

1

MIPS architecture

From Wikipedia, the free encyclopedia

MIPS (originally an acronym for Microprocessor without Interlocked Pipeline Stages) is a RISC microprocessor
architecture developed by MIPS Technologies. By the late 1990s it was estimated that one in three RISC chips produced
were MIPS-based designs.

MIPS designs are currently primarily used in many embedded systems such as the Series2 TiVo, Windows CE
devices, Cisco routers, Foneras, Avaya, and video game consoles like the Nintendo 64 and Sony PlayStation, PlayStation
2, and PlayStation Portable handheld system. Until late 2006 they were also used in many of SGI's computer products.

The early MIPS architectures were 32-bit implementations (generally 32-bit wide registers and data paths), while
later versions were 64-bit implementations. Multiple revisions of the MIPS instruction set exist, including MIPS I, MIPS
II, MIPS III, MIPS IV, MIPS V, MIPS32, and MIPS64. The current revisions are MIPS32 (for 32-bit implementations)
and MIPS64 (for 64-bit implementations). MIPS32 and MIPS64 define a control register set as well as the instruction set.
Several "add-on" extensions are also available, including MIPS-3D which is a simple set of floating-point SIMD
instructions dedicated to common 3D tasks, MDMX(MaDMaX) which is a more extensive integer SIMD instruction set
using the 64-bit floating-point registers, MIPS16e which adds compression to the instruction stream to make programs
take up less room (allegedly a response to the Thumb encoding in the ARM architecture), and the recent addition of MIPS
MT, new multithreading additions to the system similar to HyperThreading in the Intel's Pentium 4 processors.

Computer architecture courses in universities and technical schools often study the MIPS architecture. The design of
the MIPS CPU family greatly influenced later RISC architectures such as DEC Alpha.

Contents

• 1 History
o 1.1 RISC Pioneer
o 1.2 Licensable Architecture
o 1.3 Losing the Desktop
o 1.4 Embedded markets
o 1.5 Synthesizeable Cores for Embedded Markets
o 1.6 MIPS based Supercomputers

• 2 CPU family
• 3 Summary of R3000 instruction set Opcodes
• 4 MIPS Assembly Language

o 4.1 Pseudo instructions
o 4.2 Some other important instructions

• 5 Compiler Register Usage
• 6 Simulators
• 7 Trivia
• 8 Notes
• 9 Further reading
• 10 See also
• 11 External links

History

2

RISC Pioneer

In 1981, a team led by John L. Hennessy at Stanford University started work on what would become the first MIPS
processor. The basic concept was to dramatically increase performance through the use of deep instruction pipelines, a
technique that was well known, but difficult to implement. CPUs are built up from a number of dedicated subunits known
as modules or units. Typical modules include the load/store unit which handles external memory, the ALU which handles
basic integer math and logic, or the FPU that handles floating point math. In a traditional design, each instruction flows
from unit to unit until it is complete, at which point the next instruction is read in and the cycle continues. Generally in a
pipeline architecture, successive instructions in a program sequence will overlap in execution. Instead of waiting for the
instruction to complete, each unit inside the CPU will fetch and start executing an instruction before the preceding
instruction is complete. For instance, as soon as a math instruction fed into the floating point module, the load/store unit
can start loading up the data needed by the next instruction.

One major barrier to pipelining was that not all instructions can be handed off in this fashion. Some instructions, like
a floating point division, take longer to complete and the CPU has to wait before passing the next instruction into the
system. The normal solution to this problem was to use a series of interlocks that allowed the modules to indicate they
were still busy, pausing the other modules upstream. Hennessy's team viewed this interlocks as a major performance
barrier moving forward; since they had to communicate to all the modules in the CPU, communications time was an issue
and this appeared to limit increases in clock speed. A major aspect of the MIPS design was to fit every sub-phase
(including memory access) of all instructions into one cycle, thereby removing any needs for interlocking, and permitting
a single cycle throughput.

Although this design eliminated a number of useful instructions, notably things like multiply and divide which would
take multiple execution steps, it was felt that the overall performance of the system would be dramatically improved
because the chips could run at much higher clock rates. This ramping of the speed would be difficult with interlocking
involved, as the time needed to set up locks is as much a function of die size as clock rate: adding the needed hardware
might actually slow down the overall speed. The elimination of these instructions became a contentious point. Many
observers claimed the design (and RISC in general) would never live up to its hype. If one simply replaces the complex
multiply instruction with many simpler additions, where is the speed increase? This overly-simple analysis ignored the
fact that the speed of the design was in the pipelines, not the instructions.

The other difference between the MIPS design and the competing Stanford RISC involved the handling of subroutine
calls. RISC used a technique called register windows to improve performance of these very common tasks, but in using
hardware to do this they locked in the number of calls that could be supported. Each subroutine call required its own set of
registers, which in turn required more real estate on the CPU and more complexity in its design. Hennessy felt that a
careful compiler could find free registers without resorting to a hardware implementation, and that simply increasing the
number of registers would not only make this simple, but increase the performance of all tasks.

