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MIPS architecture 

From Wikipedia, the free encyclopedia 

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline Stages) is a RISC microprocessor 
architecture developed by MIPS Technologies. By the late 1990s it was estimated that one in three RISC chips produced 
were MIPS-based designs. 

MIPS designs are currently primarily used in many embedded systems such as the Series2 TiVo, Windows CE 
devices, Cisco routers, Foneras, Avaya, and video game consoles like the Nintendo 64 and Sony PlayStation, PlayStation 
2, and PlayStation Portable handheld system. Until late 2006 they were also used in many of SGI's computer products. 

The early MIPS architectures were 32-bit implementations (generally 32-bit wide registers and data paths), while 
later versions were 64-bit implementations. Multiple revisions of the MIPS instruction set exist, including MIPS I, MIPS 
II, MIPS III, MIPS IV, MIPS V, MIPS32, and MIPS64. The current revisions are MIPS32 (for 32-bit implementations) 
and MIPS64 (for 64-bit implementations). MIPS32 and MIPS64 define a control register set as well as the instruction set. 
Several "add-on" extensions are also available, including MIPS-3D which is a simple set of floating-point SIMD 
instructions dedicated to common 3D tasks, MDMX(MaDMaX) which is a more extensive integer SIMD instruction set 
using the 64-bit floating-point registers, MIPS16e which adds compression to the instruction stream to make programs 
take up less room (allegedly a response to the Thumb encoding in the ARM architecture), and the recent addition of MIPS 
MT, new multithreading additions to the system similar to HyperThreading in the Intel's Pentium 4 processors. 

Computer architecture courses in universities and technical schools often study the MIPS architecture. The design of 
the MIPS CPU family greatly influenced later RISC architectures such as DEC Alpha. 
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RISC Pioneer 

In 1981, a team led by John L. Hennessy at Stanford University started work on what would become the first MIPS 
processor. The basic concept was to dramatically increase performance through the use of deep instruction pipelines, a 
technique that was well known, but difficult to implement. CPUs are built up from a number of dedicated subunits known 
as modules or units. Typical modules include the load/store unit which handles external memory, the ALU which handles 
basic integer math and logic, or the FPU that handles floating point math. In a traditional design, each instruction flows 
from unit to unit until it is complete, at which point the next instruction is read in and the cycle continues. Generally in a 
pipeline architecture, successive instructions in a program sequence will overlap in execution. Instead of waiting for the 
instruction to complete, each unit inside the CPU will fetch and start executing an instruction before the preceding 
instruction is complete. For instance, as soon as a math instruction fed into the floating point module, the load/store unit 
can start loading up the data needed by the next instruction. 

One major barrier to pipelining was that not all instructions can be handed off in this fashion. Some instructions, like 
a floating point division, take longer to complete and the CPU has to wait before passing the next instruction into the 
system. The normal solution to this problem was to use a series of interlocks that allowed the modules to indicate they 
were still busy, pausing the other modules upstream. Hennessy's team viewed this interlocks as a major performance 
barrier moving forward; since they had to communicate to all the modules in the CPU, communications time was an issue 
and this appeared to limit increases in clock speed. A major aspect of the MIPS design was to fit every sub-phase 
(including memory access) of all instructions into one cycle, thereby removing any needs for interlocking, and permitting 
a single cycle throughput. 

Although this design eliminated a number of useful instructions, notably things like multiply and divide which would 
take multiple execution steps, it was felt that the overall performance of the system would be dramatically improved 
because the chips could run at much higher clock rates. This ramping of the speed would be difficult with interlocking 
involved, as the time needed to set up locks is as much a function of die size as clock rate: adding the needed hardware 
might actually slow down the overall speed. The elimination of these instructions became a contentious point. Many 
observers claimed the design (and RISC in general) would never live up to its hype. If one simply replaces the complex 
multiply instruction with many simpler additions, where is the speed increase? This overly-simple analysis ignored the 
fact that the speed of the design was in the pipelines, not the instructions. 

The other difference between the MIPS design and the competing Stanford RISC involved the handling of subroutine 
calls. RISC used a technique called register windows to improve performance of these very common tasks, but in using 
hardware to do this they locked in the number of calls that could be supported. Each subroutine call required its own set of 
registers, which in turn required more real estate on the CPU and more complexity in its design. Hennessy felt that a 
careful compiler could find free registers without resorting to a hardware implementation, and that simply increasing the 
number of registers would not only make this simple, but increase the performance of all tasks. 

In other ways the MIPS design was very much in keeping with the overall RISC design philosophy. To improve 
overall performance, RISC designs reduce the number of instructions in order to use fewer bits to encode them - in the 
MIPS design the instructions normally require only 5 bits of the 32-bit word. The rest of the space in the instruction word 
are used as storage, either for pointers to addresses in main memory, or as direct storage for small numbers. This allows a 
RISC CPU to load up the instruction and the data it needs in a single operation, whereas older designs, the MOS 
Technology 6502 for instance, would require separate cycles to load the instructions and data. This change is one of the 
major performance improvements that RISC offers. 

