-nil°- R - cons

{shunting}

nil-!'C R - cons
< {since length - nil - ! C leq - length - cons}
true.

The greedy theorem is therefore applicable, so our problem is solved by computing
the least solution of the recursion equation

X = a-FX-min Q- Alard, step]°.
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We know how to simplify min @ - A[arb, step]’ and the result is that

extern = f - interval,
where
[]’ ifa<0
f(a,b) = [d] # f(10a — d,10b — d), otherwise

where d = [10b].

The final step is to introduce the restriction that the computation should be per-
formed using integer arithmetic only. This turns out to be easy: writing w = 217,
every interval (a, b) computed during the algorithm satisfies ¢ = p/w and b = ¢/w
for some integers p and ¢. Initially, we have interval n = ((2n — 1)/w, (2n + 1/w))
and if a = p/w, then 10a — d = (10p — wd)/w; similarly for b. Representing
(p/w, ¢/w) by (p, q), we therefore obtain that extern n = f(2n — 1,2n + 1), where

[]’ ifp<o0
f(p,9) = [d] #+ f(10p — wd,10q — wd), otherwise
where d = (10q) div w.

The program

Here is the final program written in Gofer:

> extern = f . interval

> £(p,q) =0, ifp<=0

> = [d] ++ £(10*p - wxd, 10*q - w*d), otherwise
> where d = (10%q) ‘div‘ w

> interval n = (2*%n - 1, 2%n + 1)

>w = 131072

Exercises

10.12 Prove that 0 < 10b — d; < 1 and 0 < 10b — dp < 1 imply that d; = d;.

10.13 The derivation of extern brought in integer arithmetic as a final step. Us-
ing the derived program for intern, give a derivation of extern that uses integer
arithmetic from the outset.

10.14 Show that the only property of w = 2!7 assumed in the derivation is that
10¢/w should not be an integer for any ¢ with 0 < ¢ < w. How can this restriction
be removed?
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10.15 Actually, Knuth required a slightly more stringent condition on extern:
among equally short decimals, extern n should produce the one which is as close
as possible to n/2!6. Which decimal, precisely, does the given algorithm for extern
produce? What modification ensures that extern n returns the shortest and closest
decimal to n/216?

Bibliographical remarks

For general remarks about the literature on greedy algorithms, see Chapter 7. The
approach of this chapter is arguably more general, and closer to the view of greedy
algorithms in the literature. We originally published the idea that dynamic pro-
gramming and greedy algorithms are closely related in (Bird and De Moor 1993a).
A similar suggestion occurs in (Helman 1989b).

In this chapter we have only considered problems where the base functor F is linear:
no tree-like structures were introduced. For non-linear F, the recursion would be
more appropriately termed ‘divide-and-conquer’. We have not investigated this in
detail, but we hope that some of the applications of divide-and-conquer studied by
Smith can be treated in this manner (Smith 1985, 1987).

Although the approach sketched here is applicable to a wide class of problems, it
still admits of further, meaningful generalisation. In (Curtis 1996), it is shown
how, by using a more general form of iteration, a wider class of algorithms can be
treated. Essentially, catamorphisms (and their converse) are replaced by a general
loop operator; this allows more flexibility in specifications and solutions.
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The following Gofer prelude file contains definitions of the standard functions necess-
ary for running all the programs in this book. As a prelude for general functional
programming it is incomplete.

== Prelude for ‘Algebra of Programming’
-- Created 14 Sept, 1995, by Richard Bird

-- Operator precedence table:

infixr 9 .

infixl 7 =*

infix 7 /, ‘mod¢

infixl 6 +, -

infixr 5 ++, :

infix 4 ==, /'-'s <, <=, >=, >
infixr 3 &&

infixr 2 ||

-~ Standard combinators:

€ . x=1f (g x)
const k a =k
id a = a

outl (a,b) a
outr (a,b) =b
swap (a,b) = (b,a)

assocl (a,(b,c)) = ((a,b),c)
assocr ((a,b),c) = (a,(b,c))
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dupl (a,(b,c))
dupr ((a,b),c)

pair (f,g) a

cross (f,g) (a,b)

cond p (f,g)

curry f a b

uncurry £ (a,b)

—— Boolean functions:

a

((a,b), (a,c))
((a,c), (b,c))

(f a, g a)
= (f a, g b)
if (p a) then (f a) else (g a)

f (a,b)
fab

Appendix

false = const False

true = const True
False &% x = False
True && x = x
False || x = x

True || x = True
not True = False
not False = True
otherwise = True

-- Relations:

leq = uncurry (<=)
less = uncurry (<)
eql = uncurry (==)
neq = uncurry (/=)
gtr = uncurry ()
geq = uncurry (>=)

meet (r,s)
join (r,s)
WOk T

== Numerical

zero = const
succ = (+1)
pred = (-1)

cond r (s, false)

cond
r

functions:

0

r (true, s)

. swap




Appendix 267

plus = uncurry (+)
minus = uncurry (-)
times = uncurry (*)

divide = uncurry (/)

negative = (< 0)
positive = (> 0)

-- List-processing functions:

O+y =y

(a:x) ++y = a : (x++y)

null (J = True

null (a:x) = False

nil = const []

wrap = coms . pair (id, nil)
cons = uncurry (:)

cat = uncurry (++)

concat = catalist ([], cat)

snoc = cat . cross (id, wrap)
head (a:x) = a

tail (a:x) = x

split = pair (head, tail)

last = catallist (id, outr)
init = catallist (nil, comns)

inits = catalist ([[]], extend)

where extend (a,xs) = [[]J] ++ list (a:) xs
tails = catalist ([[]], extend)

where extend (a,x:xs) = (@ : x) : x : xs
splits = zip . pair (inits, tails)

cpp (x,y) = [(a,b) | a <- x, b <- y]
cpl (x,b) = [(a,b) | a <- x]
cpr (a,y) = [(a,b) | b <-y]

cplist = catalist ([[]], 1list coms . cpp)
minlist r = catallist (id, bmin r)
bmin r = cond r (outl, outr)
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maxlist r = catallist (id, bmax r)
bmax r = cond (r . swap) (outl, outr)
thinlist r = catalist ([], bump r)
where bump r (a,[]) = [al
bump r (a,b:x) | r(a,b)

| r(b,a)

| otherwise
length = catalist (0, succ . outr)
sum = catalist (0, plus)
trans = catallist (list wrap, list coms .
list £ = catalist ([], cons . cross (f, id))
filter p = catalist ([], cond (p . outl) (comns, outr))

catalist (c,f) []
catalist (c,f) (a:x)

Cc

catallist (f,g) [a] =f a
catallist (f,g) (a:x)

cata2list (f,g) [a,b] = £ (a,b)
cata2list (f,g) (a:x)

loop £ (a,[]) =a
loop f (a,b:x) = loop £ (f (a,b), x)

merge r ([1,y) =y

merge r (x,[1) =x

merge r (a:x,b:y) | r (a,b) =
| otherwise =

zip (x,[]) =[]

zip (00,y =[]

zip (a:x,b:y) (a,b) : zip (x,y)

unzip = pair (list outl, list outr)

-- Word and line processing functions:

f (a, catalist (c,f) x)

g (a, catallist (f,g) x)

g (a, cata2list (f,g) x)

a : merge r (x,b:y)
b : merge r (a:x,y)

Appendix

words = filter (not.null) . catalist ([[]], cond ok (glue, new))
where ok (a,xs) =(a /=" & a /= ’\n’)
glue (a,x:xs) = (a:x):xs

new (a,xs) (0:xs
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lines = catalist ([[J], cond ok (glue, new))

where ok (a,xs) = (a /= ’\n’)
glue (a,x:xs) = (a:x):xs
new (a,xs) = [J:xs

unwords = catallist (id, join)
where join (x,y) = x ++ " " ++ y

catallist (id, join)
where join (x,y) = x ++ "\n" ++ y

unlines

-- Essentials and built-in primitives: -- -

primitive ord "primCharToInt" :: Char -> Int
primitive chr "primIntToChar" :: Int -> Char
primitive (==) "primGenericEq",

(/=) "primGenericNe",
(<=) "primGenericLe",
(<) "primGenericLt",
(>=) "primGenericGe",
(>) "primGenericGt" :: a -> a -> Bool

primitive (+) "primPlusInt",
(-) "primMinusInt",
(/) "primDivInt",
div "primDivInt",
mod "primModInt",

(*) "primMulInt" :: Int -> Int -> Int
primitive negate "primNegInt" :: Int -> Int
primitive primPrint "primPrint" :: Int -> a -> String -> String
primitive strict "primStrict" :: @->b) >a->b
primitive error "primError" :: String -> a
show :: a -> String
show x = primPrint 0 x []
flipfab=fba

-= End of Algebra of Programming prelude
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monotonicity

of composition, 82

of division, 99
p-calculus, 161

natural isomorphism, 34, 67
natural transformation, 19, 33-35
naturality condition, 34, 133
negation operator, 2

non-empty lists, 13

non-empty power object, 107
non-strict constructor, 43
non-strict semantics, 22
nondeterminism, 81

objects of a category, 25
one-pass program, 56

opposite category, 28
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principle of optimality, 219
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