In other ways the MIPS design was very much in keeping with the overall RISC design philosophy. To improve
overall performance, RISC designs reduce the number of instructions in order to use fewer bits to encode them - in the
MIPS design the instructions normally require only 5 bits of the 32-bit word. The rest of the space in the instruction word
are used as storage, either for pointers to addresses in main memory, or as direct storage for small numbers. This allows a
RISC CPU to load up the instruction and the data it needs in a single operation, whereas older designs, the MOS
Technology 6502 for instance, would require separate cycles to load the instructions and data. This change is one of the
major performance improvements that RISC offers.

In 1984 Hennessy was convinced of the future commercial potential of the design, and left Stanford to form MIPS
Computer Systems. They released their first design, the R2000, in 1985, improving the design as the R3000 in 1988.

3

These 32-bit CPUs formed the basis of their company through the 1980s, used primarily in SGI's series of workstations.
These commercial designs deviated from the Stanford academic research by implementing most of the interlocks in
hardware, supplying full multiply and divide instructions (among others).

In 1991 MIPS released the first 64-bit microprocessor, the R4000. However, MIPS had financial difficulties while
bringing it to market. The design was so important to SGI, at the time one of MIPS' few major customers, that SGI bought
the company outright in 1992 in order to guarantee the design would not be lost. As a subsidiary of SGI, the company
became known as MIPS Technologies.

Licensable Architecture

In the early 1990s MIPS started licensing their designs to third-party vendors. This proved fairly successful due to the
simplicity of the core, which allowed it to be used in a number of applications that would have formerly used much less
capable CISC designs of similar gate count and price -- the two are strongly related; the price of a CPU is generally
related to the number of gates and the number of external pins. Sun Microsystems attempted to enjoy similar success by
licensing their SPARC core but was not nearly as successful. By the late 1990s MIPS was a powerhouse in the embedded
processor field, and in 1997 the 48-millionth MIPS-based CPU shipped, making it the first RISC CPU to outship the
famous 68k family. MIPS was so successful that SGI spun-off MIPS Technologies in 1998. Fully half of MIPS' income
today comes from licensing their designs, while much of the rest comes from contract design work on cores that will then
be produced by third parties.

In 1999 MIPS formalized their licensing system around two basic designs, the 32-bit MIPS32 (based on MIPS II
with some additional features from MIPS III, MIPS IV, and MIPS V) and the 64-bit MIPS64 (based on MIPS V). NEC,
Toshiba and SiByte (later acquired by Broadcom) each obtained licenses for the MIPS64 as soon as it was announced.
Philips, LSI Logic and IDT have since joined them. Success followed success, and today the MIPS cores are one of the
most-used "heavyweight" cores in the marketplace for computer-like devices (hand-held computers, set-top boxes, etc.),
with other designers fighting it out for other niches. Some indication of their success is the fact that Freescale (spun-off by
Motorola) uses MIPS cores in their set-top box designs, instead of their own PowerPC-based cores.

Since the MIPS architecture is licensable, it has attracted several processor start-up companies over the years. One of
the first start-ups to design MIPS processors was Quantum Effect Devices (see next section). The MIPS design team that
designed the R4300 started the company SandCraft, which designed the R5432 for NEC and later produced the SR71000,
one of the first out-of-order execution processors for the embedded market. The original DEC StrongARM team
eventually split into two MIPS-based start-ups: SiByte which produced the SB-1250, one of the first high-performance
MIPS-based systems-on-a-chip (SOC); while Alchemy Semiconductor (later acquired by AMD) produced the Au-1000
SoC for low-power applications. Lexra used a MIPS-like architecture and added DSP extensions for the audio chip market
and multithreading support for the networking market. Due to Lexra not licensing the architecture, two lawsuits were
started between the two companies. The first was quickly resolved when Lexra promised not to advertise their processors
as MIPS-compatible. The second (about MIPS patent 4814976 for handling unaligned memory access) was protracted,
hurt both companies' business, and culminated in MIPS Technologies giving Lexra a free license and a large cash
payment.

Two companies have emerged that specialize in building Multi-core devices using the MIPS architecture. Raza
Microelectronics Inc purchased the product line from failing Sandcraft and later produced devices that contained 8 CPU
cores that were targeted at the telecom and networking markets. Cavium Networks, originally a security processor vendor
also produced devices with 8 CPU cores for the same markets. Both of these companies designed their cores in-house, just
licensing the architecture instead of purchasing cores from MIPS.

4

Losing the Desktop

Among the manufacturers which have made computer workstation systems using MIPS processors are SGI, MIPS
Computer Systems, Inc., Whitechapel Workstations, Olivetti, Siemens-Nixdorf, Acer, Digital Equipment Corporation,
NEC, and DeskStation. Operating systems ported to the architecture include SGI's IRIX, Microsoft's Windows NT (until
v4.0), Windows CE, Linux, BSD, UNIX System V, SINIX and MIPS Computer Systems' own RISC/os.