In 1984 Hennessy was convinced of the future commercial potential of the design, and left Stanford to form MIPS 
Computer Systems. They released their first design, the R2000, in 1985, improving the design as the R3000 in 1988. 
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These 32-bit CPUs formed the basis of their company through the 1980s, used primarily in SGI's series of workstations. 
These commercial designs deviated from the Stanford academic research by implementing most of the interlocks in 
hardware, supplying full multiply and divide instructions (among others). 

In 1991 MIPS released the first 64-bit microprocessor, the R4000. However, MIPS had financial difficulties while 
bringing it to market. The design was so important to SGI, at the time one of MIPS' few major customers, that SGI bought 
the company outright in 1992 in order to guarantee the design would not be lost. As a subsidiary of SGI, the company 
became known as MIPS Technologies. 

Licensable Architecture 

In the early 1990s MIPS started licensing their designs to third-party vendors. This proved fairly successful due to the 
simplicity of the core, which allowed it to be used in a number of applications that would have formerly used much less 
capable CISC designs of similar gate count and price -- the two are strongly related; the price of a CPU is generally 
related to the number of gates and the number of external pins. Sun Microsystems attempted to enjoy similar success by 
licensing their SPARC core but was not nearly as successful. By the late 1990s MIPS was a powerhouse in the embedded 
processor field, and in 1997 the 48-millionth MIPS-based CPU shipped, making it the first RISC CPU to outship the 
famous 68k family. MIPS was so successful that SGI spun-off MIPS Technologies in 1998. Fully half of MIPS' income 
today comes from licensing their designs, while much of the rest comes from contract design work on cores that will then 
be produced by third parties. 

In 1999 MIPS formalized their licensing system around two basic designs, the 32-bit MIPS32 (based on MIPS II 
with some additional features from MIPS III, MIPS IV, and MIPS V) and the 64-bit MIPS64 (based on MIPS V). NEC, 
Toshiba and SiByte (later acquired by Broadcom) each obtained licenses for the MIPS64 as soon as it was announced. 
Philips, LSI Logic and IDT have since joined them. Success followed success, and today the MIPS cores are one of the 
most-used "heavyweight" cores in the marketplace for computer-like devices (hand-held computers, set-top boxes, etc.), 
with other designers fighting it out for other niches. Some indication of their success is the fact that Freescale (spun-off by 
Motorola) uses MIPS cores in their set-top box designs, instead of their own PowerPC-based cores. 

Since the MIPS architecture is licensable, it has attracted several processor start-up companies over the years. One of 
the first start-ups to design MIPS processors was Quantum Effect Devices (see next section). The MIPS design team that 
designed the R4300 started the company SandCraft, which designed the R5432 for NEC and later produced the SR71000, 
one of the first out-of-order execution processors for the embedded market. The original DEC StrongARM team 
eventually split into two MIPS-based start-ups: SiByte which produced the SB-1250, one of the first high-performance 
MIPS-based systems-on-a-chip (SOC); while Alchemy Semiconductor (later acquired by AMD) produced the Au-1000 
SoC for low-power applications. Lexra used a MIPS-like architecture and added DSP extensions for the audio chip market 
and multithreading support for the networking market. Due to Lexra not licensing the architecture, two lawsuits were 
started between the two companies. The first was quickly resolved when Lexra promised not to advertise their processors 
as MIPS-compatible. The second (about MIPS patent 4814976 for handling unaligned memory access) was protracted, 
hurt both companies' business, and culminated in MIPS Technologies giving Lexra a free license and a large cash 
payment. 

Two companies have emerged that specialize in building Multi-core devices using the MIPS architecture. Raza 
Microelectronics Inc purchased the product line from failing Sandcraft and later produced devices that contained 8 CPU 
cores that were targeted at the telecom and networking markets. Cavium Networks, originally a security processor vendor 
also produced devices with 8 CPU cores for the same markets. Both of these companies designed their cores in-house, just 
licensing the architecture instead of purchasing cores from MIPS. 
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Losing the Desktop 

Among the manufacturers which have made computer workstation systems using MIPS processors are SGI, MIPS 
Computer Systems, Inc., Whitechapel Workstations, Olivetti, Siemens-Nixdorf, Acer, Digital Equipment Corporation, 
NEC, and DeskStation. Operating systems ported to the architecture include SGI's IRIX, Microsoft's Windows NT (until 
v4.0), Windows CE, Linux, BSD, UNIX System V, SINIX and MIPS Computer Systems' own RISC/os. 

There was speculation in the early 1990s that MIPS, and other powerful RISC processors would overtake the Intel 
IA32 architecture. This was encouraged by the support of the first two versions of Microsoft's Windows NT for DEC 
Alpha, MIPS and PowerPC - and to a lesser extent the Clipper architecture and SPARC. However, as Intel quickly 
released faster versions of their Pentium class CPUs, Microsoft Windows NT v4.0 dropped support for anything but Intel 
and Alpha. With SGI's decision to transition to the Itanium and IA32 architectures, use of MIPS processors on the desktop 
has now disappeared almost completely[1]. 

See main article Advanced Computing Environment. 

Embedded markets 

Through the 1990s, the MIPS architecture was widely adopted by the embedded market, including for use in 
computer networking/telecommunications, video arcade games, home video game consoles, computer printers, digital 
set-top boxes, digital televisions, DSL and cable modems, and personal digital assistants. 

The low power-consumption and heat characteristics of embedded MIPS implementations, the wide availability of 
embedded development tools, and knowledge about the architecture means use of MIPS microprocessors in embedded 
roles is likely to remain common. 