There was speculation in the early 1990s that MIPS, and other powerful RISC processors would overtake the Intel
IA32 architecture. This was encouraged by the support of the first two versions of Microsoft's Windows NT for DEC
Alpha, MIPS and PowerPC - and to a lesser extent the Clipper architecture and SPARC. However, as Intel quickly
released faster versions of their Pentium class CPUs, Microsoft Windows NT v4.0 dropped support for anything but Intel
and Alpha. With SGI's decision to transition to the Itanium and IA32 architectures, use of MIPS processors on the desktop
has now disappeared almost completely[1].

See main article Advanced Computing Environment.

Embedded markets

Through the 1990s, the MIPS architecture was widely adopted by the embedded market, including for use in
computer networking/telecommunications, video arcade games, home video game consoles, computer printers, digital
set-top boxes, digital televisions, DSL and cable modems, and personal digital assistants.

The low power-consumption and heat characteristics of embedded MIPS implementations, the wide availability of
embedded development tools, and knowledge about the architecture means use of MIPS microprocessors in embedded
roles is likely to remain common.

Synthesizeable Cores for Embedded Markets

In recent years most of the technology used in the various MIPS generations has been offered as IP-cores
(building-blocks) for embedded processor designs. Both 32-bit and 64-bit basic cores are offered, known as the 4K and
5K respectively, and the design itself can be licensed as MIPS32 and MIPS64. These cores can be mixed with add-in
units such as FPUs, SIMD systems, various input/output devices, etc.

MIPS cores have been commercially successful, now being used in many consumer and industrial applications. MIPS
cores can be found in newer Cisco, Linksys and Mikrotik's routerboard routers, cable modems and ADSL modems,
smartcards, laser printer engines, set-top boxes, robots, handheld computers, Sony PlayStation 2 and Sony PlayStation
Portable. In cellphone/PDA applications, the MIPS core has been unable to displace the incumbent, competing ARM core.

Examples of MIPS-powered devices: Broadcom BCM5352E - WiFi router processor with 54g WLAN, fast Ethernet,
200 MHz, 16KB ins. 8KB data cache, 256B prefetch cache, MMU, 16-bit 100 MHz SDRAM controller, serial/parallel
flash, 5-port 100 Mbit/s Ethernet (switch), 16 GPIO, JTAG, 2xUART, 336-ball BGA. BCM 11xx, 12xx, 14xx - 64bit
"SiByte" MIPS line.

MIPS architecture processors include: IDT RC32438; ATI Xilleon; Alchemy Au1000, 1100, 1200; Broadcom
Sentry5; RMI XLR7xx, Cavium Octeon CN30xx, CN31xx, CN36xx, CN38xx and CN5xxx; Infineon Technologies
EasyPort, Amazon, Danube, ADM5120, WildPass, INCA-IP, INCA-IP2; NEC EMMA and EMMA2, NEC VR4181A,

5

VR4121, VR4122, VR4181A, VR5432, VR5500; Oak Technologies Generation; PMC-Sierra RM11200; QuickLogic
QuickMIPS ESP; Toshiba "Donau", Toshiba TMPR492x, TX4925, TX9956, TX7901.

MIPS based Supercomputers

One of the more interesting applications of the MIPS architecture is its use in massive processor count
supercomputers. Silicon Graphics (SGI) refocused its business from desktop graphics workstations to the high
performance computing (HPC) market in the early 1990s. The success of the company's first foray into server systems, the
Challenge series based on the R4400 and R8000, and later R10000, motivated SGI to create a vastly more powerful
system. The introduction of the integrated R10000 allowed SGI to produce a system, the Origin 2000, eventually scalable
to 1024 CPUs using its NUMAlink cc-NUMA interconnect. The Origin 2000 begat the Origin 3000 series which topped
out with the same 1024 maximum CPU count but using the R14000 and R16000 chips up to 700 MHz. Its MIPS based
supercomputers were withdrawn in 2005 when SGI made the strategic decision to move to Intel's IA-64 architecture.

An HPC startup introduced a radical MIPS based supercomputer in 2007. SiCortex, Inc. has created a tightly
integrated Linux cluster supercomputer based on the MIPS64 architecture and a high performance interconnect based on
the Kautz digraph topology. The system is very power efficient and computationally powerful. The most unique aspect of
the system is its multicore processing node which integrates six MIPS64 cores, a crossbar memory controller, interconnect
DMA engine, Gigabit Ethernet and PCI Express controllers all on a single chip which consumes only 10 watts of power,
yet has a peak floating point performance of 6 GFLOPs. The most powerful configuration, the SC5832, is a single cabinet
supercomputer consisting of 972 such node chips for a total of 5832 MIPS64 processor cores and 5.8 teraFLOPS of peak
performance.

CPU family

Pipeline MIPS

ibm
高亮

ibm
高亮

ibm
高亮

ibm
高亮

6

The first commercial MIPS CPU model, the R2000, was announced in 1985. It added multiple-cycle multiply and
divide instructions in a somewhat independent on-chip unit. New instructions were added to retrieve the results from this
unit back to the execution core; these result-retrieving instructions were interlocked.

The R2000 could be booted either big-endian or little-endian. It had thirty-two 32-bit general purpose registers, but
no condition code register (the designers considered it a potential bottleneck), a feature it shares with the AMD 29000 and
the DEC Alpha. Unlike other registers, the program counter is not directly accessible.

The R2000 also had support for up to four co-processors, one of which was built into the main CPU and handled
exceptions, traps and memory management, while the other three were left for other uses. One of these could be filled by
the optional R2010 FPU, which had thirty-two 32-bit registers that could be used as sixteen 64-bit registers for
double-precision.

The R3000 succeeded the R2000 in 1988, adding 32 KB (soon increased to 64 KB) caches for instructions and data,
along with cache coherency support for multiprocessor use. While there were flaws in the R3000's multiprocessor support,
it still managed to be a part of several successful multiprocessor designs. The R3000 also included a built-in MMU, a
common feature on CPUs of the era. The R3000, like the R2000, could be paired with a R3010 FPU. The R3000 was the
first successful MIPS design in the marketplace, and eventually over one million were made. A speed-bumped version of
the R3000 running up to 40 MHz, the R3000A delivered a performance of 32 VUPs (VAX Unit of Performance). The
R3000A was the processor used in the extremely successful Sony PlayStation. Third-party designs include Performance
Semiconductor's R3400 and IDT's R3500, both of them were R3000As with an integrated R3010 FPU. Toshiba's R3900
was a virtually first SoC for the early handheld PCs based on the Windows CE. A radiation-hardened variant for space
applications, the Mongoose-V, is a R3000 with an integrated R3010 FPU.

The R4000 series, released in 1991, extended the MIPS instruction set to a full 64-bit architecture, moved the FPU
onto the main die to create a single-chip microprocessor, and operated at a radically high internal clock speed (it was
introduced at 100 MHz). However, in order to achieve the clock speed the caches were reduced to 8 KB each and they
took three cycles to access. The high operating frequencies were achieved through the technique of deep pipelining (called
super-pipelining at the time). With the introduction of the R4000 a number of improved versions soon followed, including
the R4400 (1993) which included 16 KB caches, largely bug-free 64-bit operation, and support for a larger external level
2 cache.

MIPS, now a division of SGI called MTI, designed the lower-cost R4200, and later the even lower cost R4300,
which was the R4200 with a 32-bit external bus. The Nintendo 64 used a NEC VR4300 CPU that was based upon the
low-cost MIPS R4300i.[2]

7

bottom-side view of package of R4700 Orion with the exposed silicon chip, fabricated by IDT, designed by Quantum
Effect Devices

topside view of package for R4700 Orion

Quantum Effect Devices (QED), a separate company started by former MIPS employees, designed the R4600
"Orion", the R4700 "Orion", the R4650 and the R5000. Where the R4000 had pushed clock frequency and sacrificed
cache capacity, the QED designs emphasized large caches which could be accessed in just two cycles and efficient use of
silicon area. The R4600 and R4700 were used in low-cost versions of the SGI Indy workstation as well as the first MIPS
based Cisco routers, such as the 36x0 and 7x00-series routers. The R4650 was used in the original WebTV set-top boxes
(now Microsoft TV). The R5000 FPU had more flexible single precision floating-point scheduling than the R4000, and as
a result, R5000-based SGI Indys had much better graphics performance than similarly clocked R4400 Indys with the same
graphics hardware. SGI gave the old graphics board a new name when it was combined with R5000 in order to emphasize
the improvement. QED later designed the RM7000 and RM9000 family of devices for embedded markets like networking
and laser printers. QED was acquired by the semiconductor manufacturer PMC-Sierra in August 2000, the latter company
continuing to invest in the MIPS architecture. The RM7000 included an on-board 256 kB level 2 cache and a controller
for optional level three cache. The RM9xx0 were a family of SOC devices which included northbridge peripherals such as
memory controller, PCI controller, gigabit ethernet controller and fast IO such as a hypertransport port.

The R8000 (1994) was the first superscalar MIPS design, able to execute two integer or floating point and two
memory instructions per cycle. The design was spread over six chips: an integer unit (with 16 KB instruction and 16 KB
data caches), a floating-point unit, three full-custom secondary cache tag RAMs (two for secondary cache accesses, one
for bus snooping), and a cache controller ASIC. The design had two fully pipelined double precision multiply-add units,
which could stream data from the 4 MB off-chip secondary cache. The R8000 powered SGI's POWER Challenge servers
in the mid 1990s and later became available in the POWER Indigo2 workstation. Although its FPU performance fit
scientific users quite well, its limited integer performance and high cost dampened appeal for most users, and the R8000
was in the marketplace for only a year and remains fairly rare.

In 1995, the R10000 was released. This processor was a single-chip design, ran at a faster clock speed than the
R8000, and had larger 32 KB primary instruction and data caches. It was also superscalar, but its major innovation was
out-of-order execution. Even with a single memory pipeline and simpler FPU, the vastly improved integer performance,
lower price, and higher density made the R10000 preferable for most customers.

Recent designs have all been based upon R10000 core. The R12000 used improved manufacturing to shrink the chip
and operate at higher clock rates. The revised R14000 allowed higher clock rates with additional support for DDR SRAM
in the off-chip cache, and a faster front side bus clocked to 200 MHz for better throughput. Later iterations are named the
R16000 and the R16000A and feature increased clock speed, additional L1 cache, and smaller die manufacturing
compared with before.