Synthesizeable Cores for Embedded Markets 

In recent years most of the technology used in the various MIPS generations has been offered as IP-cores 
(building-blocks) for embedded processor designs. Both 32-bit and 64-bit basic cores are offered, known as the 4K and 
5K respectively, and the design itself can be licensed as MIPS32 and MIPS64. These cores can be mixed with add-in 
units such as FPUs, SIMD systems, various input/output devices, etc. 

MIPS cores have been commercially successful, now being used in many consumer and industrial applications. MIPS 
cores can be found in newer Cisco, Linksys and Mikrotik's routerboard routers, cable modems and ADSL modems, 
smartcards, laser printer engines, set-top boxes, robots, handheld computers, Sony PlayStation 2 and Sony PlayStation 
Portable. In cellphone/PDA applications, the MIPS core has been unable to displace the incumbent, competing ARM core. 

Examples of MIPS-powered devices: Broadcom BCM5352E - WiFi router processor with 54g WLAN, fast Ethernet, 
200 MHz, 16KB ins. 8KB data cache, 256B prefetch cache, MMU, 16-bit 100 MHz SDRAM controller, serial/parallel 
flash, 5-port 100 Mbit/s Ethernet (switch), 16 GPIO, JTAG, 2xUART, 336-ball BGA. BCM 11xx, 12xx, 14xx - 64bit 
"SiByte" MIPS line. 

MIPS architecture processors include: IDT RC32438; ATI Xilleon; Alchemy Au1000, 1100, 1200; Broadcom 
Sentry5; RMI XLR7xx, Cavium Octeon CN30xx, CN31xx, CN36xx, CN38xx and CN5xxx; Infineon Technologies 
EasyPort, Amazon, Danube, ADM5120, WildPass, INCA-IP, INCA-IP2; NEC EMMA and EMMA2, NEC VR4181A, 
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VR4121, VR4122, VR4181A, VR5432, VR5500; Oak Technologies Generation; PMC-Sierra RM11200; QuickLogic 
QuickMIPS ESP; Toshiba "Donau", Toshiba TMPR492x, TX4925, TX9956, TX7901. 

MIPS based Supercomputers 

One of the more interesting applications of the MIPS architecture is its use in massive processor count 
supercomputers. Silicon Graphics (SGI) refocused its business from desktop graphics workstations to the high 
performance computing (HPC) market in the early 1990s. The success of the company's first foray into server systems, the 
Challenge series based on the R4400 and R8000, and later R10000, motivated SGI to create a vastly more powerful 
system. The introduction of the integrated R10000 allowed SGI to produce a system, the Origin 2000, eventually scalable 
to 1024 CPUs using its NUMAlink cc-NUMA interconnect. The Origin 2000 begat the Origin 3000 series which topped 
out with the same 1024 maximum CPU count but using the R14000 and R16000 chips up to 700 MHz. Its MIPS based 
supercomputers were withdrawn in 2005 when SGI made the strategic decision to move to Intel's IA-64 architecture. 

An HPC startup introduced a radical MIPS based supercomputer in 2007. SiCortex, Inc. has created a tightly 
integrated Linux cluster supercomputer based on the MIPS64 architecture and a high performance interconnect based on 
the Kautz digraph topology. The system is very power efficient and computationally powerful. The most unique aspect of 
the system is its multicore processing node which integrates six MIPS64 cores, a crossbar memory controller, interconnect 
DMA engine, Gigabit Ethernet and PCI Express controllers all on a single chip which consumes only 10 watts of power, 
yet has a peak floating point performance of 6 GFLOPs. The most powerful configuration, the SC5832, is a single cabinet 
supercomputer consisting of 972 such node chips for a total of 5832 MIPS64 processor cores and 5.8 teraFLOPS of peak 
performance. 

CPU family 

 
Pipeline MIPS 
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The first commercial MIPS CPU model, the R2000, was announced in 1985. It added multiple-cycle multiply and 
divide instructions in a somewhat independent on-chip unit. New instructions were added to retrieve the results from this 
unit back to the execution core; these result-retrieving instructions were interlocked. 

The R2000 could be booted either big-endian or little-endian. It had thirty-two 32-bit general purpose registers, but 
no condition code register (the designers considered it a potential bottleneck), a feature it shares with the AMD 29000 and 
the DEC Alpha. Unlike other registers, the program counter is not directly accessible. 

The R2000 also had support for up to four co-processors, one of which was built into the main CPU and handled 
exceptions, traps and memory management, while the other three were left for other uses. One of these could be filled by 
the optional R2010 FPU, which had thirty-two 32-bit registers that could be used as sixteen 64-bit registers for 
double-precision. 

The R3000 succeeded the R2000 in 1988, adding 32 KB (soon increased to 64 KB) caches for instructions and data, 
along with cache coherency support for multiprocessor use. While there were flaws in the R3000's multiprocessor support, 
it still managed to be a part of several successful multiprocessor designs. The R3000 also included a built-in MMU, a 
common feature on CPUs of the era. The R3000, like the R2000, could be paired with a R3010 FPU. The R3000 was the 
first successful MIPS design in the marketplace, and eventually over one million were made. A speed-bumped version of 
the R3000 running up to 40 MHz, the R3000A delivered a performance of 32 VUPs (VAX Unit of Performance). The 
R3000A was the processor used in the extremely successful Sony PlayStation. Third-party designs include Performance 
Semiconductor's R3400 and IDT's R3500, both of them were R3000As with an integrated R3010 FPU. Toshiba's R3900 
was a virtually first SoC for the early handheld PCs based on the Windows CE. A radiation-hardened variant for space 
applications, the Mongoose-V, is a R3000 with an integrated R3010 FPU. 