8

Other members of the MIPS family include the R6000, an ECL implementation of the MIPS architecture which was
produced by Bipolar Integrated Technology. The R6000 microprocessor introduced the MIPS II instruction set. Its TLB
and cache architecture are different from all other members of the MIPS family. The R6000 did not deliver the promised
performance benefits, and although it saw some use in Control Data machines, it quickly disappeared from the mainstream
market.

MIPS Microprocessors

Model Frequency
(MHz)

Year Process
(µm)

Transistors
(Millions)

Die
Size
(mm²)

Pin
Count

Power
(W)

Voltage Dcache
(KB)

Icache
(KB)

L2
Cache

L3
Cache

R2000 8-16.67 1985 2.0 0.11 ? ? ? ? 32 64 None None

R3000 12-40 1988 1.2 0.11 66.12 145 4 ? 64 64
0-256
KB
External

None

R4000 100 1991 0.8 1.35 213 179 15 5 8 8 1 MB
External None

R4400 100-250 1992 0.6 2.3 186 179 15 5 16 16 1-4 MB
External None

R4600 100-133 1994 0.64 2.2 77 179 4.6 5 16 16 512 KB
External None

R5000 150-200 1996 0.35 3.7 84 223 10 3.3 32 32 1 MB
External None

R8000 75-90 1994 0.7 2.6 299 591+591 30 3.3 16 16 4 MB
External None

R10000 150-250 1996 0.35,
0.25 6.7 299 599 30 3.3 32 32 1-4 MB

External None

R12000 270-400 1998 0.25,
0.18 6.9 204 600 20 4 32 32 2 MB

External None

RM7000 250-600 1998
0.25,
0.18,
0.13

18 91 304 10, 6,
3

3.3, 2.5,
1.5 16 16 256 KB

Internal
1 MB
External

R14000 500-600 2001 0.13 7.2 204 527 17 ? 32 32 2-4 MB
External None

R16000 700-1000 2002 0.11 ? ? ? 20 ? 64 64
4-16
MB
External

None

Note: These specifications are for common processor models. Variations exist, especially in Level 2 cache.

Note: The R8000 has a unique cache hierarchy named 'Data Streaming Cache' where there is 16 KB of L1 data cache for
the integer chip with an external 4 MB L2 cache that served as the secondary unified cache for the integer chip but as the
L1 data cache for the floating point chip.

Summary of R3000 instruction set Opcodes

Instructions are divided into three types: R, I and J. Every instruction starts with a 6-bit opcode. In addition to the
opcode, R-type instructions specify three registers, a shift amount field, and a function field; I-type instructions specify
two registers and a 16-bit immediate value; J-type instructions follow the opcode with a 26-bit jump target.[3][4]

9

The following are the three formats used for the core instruction set:

Type -31- format (bits) -0-

R opcode (6) rs (5) rt (5) rd (5) shamt (5) funct (6)

I opcode (6) rs (5) rt (5) immediate (16)

J opcode (6) address (26)

MIPS Assembly Language

These are assembly language instructions that have direct hardware implementation, as opposed to pseudoinstructions
which are translated into multiple real instructions before being assembled.

• CONST denotes a constant ("immediate").
• In the following, the register numbers are only examples, and any other registers can be used in their

places.
• All the following instructions are native instructions.
• Opcodes and funct codes are in hexadecimal.
• The MIPS32 Instruction Set states that the word unsigned as part of Add and Subtract instructions, is a

misnomer. The difference between signed and unsigned versions of commands is not a sign extension (or lack
thereof) of the operands, but controls whether a trap is executed on overflow (e.g. Add) or an overflow is ignored
(Add unsigned). An immediate operand CONST to these instructions is always sign-extended.

Category Name Instruction syntax Meaning Format/opcode/fun
ct Notes

Add add $1,$2,$3 $1 = $2 + $3 R 0 2016
adds two
registers, executes
a trap on overflow

Add
unsigned addu $1,$2,$3 $1 = $2 + $3 R 0 2116

as above but
ignores an
overflow

Subtract sub $1,$2,$3 $1 = $2 - $3 R 0 2216
subtracts two
registers, executes
a trap on overflow

Subtract
unsigned subu $1,$2,$3 $1 = $2 - $3 R 0 2316

as above but
ignores an
overflow

Add
immediate addi $1,$2,CONST $1 = $2 + CONST (signed) I 816

Used to add
sign-extended
constants (and
also to copy one
register to another
"addi $1, $2, 0"),
executes a trap on
overflow

Add
immediate
unsigned

addiu
$1,$2,CONST $1 = $2 + CONST (signed) I 916

as above but
ignores an
overflow, CONST
still sign-extended

Arithmetic

Multiply mult $1,$2 LO = (($1 * $2) << 32) >> 32;
HI = ($1 * $2) >> 32;

R 0 1816 Multiplies two
registers and puts

10

the 64-bit result in
two special
memory spots -
LOW and HI.
Alternatively, one
could say the
result of this
operation is: (int
HI,int LO) =
(64-bit) $1 * $2 .
See mfhi and mflo
for accessing LO
and HI regs.

Divide div $1, $2 LO = $1 / $2 HI = $1 % $2 R

Divides two
registers and puts
the 32-bit integer
result in LO and
the remainder in
HI.[3]

Load
double
word

ld $1,CONST($2) $1 = Memory[$2 + CONST] I 2316

loads the word
stored from:
MEM[$2+CONS
T] and the
following 7 bytes
to $1 and the next
register.

Load word lw $1,CONST($2) $1 = Memory[$2 + CONST] I 2316

loads the word
stored from:
MEM[$2+CONS
T] and the
following 3 bytes.

Load
halfword lh $1,CONST($2) $1 = Memory[$2 + CONST]

(signed) I 2516

loads the halfword
stored from:
MEM[$2+CONS
T] and the
following byte.
Sign is extended
to width of
register.

Load
halfword
unsigned

lhu $1,CONST($2) $1 = Memory[$2 + CONST]
(unsigned) I As above without

sign extension.

Load byte lb $1,CONST($2) $1 = Memory[$2 + CONST]
(signed) I

loads the byte
stored from:
MEM[$2+CONS
T].

Load byte
unsigned lbu $1,CONST($2) $1 = Memory[$2 + CONST]

(unsigned) I As above without
sign extension.

Data
Transfer

Store
double
word

sd $1,CONST($2) Memory[$2 + CONST] = $1 I stores two words
from $1 and the
next register into:
MEM[$2+CONS
T] and the
following 7 bytes.
The order of the
operands is a

11

large source of
confusion.

Store
word sw $1,CONST($2) Memory[$2 + CONST] = $1 I

stores a word into:
MEM[$2+CONS
T] and the
following 3 bytes.
The order of the
operands is a
large source of
confusion.

Store half sh $1,CONST($2) Memory[$2 + CONST] = $1 I

stores the first
half of a register
(a halfword) into:
MEM[$2+CONS
T] and the
following byte.

Store byte sb $1,CONST($2) Memory[$2 + CONST] = $1 I

stores the first
fourth of a
register (a byte)
into:
MEM[$2+CONS
T].

Load
upper
immediate

lui $1,CONST $1 = CONST << 16 I

loads a 16-bit
immediate
operand into the
upper 16-bits of
the register
specified.
Maximum value
of constant is
216-1

Move
from high mfhi $1 $1 = HI R

Moves a value
from HI to a
register. Do not
use a multiply or a
divide instruction
within two
instructions of
mfhi (that action
is undefined
because of the
MIPS pipeline).

Move
from low mflo $1 $1 = LO R 0 1216

Moves a value
from LO to a
register. Do not
use a multiply or a
divide instruction
within two
instructions of
mflo (that action
is undefined
because of the
MIPS pipeline).

Move
from
Control

mfcZ $1, $2 $1 =
Coprocessor[Z].ControlRegister[
$2]

R Moves a 4 byte
value from
Coprocessor Z

12

Register Control register to
a general purpose
register. Sign
extension.

Move to
Control
Register

mtcZ $1, $2 Coprocessor[Z].ControlRegister[
$2] = $1 R

Moves a 4 byte
value from a
general purpose
register to a
Coprocessor Z
Control register.
Sign extension.

Load word
coprocess
or

lwcZ $1,CONST
($2)

Coprocessor[Z].DataRegister[$1
] = Memory[$2 + CONST] I

Loads the 4 byte
word stored from:
MEM[$2+CONS
T] into a
Coprocessor data
register. Sign
extension.

Store
word
coprocess
or

swcZ $1,CONST ($
2)

Memory[$2 + CONST] =
Coprocessor[Z].DataRegister[$1
]

I

Stores the 4 byte
word held by a
Coprocessor data
register into:
MEM[$2+CONS
T]. Sign
extension.

And and $1,$2,$3 $1 = $2 & $3 R Bitwise and

And
immediate andi $1,$2,CONST $1 = $2 & CONST I

Or or $1,$2,$3 $1 = $2 | $3 R Bitwise or

Or
immediate ori $1,$2,CONST $1 = $2 | CONST I

Exclusive
or xor $1,$2,$3 $1 = $2 ^ $3 R

Nor nor $1,$2,$3 $1 = ~ ($2 | $3) R Bitwise nor

Set on less
than slt $1,$2,$3 $1 = ($2 < $3) R

Tests if one
register is less
than another.

Logical

Set on less
than
immediate

slti $1,$2,CONST $1 = ($2 < CONST) I
Tests if one
register is less
than a constant.

Shift left
logical sll $1,$2,CONST $1 = $2 << CONST R

shifts CONST
number of bits to
the left (multiplies
by 2CONST)

Bitwise
Shift

Shift right
logical

srl $1,$2,CONST $1 = $2 >> CONST R shifts CONST
number of bits to
the right - zeros
are shifted in
(divides by
2CONST). Note that
this instruction
only works as
division of a two's

13

complement
number if the
value is positive.