The R4000 series, released in 1991, extended the MIPS instruction set to a full 64-bit architecture, moved the FPU 
onto the main die to create a single-chip microprocessor, and operated at a radically high internal clock speed (it was 
introduced at 100 MHz). However, in order to achieve the clock speed the caches were reduced to 8 KB each and they 
took three cycles to access. The high operating frequencies were achieved through the technique of deep pipelining (called 
super-pipelining at the time). With the introduction of the R4000 a number of improved versions soon followed, including 
the R4400 (1993) which included 16 KB caches, largely bug-free 64-bit operation, and support for a larger external level 
2 cache. 

MIPS, now a division of SGI called MTI, designed the lower-cost R4200, and later the even lower cost R4300, 
which was the R4200 with a 32-bit external bus. The Nintendo 64 used a NEC VR4300 CPU that was based upon the 
low-cost MIPS R4300i.[2] 
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bottom-side view of package of R4700 Orion with the exposed silicon chip, fabricated by IDT, designed by Quantum 
Effect Devices 

 
topside view of package for R4700 Orion 

Quantum Effect Devices (QED), a separate company started by former MIPS employees, designed the R4600 
"Orion", the R4700 "Orion", the R4650 and the R5000. Where the R4000 had pushed clock frequency and sacrificed 
cache capacity, the QED designs emphasized large caches which could be accessed in just two cycles and efficient use of 
silicon area. The R4600 and R4700 were used in low-cost versions of the SGI Indy workstation as well as the first MIPS 
based Cisco routers, such as the 36x0 and 7x00-series routers. The R4650 was used in the original WebTV set-top boxes 
(now Microsoft TV). The R5000 FPU had more flexible single precision floating-point scheduling than the R4000, and as 
a result, R5000-based SGI Indys had much better graphics performance than similarly clocked R4400 Indys with the same 
graphics hardware. SGI gave the old graphics board a new name when it was combined with R5000 in order to emphasize 
the improvement. QED later designed the RM7000 and RM9000 family of devices for embedded markets like networking 
and laser printers. QED was acquired by the semiconductor manufacturer PMC-Sierra in August 2000, the latter company 
continuing to invest in the MIPS architecture. The RM7000 included an on-board 256 kB level 2 cache and a controller 
for optional level three cache. The RM9xx0 were a family of SOC devices which included northbridge peripherals such as 
memory controller, PCI controller, gigabit ethernet controller and fast IO such as a hypertransport port. 

The R8000 (1994) was the first superscalar MIPS design, able to execute two integer or floating point and two 
memory instructions per cycle. The design was spread over six chips: an integer unit (with 16 KB instruction and 16 KB 
data caches), a floating-point unit, three full-custom secondary cache tag RAMs (two for secondary cache accesses, one 
for bus snooping), and a cache controller ASIC. The design had two fully pipelined double precision multiply-add units, 
which could stream data from the 4 MB off-chip secondary cache. The R8000 powered SGI's POWER Challenge servers 
in the mid 1990s and later became available in the POWER Indigo2 workstation. Although its FPU performance fit 
scientific users quite well, its limited integer performance and high cost dampened appeal for most users, and the R8000 
was in the marketplace for only a year and remains fairly rare. 

In 1995, the R10000 was released. This processor was a single-chip design, ran at a faster clock speed than the 
R8000, and had larger 32 KB primary instruction and data caches. It was also superscalar, but its major innovation was 
out-of-order execution. Even with a single memory pipeline and simpler FPU, the vastly improved integer performance, 
lower price, and higher density made the R10000 preferable for most customers. 

Recent designs have all been based upon R10000 core. The R12000 used improved manufacturing to shrink the chip 
and operate at higher clock rates. The revised R14000 allowed higher clock rates with additional support for DDR SRAM 
in the off-chip cache, and a faster front side bus clocked to 200 MHz for better throughput. Later iterations are named the 
R16000 and the R16000A and feature increased clock speed, additional L1 cache, and smaller die manufacturing 
compared with before. 
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Other members of the MIPS family include the R6000, an ECL implementation of the MIPS architecture which was 
produced by Bipolar Integrated Technology. The R6000 microprocessor introduced the MIPS II instruction set. Its TLB 
and cache architecture are different from all other members of the MIPS family. The R6000 did not deliver the promised 
performance benefits, and although it saw some use in Control Data machines, it quickly disappeared from the mainstream 
market. 