Shift right
arithmetic sra $1,$2,CONST

R

shifts CONST
number of bits -
the sign bit is
shifted in (divides
2's complement
number by
2CONST)

Branch on
equal beq $1,$2,CONST if ($1 == $2) go to

PC+4*CONST I

Goes to the
instruction at the
specified address
if two registers
are equal. Conditional

branch

Branch on
not equal bne $1,$2,CONST if ($1 != $2) go to

PC+4*CONST I

Goes to the
instruction at the
specified address
if two registers
are not equal.

Jump j CONST goto address CONST J

Unconditionally
jumps to the
instruction at the
specified address.

Jump
register jr $1 goto address $1 R

Jumps to the
address contained
in the specified
register

Uncondition
al jump

Jump and
link jal CONST $31 = PC + 4; goto CONST J

For procedure call
- used to call a
subroutine, $31
holds the return
address; returning
from a subroutine
is done by: jr $31

NOTE: in the branching and jump instructions, the offset can be replaced by a label present somewhere in the code.

NOTE: that there is no corresponding "load lower immediate" instruction; this can be done by using addi (add immediate,
see below) or ori (or immediate) with the register $0 (whose value is always zero). For example, both addi $1, $0, 100 and
ori $1, $0, 100 load the decimal value 100 into register $1.

NOTE: An arithmetic operation with signed immediates differs from one with unsigned ones in that it does not throw an
exception. Subtracting an immediate can be done with adding the negation of that value as the immediate.

Pseudo instructions

These instructions are accepted by the MIPS assembler, however they are not real instructions within the MIPS
instruction set. Instead, the assembler translates them into sequences of real instructions.

Name instruction syntax Real instruction translation meaning

Load Address la $1, LabelAddr lui $1, LabelAddr[31:16]; ori $1,$1, $1 = Label Address

14

LabelAddr[15:0]

Load Immediate li $1,
IMMED[31:0]

lui $1, IMMED[31:16]; ori $1,$1,
IMMED[15:0]

$1 = 32 bit Immediate
value

Branch if greater than bgt if(R[rs]>R[rt]) PC=Label

Branch if less than blt if(R[rs]<R[rt]) PC=Label

Branch if greater than or
equal bge if(R[rs]>=R[rt])

PC=Label

branch if less than or equal ble if(R[rs]<=R[rt])
PC=Label

branch if greater than
unsigned bgtu if(R[rs]=>R[rt])

PC=Label

branch if greater than zero bgtz if(R[rs]>0) PC=Label

Some other important instructions

• nop (no operation) (machine code 0x00000000, interpreted by CPU as sll $0,$0,0)
• break (breaks the program, used by debuggers)
• syscall (used for system calls to the operating system)
• a full set of Floating point instructions for both single precision and double precision operands

Compiler Register Usage

Main article: calling convention#MIPS

The hardware architecture specifies that:

• General purpose register $0 always returns a value of 0 .
• General purpose register $31 is used as the link register for jump and link instructions.
• HI and LO are used to access the multiplier/divider results, accessed by the mfhi (move from high) and mflo

commands.

These are the only hardware restrictions on the usage of the general purpose registers.

The various MIPS tool-chains implement specific calling conventions that further restrict how the registers are used.
These calling conventions are totally maintained by the tool-chain software and are not required by the hardware.

Registers

Name Number Use Callee must preserve?

$zero $0 constant 0 N/A

$at $1 assembler temporary no

$v0–$v1 $2–$3 Values for function returns and expression evaluation no

$a0–$a3 $4–$7 function arguments no

$t0–$t7 $8–$15 temporaries no

$s0–$s7 $16–$23 saved temporaries yes

$t8–$t9 $24–$25 temporaries no

$k0–$k1 $26–$27 reserved for OS kernel no

15

$gp $28 global pointer yes

$sp $29 stack pointer yes

$fp $30 frame pointer yes

$ra $31 return address N/A

Registers that are preserved across a call are registers that (by convention) will not be changed by a system call or
procedure (function) call. For example, $s-registers must be saved to the stack by a procedure that needs to use them, and
$sp and $fp are always incremented by constants, and decremented back after the procedure is done with them (and the
memory they point to). By contrast, $ra is changed automatically by any normal function call (ones that use jal), and
$t-registers must be saved by the program before any procedure call (if the program needs the values inside them after the
call).

Simulators

Open Virtual Platforms (OVP) [1] includes the freely available simulator OVPsim, a library of models of processors,
peripherals and platforms, and APIs which enable users to develop their own models. The models in the library are open
source, written in C, and include the MIPS 4K, 24K and 34K cores. These models are created and maintained by Imperas
[2] and in partnership with MIPS Technologies have been tested and assigned the MIPS-Verified(tm) mark. The OVP site
also includes models of ARM, Tensilica and OpenCores/openRisc processors. Sample MIPS-based platforms include both
bare metal environments and platforms for booting unmodified Linux binary images. These platforms/emulators are
available as source or binaries and are fast, free, and easy to use. OVPsim is developed and maintained by Imperas and is
very fast (100s of million instructions per second), and built to handle multicore architectures. To download the MIPS
OVPsim simulators/emulators visit [3].