MIPS Microprocessors 

Model Frequency 
(MHz) 

Year Process 
(µm) 

Transistors 
(Millions) 

Die 
Size 
(mm²)

Pin 
Count 

Power 
(W) 

Voltage Dcache 
(KB) 

Icache 
(KB) 

L2 
Cache 

L3 
Cache 

R2000 8-16.67 1985 2.0 0.11 ? ? ? ? 32 64 None None 

R3000 12-40 1988 1.2 0.11 66.12 145 4 ? 64 64 
0-256 
KB 
External

None 

R4000 100 1991 0.8 1.35 213 179 15 5 8 8 1 MB 
External None 

R4400 100-250 1992 0.6 2.3 186 179 15 5 16 16 1-4 MB 
External None 

R4600 100-133 1994 0.64 2.2 77 179 4.6 5 16 16 512 KB 
External None 

R5000 150-200 1996 0.35 3.7 84 223 10 3.3 32 32 1 MB 
External None 

R8000 75-90 1994 0.7 2.6 299 591+591 30 3.3 16 16 4 MB 
External None 

R10000 150-250 1996 0.35, 
0.25 6.7 299 599 30 3.3 32 32 1-4 MB 

External None 

R12000 270-400 1998 0.25, 
0.18 6.9 204 600 20 4 32 32 2 MB 

External None 

RM7000 250-600 1998 
0.25, 
0.18, 
0.13 

18 91 304 10, 6, 
3 

3.3, 2.5, 
1.5 16 16 256 KB 

Internal
1 MB 
External

R14000 500-600 2001 0.13 7.2 204 527 17 ? 32 32 2-4 MB 
External None 

R16000 700-1000 2002 0.11 ? ? ? 20 ? 64 64 
4-16 
MB 
External

None 

Note: These specifications are for common processor models. Variations exist, especially in Level 2 cache. 

Note: The R8000 has a unique cache hierarchy named 'Data Streaming Cache' where there is 16 KB of L1 data cache for 
the integer chip with an external 4 MB L2 cache that served as the secondary unified cache for the integer chip but as the 
L1 data cache for the floating point chip. 

Summary of R3000 instruction set Opcodes 

Instructions are divided into three types: R, I and J. Every instruction starts with a 6-bit opcode. In addition to the 
opcode, R-type instructions specify three registers, a shift amount field, and a function field; I-type instructions specify 
two registers and a 16-bit immediate value; J-type instructions follow the opcode with a 26-bit jump target.[3][4] 
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The following are the three formats used for the core instruction set: 

Type -31-                                 format (bits)                                 -0-

R opcode (6) rs (5) rt (5) rd (5) shamt (5) funct (6) 

I opcode (6) rs (5) rt (5) immediate (16) 

J opcode (6) address (26) 

MIPS Assembly Language 

These are assembly language instructions that have direct hardware implementation, as opposed to pseudoinstructions 
which are translated into multiple real instructions before being assembled. 

• CONST denotes a constant ("immediate").  
• In the following, the register numbers are only examples, and any other registers can be used in their 

places.  
• All the following instructions are native instructions.  
• Opcodes and funct codes are in hexadecimal.  
• The MIPS32 Instruction Set states that the word unsigned as part of Add and Subtract instructions, is a 

misnomer. The difference between signed and unsigned versions of commands is not a sign extension (or lack 
thereof) of the operands, but controls whether a trap is executed on overflow (e.g. Add) or an overflow is ignored 
(Add unsigned). An immediate operand CONST to these instructions is always sign-extended.  

Category Name Instruction syntax Meaning Format/opcode/fun
ct Notes 

Add add $1,$2,$3 $1 = $2 + $3 R 0 2016 
adds two 
registers, executes 
a trap on overflow

Add 
unsigned addu $1,$2,$3 $1 = $2 + $3 R 0 2116 

as above but 
ignores an 
overflow 

Subtract sub $1,$2,$3 $1 = $2 - $3 R 0 2216 
subtracts two 
registers, executes 
a trap on overflow

Subtract 
unsigned subu $1,$2,$3 $1 = $2 - $3 R 0 2316 

as above but 
ignores an 
overflow 

Add 
immediate addi $1,$2,CONST $1 = $2 + CONST (signed) I 816  

Used to add 
sign-extended 
constants (and 
also to copy one 
register to another 
"addi $1, $2, 0"), 
executes a trap on 
overflow 

Add 
immediate 
unsigned 

addiu 
$1,$2,CONST $1 = $2 + CONST (signed) I 916  

as above but 
ignores an 
overflow, CONST 
still sign-extended

Arithmetic 

Multiply mult $1,$2 LO = (($1 * $2) << 32) >> 32; 
HI = ($1 * $2) >> 32; 

R 0 1816 Multiplies two 
registers and puts 
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the 64-bit result in 
two special 
memory spots -
LOW and HI. 
Alternatively, one 
could say the 
result of this 
operation is: (int 
HI,int LO) = 
(64-bit) $1 * $2 . 
See mfhi and mflo 
for accessing LO 
and HI regs. 

Divide div $1, $2 LO = $1 / $2     HI = $1 % $2 R   

Divides two 
registers and puts 
the 32-bit integer 
result in LO and 
the remainder in 
HI.[3] 

Load 
double 
word 

ld $1,CONST($2) $1 = Memory[$2 + CONST] I 2316  

loads the word 
stored from: 
MEM[$2+CONS
T] and the 
following 7 bytes 
to $1 and the next 
register. 

Load word lw $1,CONST($2) $1 = Memory[$2 + CONST] I 2316  

loads the word 
stored from: 
MEM[$2+CONS
T] and the 
following 3 bytes.

Load 
halfword lh $1,CONST($2) $1 = Memory[$2 + CONST] 

(signed) I 2516  

loads the halfword 
stored from: 
MEM[$2+CONS
T] and the 
following byte. 
Sign is extended 
to width of 
register. 

Load 
halfword 
unsigned 

lhu $1,CONST($2) $1 = Memory[$2 + CONST] 
(unsigned) I   As above without 

sign extension. 

Load byte lb $1,CONST($2) $1 = Memory[$2 + CONST] 
(signed) I   

loads the byte 
stored from: 
MEM[$2+CONS
T]. 

Load byte 
unsigned lbu $1,CONST($2) $1 = Memory[$2 + CONST] 

(unsigned) I   As above without 
sign extension. 

Data 
Transfer 

Store 
double 
word 

sd $1,CONST($2) Memory[$2 + CONST] = $1 I   stores two words 
from $1 and the 
next register into: 
MEM[$2+CONS
T] and the 
following 7 bytes. 
The order of the 
operands is a 
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large source of 
confusion. 

Store 
word sw $1,CONST($2) Memory[$2 + CONST] = $1 I   

stores a word into: 
MEM[$2+CONS
T] and the 
following 3 bytes. 
The order of the 
operands is a 
large source of 
confusion. 

Store half sh $1,CONST($2) Memory[$2 + CONST] = $1 I   

stores the first 
half of a register 
(a halfword) into: 
MEM[$2+CONS
T] and the 
following byte. 

Store byte sb $1,CONST($2) Memory[$2 + CONST] = $1 I   

stores the first 
fourth of a 
register (a byte) 
into: 
MEM[$2+CONS
T]. 

Load 
upper 
immediate 

lui $1,CONST $1 = CONST << 16 I   

loads a 16-bit 
immediate 
operand into the 
upper 16-bits of 
the register 
specified. 
Maximum value 
of constant is 
216-1 

Move 
from high mfhi $1 $1 = HI R   

Moves a value 
from HI to a 
register. Do not 
use a multiply or a 
divide instruction 
within two 
instructions of 
mfhi (that action 
is undefined 
because of the 
MIPS pipeline). 

Move 
from low mflo $1 $1 = LO R 0 1216 

Moves a value 
from LO to a 
register. Do not 
use a multiply or a 
divide instruction 
within two 
instructions of 
mflo (that action 
is undefined 
because of the 
MIPS pipeline). 

Move 
from 
Control 

mfcZ $1, $2 $1 = 
Coprocessor[Z].ControlRegister[
$2] 

R   Moves a 4 byte 
value from 
Coprocessor Z 
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Register Control register to 
a general purpose 
register. Sign 
extension. 

Move to 
Control 
Register 

mtcZ $1, $2 Coprocessor[Z].ControlRegister[
$2] = $1 R   

Moves a 4 byte 
value from a 
general purpose 
register to a 
Coprocessor Z 
Control register. 
Sign extension. 

Load word 
coprocess
or 

lwcZ $1,CONST 
($2) 

Coprocessor[Z].DataRegister[$1
] = Memory[$2 + CONST] I   

Loads the 4 byte 
word stored from: 
MEM[$2+CONS
T] into a 
Coprocessor data 
register. Sign 
extension. 

Store 
word 
coprocess
or 

swcZ $1,CONST ($
2) 

Memory[$2 + CONST] = 
Coprocessor[Z].DataRegister[$1
] 

I   

Stores the 4 byte 
word held by a 
Coprocessor data 
register into: 
MEM[$2+CONS
T]. Sign 
extension. 

And and $1,$2,$3 $1 = $2 & $3 R   Bitwise and 

And 
immediate andi $1,$2,CONST $1 = $2 & CONST I    

Or or $1,$2,$3 $1 = $2 | $3 R   Bitwise or 

Or 
immediate ori $1,$2,CONST $1 = $2 | CONST I    

Exclusive 
or xor $1,$2,$3 $1 = $2 ^ $3 R    

Nor nor $1,$2,$3 $1 = ~ ($2 | $3) R   Bitwise nor 

Set on less 
than slt $1,$2,$3 $1 = ($2 < $3) R   

Tests if one 
register is less 
than another. 

Logical 

Set on less 
than 
immediate 

slti $1,$2,CONST $1 = ($2 < CONST) I   
Tests if one 
register is less 
than a constant. 

Shift left 
logical sll $1,$2,CONST $1 = $2 << CONST R   

shifts CONST 
number of bits to 
the left (multiplies 
by 2CONST) 

Bitwise 
Shift 

Shift right 
logical 

srl $1,$2,CONST $1 = $2 >> CONST R   shifts CONST 
number of bits to 
the right - zeros 
are shifted in 
(divides by 
2CONST). Note that 
this instruction 
only works as 
division of a two's 



 

13

complement 
number if the 
value is positive. 

Shift right 
arithmetic sra $1,$2,CONST 

 

 

R   

shifts CONST 
number of bits -
the sign bit is 
shifted in (divides 
2's complement 
number by 
2CONST) 

Branch on 
equal beq $1,$2,CONST if ($1 == $2) go to 

PC+4*CONST I   

Goes to the 
instruction at the 
specified address 
if two registers 
are equal. Conditional 

branch 

Branch on 
not equal bne $1,$2,CONST if ($1 != $2) go to 

PC+4*CONST I   

Goes to the 
instruction at the 
specified address 
if two registers 
are not equal. 