There is a freely available "MIPS32 Simulator" (earlier versions simulated only the R2000/R3000) called SPIM for
several operating systems (specifically Unix or GNU/Linux; Mac OS X; MS Windows 95, 98, NT, 2000, XP; and DOS)
which is good for learning MIPS assembly language programming and the general concepts of RISC-assembly language
programming: http://www.cs.wisc.edu/~larus/spim.html

EduMIPS64 is a GPL graphical cross-platform MIPS64 CPU simulator, written in Java/Swing. It supports a wide
subset of the MIPS64 ISA and allows the user to graphically see what happens in the pipeline when an assembly program
is run by the CPU. It has educational purposes and is used in some Computer Architecture courses in Universities around
the world. More info at http://www.edumips.org

MARS is another GUI based MIPS emulator designed for use in education, specifically for use with Hennessy's
Computer Organization and Design. More information is available at
http://courses.missouristate.edu/KenVollmar/MARS/

More advanced free MIPS emulators are available from the GXemul (formerly known as the mips64emul project)
and QEMU projects, which emulate not only the various MIPS III and higher microprocessors (from the R4000 through
the R10000), but also entire computer systems which use the microprocessors. For example, GXemul can emulate both a
DECstation with a MIPS R4400 CPU (and boot to Ultrix), and an SGI O2 with a MIPS R10000 CPU (although the ability
to boot Irix is limited), among others, as well as the various framebuffers, SCSI controllers, and the like which comprise
those systems.

16

Commercial simulators are available especially for the embedded use of MIPS processors, for example Virtutech
Simics (MIPS 4Kc and 5Kc, PMC RM9000, QED RM7000), VaST Systems (R3000, R4000), and CoWare (the
MIPS4KE, MIPS24K, MIPS25Kf and MIPS34K).

Examples of system calls (used by SPIM)

service Trap
code Input Output Notes

print_int $v0 =
1 $a0 = integer to print prints $a0 to standard output

print_float $v0 =
2 $f12 = float to print prints $f12 to standard

output

print_double $v0 =
3 $f12 = double to print prints $f12 to standard

output

print_string $v0 =
4 $a0 = address of first character

prints a character
string to standard
output

read_int $v0 =
5 integer read from standard

input placed in $v0

read_float $v0 =
6 float read from standard

input placed in $f0

read_double $v0 =
7 double read from standard

input placed in $f0

read_string $v0 =
8

$a0 = address to place string, $a1 = max string
length

reads standard input into
address in $a0

sbrk $v0 =
9 $a0 = number of bytes required $v0= address of allocated

memory
Allocates memory
from the heap

exit $v0 =
10

print_char $v0 =
11 $a0 = character (low 8 bits)

read_char $v0 =
12 $v0 = character (no line

feed) echoed

file_open $v0 =
13

$a0 = full path (zero terminated string with no
line feed), $a1 = flags, $a2 = UNIX octal file
mode (0644 for rw-r--r--)

$v0 = file descriptor

file_read $v0 =
14

$a0 = file descriptor, $a1 = buffer address, $a2
= amount to read in bytes

$v0 = amount of data in
buffer from file (-1 = error, 0
= end of file)

file_write $v0 =
15

$a0 = file descriptor, $a1 = buffer address, $a2
= amount to write in bytes

$v0 = amount of data in
buffer to file (-1 = error, 0 =
end of file)

file_close $v0 =
16 $a0 = file descriptor

Flags:

Read = 0x0, Write = 0x1, Read/Write = 0x2

OR Create = 0x100, Truncate = 0x200, Append = 0x8

17

OR Text = 0x4000, Binary = 0x8000

Trivia

• The rabbit in Super Mario 64 is named MIPS after the technology because the Nintendo 64 used it.

Notes

1. ^ SGI announcing the end of MIPS
2. ^ NEC Offers Two High Cost Performance 64-bit RISC Microprocessors
3. ^ a b MIPS R3000 Instruction Set Summary
4. ^ MIPS Instruction Reference

Further reading

• Patterson, David A; John L. Hennessy. Computer Organization and Design: The Hardware/Software Interface.
Morgan Kaufmann Publishers. ISBN 1-55860-604-1.

• Sweetman, Dominic. See MIPS Run. Morgan Kaufmann Publishers. ISBN 1-55860-410-3.
• Farquhar, Erin; Philip Bunce. MIPS Programmer's Handbook. Morgan Kaufmann Publishers. ISBN

1-55860-297-6.

See also

• DLX, a very similar architecture designed by John L. Hennessy (creator of MIPS) for teaching purposes
• Loongson, a MIPS-like processor architecture developed at Chinese Academy of Sciences
• MIPS-X, developed as a follow-on project to the MIPS architecture
• Mongoose-V, a radiation hardened version of the MIPS R3000 used in spacecrafts

External links

Wikibooks has a book on the topic of
MIPS Assembly

• Full overview of MIPS architecture.
• Patterson & Hennessy - Appendix A (PDF)
• summary of MIPS assembly language
• MIPS Instruction reference
• MIPS processor images and descriptions at cpu-collection.de
• A programmed introduction to MIPS assembly
• mips bitshift operators
• MIPS software user's manual