Jump j CONST goto address CONST J   

Unconditionally 
jumps to the 
instruction at the 
specified address.

Jump 
register jr $1 goto address $1 R   

Jumps to the 
address contained 
in the specified 
register 

Uncondition
al jump 

Jump and 
link jal CONST $31 = PC + 4; goto CONST J   

For procedure call 
- used to call a 
subroutine, $31 
holds the return 
address; returning 
from a subroutine 
is done by: jr $31

NOTE: in the branching and jump instructions, the offset can be replaced by a label present somewhere in the code. 

NOTE: that there is no corresponding "load lower immediate" instruction; this can be done by using addi (add immediate, 
see below) or ori (or immediate) with the register $0 (whose value is always zero). For example, both addi $1, $0, 100 and 
ori $1, $0, 100 load the decimal value 100 into register $1. 

NOTE: An arithmetic operation with signed immediates differs from one with unsigned ones in that it does not throw an 
exception. Subtracting an immediate can be done with adding the negation of that value as the immediate. 

Pseudo instructions 

These instructions are accepted by the MIPS assembler, however they are not real instructions within the MIPS 
instruction set. Instead, the assembler translates them into sequences of real instructions. 

Name instruction syntax Real instruction translation meaning 

Load Address la $1, LabelAddr lui $1, LabelAddr[31:16]; ori $1,$1, $1 = Label Address 
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LabelAddr[15:0] 

Load Immediate li $1, 
IMMED[31:0] 

lui $1, IMMED[31:16]; ori $1,$1, 
IMMED[15:0] 

$1 = 32 bit Immediate 
value 

Branch if greater than bgt  if(R[rs]>R[rt]) PC=Label

Branch if less than blt  if(R[rs]<R[rt]) PC=Label

Branch if greater than or 
equal bge  if(R[rs]>=R[rt]) 

PC=Label 

branch if less than or equal ble  if(R[rs]<=R[rt]) 
PC=Label 

branch if greater than 
unsigned bgtu  if(R[rs]=>R[rt]) 

PC=Label 

branch if greater than zero bgtz  if(R[rs]>0) PC=Label 

Some other important instructions 

• nop (no operation) (machine code 0x00000000, interpreted by CPU as sll $0,$0,0)  
• break (breaks the program, used by debuggers)  
• syscall (used for system calls to the operating system)  
• a full set of Floating point instructions for both single precision and double precision operands  

Compiler Register Usage 

Main article: calling convention#MIPS 

The hardware architecture specifies that: 

• General purpose register $0 always returns a value of 0 .  
• General purpose register $31 is used as the link register for jump and link instructions.  
• HI and LO are used to access the multiplier/divider results, accessed by the mfhi (move from high) and mflo 

commands.  

These are the only hardware restrictions on the usage of the general purpose registers. 

The various MIPS tool-chains implement specific calling conventions that further restrict how the registers are used. 
These calling conventions are totally maintained by the tool-chain software and are not required by the hardware. 

Registers 

Name Number Use Callee must preserve? 

$zero $0 constant 0 N/A 

$at $1 assembler temporary no 

$v0–$v1 $2–$3 Values for function returns and expression evaluation no 

$a0–$a3 $4–$7 function arguments no 

$t0–$t7 $8–$15 temporaries no 

$s0–$s7 $16–$23 saved temporaries yes 

$t8–$t9 $24–$25 temporaries no 

$k0–$k1 $26–$27 reserved for OS kernel no 
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$gp $28 global pointer yes 

$sp $29 stack pointer yes 

$fp $30 frame pointer yes 

$ra $31 return address N/A 

Registers that are preserved across a call are registers that (by convention) will not be changed by a system call or 
procedure (function) call. For example, $s-registers must be saved to the stack by a procedure that needs to use them, and 
$sp and $fp are always incremented by constants, and decremented back after the procedure is done with them (and the 
memory they point to). By contrast, $ra is changed automatically by any normal function call (ones that use jal), and 
$t-registers must be saved by the program before any procedure call (if the program needs the values inside them after the 
call). 

Simulators 

Open Virtual Platforms (OVP) [1] includes the freely available simulator OVPsim, a library of models of processors, 
peripherals and platforms, and APIs which enable users to develop their own models. The models in the library are open 
source, written in C, and include the MIPS 4K, 24K and 34K cores. These models are created and maintained by Imperas 
[2] and in partnership with MIPS Technologies have been tested and assigned the MIPS-Verified(tm) mark. The OVP site 
also includes models of ARM, Tensilica and OpenCores/openRisc processors. Sample MIPS-based platforms include both 
bare metal environments and platforms for booting unmodified Linux binary images. These platforms/emulators are 
available as source or binaries and are fast, free, and easy to use. OVPsim is developed and maintained by Imperas and is 
very fast (100s of million instructions per second), and built to handle multicore architectures. To download the MIPS 
OVPsim simulators/emulators visit [3]. 

There is a freely available "MIPS32 Simulator" (earlier versions simulated only the R2000/R3000) called SPIM for 
several operating systems (specifically Unix or GNU/Linux; Mac OS X; MS Windows 95, 98, NT, 2000, XP; and DOS) 
which is good for learning MIPS assembly language programming and the general concepts of RISC-assembly language 
programming: http://www.cs.wisc.edu/~larus/spim.html 

EduMIPS64 is a GPL graphical cross-platform MIPS64 CPU simulator, written in Java/Swing. It supports a wide 
subset of the MIPS64 ISA and allows the user to graphically see what happens in the pipeline when an assembly program 
is run by the CPU. It has educational purposes and is used in some Computer Architecture courses in Universities around 
the world. More info at http://www.edumips.org 

MARS is another GUI based MIPS emulator designed for use in education, specifically for use with Hennessy's 
Computer Organization and Design. More information is available at 
http://courses.missouristate.edu/KenVollmar/MARS/ 

More advanced free MIPS emulators are available from the GXemul (formerly known as the mips64emul project) 
and QEMU projects, which emulate not only the various MIPS III and higher microprocessors (from the R4000 through 
the R10000), but also entire computer systems which use the microprocessors. For example, GXemul can emulate both a 
DECstation with a MIPS R4400 CPU (and boot to Ultrix), and an SGI O2 with a MIPS R10000 CPU (although the ability 
to boot Irix is limited), among others, as well as the various framebuffers, SCSI controllers, and the like which comprise 
those systems. 
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Commercial simulators are available especially for the embedded use of MIPS processors, for example Virtutech 
Simics (MIPS 4Kc and 5Kc, PMC RM9000, QED RM7000), VaST Systems (R3000, R4000), and CoWare (the 
MIPS4KE, MIPS24K, MIPS25Kf and MIPS34K). 

Examples of system calls (used by SPIM) 

service Trap 
code Input Output Notes 

print_int $v0 = 
1 $a0 = integer to print prints $a0 to standard output  

print_float $v0 = 
2 $f12 = float to print prints $f12 to standard 

output  

print_double $v0 = 
3 $f12 = double to print prints $f12 to standard 

output  

print_string $v0 = 
4 $a0 = address of first character  

prints a character 
string to standard 
output 

read_int $v0 = 
5  integer read from standard 

input placed in $v0  

read_float $v0 = 
6  float read from standard 

input placed in $f0  

read_double $v0 = 
7  double read from standard 

input placed in $f0  

read_string $v0 = 
8 

$a0 = address to place string, $a1 = max string 
length 

reads standard input into 
address in $a0  

sbrk $v0 = 
9 $a0 = number of bytes required $v0= address of allocated 

memory 
Allocates memory 
from the heap 

exit $v0 = 
10    

print_char $v0 = 
11 $a0 = character (low 8 bits)   

read_char $v0 = 
12  $v0 = character (no line 

feed) echoed  

file_open $v0 = 
13 

$a0 = full path (zero terminated string with no 
line feed), $a1 = flags, $a2 = UNIX octal file 
mode (0644 for rw-r--r--) 

$v0 = file descriptor  

file_read $v0 = 
14 

$a0 = file descriptor, $a1 = buffer address, $a2 
= amount to read in bytes 

$v0 = amount of data in 
buffer from file (-1 = error, 0 
= end of file) 

 

file_write $v0 = 
15 

$a0 = file descriptor, $a1 = buffer address, $a2 
= amount to write in bytes 

$v0 = amount of data in 
buffer to file (-1 = error, 0 = 
end of file) 

 

file_close $v0 = 
16 $a0 = file descriptor   

Flags: 

Read = 0x0, Write = 0x1, Read/Write = 0x2 

OR Create = 0x100, Truncate = 0x200, Append = 0x8 
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OR Text = 0x4000, Binary = 0x8000 

Trivia 

• The rabbit in Super Mario 64 is named MIPS after the technology because the Nintendo 64 used it.  

Notes 

1. ^ SGI announcing the end of MIPS  
2. ^ NEC Offers Two High Cost Performance 64-bit RISC Microprocessors  
3. ^ a b MIPS R3000 Instruction Set Summary  
4. ^ MIPS Instruction Reference  

Further reading 

• Patterson, David A; John L. Hennessy. Computer Organization and Design: The Hardware/Software Interface. 
Morgan Kaufmann Publishers. ISBN 1-55860-604-1.  

• Sweetman, Dominic. See MIPS Run. Morgan Kaufmann Publishers. ISBN 1-55860-410-3.  
• Farquhar, Erin; Philip Bunce. MIPS Programmer's Handbook. Morgan Kaufmann Publishers. ISBN 

1-55860-297-6.  

See also 

• DLX, a very similar architecture designed by John L. Hennessy (creator of MIPS) for teaching purposes  
• Loongson, a MIPS-like processor architecture developed at Chinese Academy of Sciences  
• MIPS-X, developed as a follow-on project to the MIPS architecture  
• Mongoose-V, a radiation hardened version of the MIPS R3000 used in spacecrafts  

External links 

Wikibooks has a book on the topic of  
MIPS Assembly 

• Full overview of MIPS architecture.  
• Patterson & Hennessy - Appendix A (PDF)  
• summary of MIPS assembly language  
• MIPS Instruction reference  
• MIPS processor images and descriptions at cpu-collection.de  
• A programmed introduction to MIPS assembly  
• mips bitshift operators  
• MIPS software user's manual  

 


