
...

FT-MATRIX: A COORDINATION-AWARE
ARCHITECTURE FOR SIGNAL

PROCESSING
...

VECTOR-SIMD ARCHITECTURES OFFER HIGH PERFORMANCE IN SIGNAL-PROCESSING

APPLICATIONS BUT ARE INEFFICIENT AT THE COORDINATED EXPLOITATION OF HARDWARE

UNITS. THE FT-MATRIX ARCHITECTURE REFINES THE COOPERATION BETWEEN THE SCALAR

AND SIMD UNIT, ENHANCES COMMUNICATION AMONG SIMD LANES, AND ACHIEVES

DATA SHARING AMONG VECTOR MEMORY BANKS. EVALUATION RESULTS SHOW AN

AVERAGE PERFORMANCE GAIN OF 58.5 PERCENT AGAINST VECTOR-SIMD ARCHITECTURES

WITHOUT THE PROPOSED IMPROVEMENTS.

......Vector-SIMD architectures can
exploit data-level parallelism (DLP) while
maintaining real-time and low-power con-
straints.1 Moreover, vector-SIMD architec-
tures with a scalar unit (SU) and SIMD unit
(SIMDU) executing in parallel can further
improve overall performance. Examples in-
clude the AnySP2 and BBE3 architectures.
The SU is responsible for overall flow control,
scalar processing, and SIMDU execution. The
SIMDU, which comprises multiple lanes,
is responsible for computation-intensive
processing.

Given their wide usage, the overall per-
formance of vector-SIMD architectures
remains limited by inefficiency in coordinat-
ing different hardware units. This ineffi-
ciency has three aspects. The first is the
cooperation between the SU and SIMDU.
Although both tightly and loosely coupled
execution of the SU and SIMDU are
required, existing vector-SIMD architectures

lack efficient support for the loosely coupled
mode, leading to both performance degrada-
tion and a waste of hardware resources. The
second aspect is the communication among
SIMD lanes. Special data-accessing patterns
in signal-processing applications would usu-
ally result in area and time penalties on the
interlane communication unit of vector-
SIMD architectures. The third is data sharing
among multiple memory banks. Existing
data sharing schemes are either too simple to
be time efficient or too complex to be hard-
ware efficient.

To overcome the above inefficiencies, this
article proposes FT-Matrix, a coordination-
aware vector-SIMD architecture for signal
processing. FT-Matrix has greatly improved
the coordination of different hardware units
with three features: dynamic coupling execu-
tion (DCE), matrix-style communication,
and unaligned vector memory (UAVM)
access. In the first feature, the SU and

Shuming Chen

Yaohua Wang

Sheng Liu

Jianghua Wan

Haiyan Chen

Hengzhu Liu

Kai Zhang

Xiangyuan Liu

Xi Ning

National University of Defense

Technology, China

...

64 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

SIMDU can be dynamically configured to
execute in both tightly and loosely coupled
modes. This flexibility can improve the over-
all performance by increasing the utilization
of hardware resources. In the second feature,
the matrix-style communication comprises
the matrix template memory-based shuffle
unit and the multigrained matrix register file,
providing efficient support for data commu-
nication among SIMD lanes. Finally, the
local vector memory can efficiently support
the unaligned memory accessing, achieving
an efficient tradeoff between performance
and hardware cost. (For more information

on other approaches, see the “Related Work
in Signal Processing” sidebar.)

The importance of coordination
To gain valuable architectural inspirations,

we investigated several representative signal-
processing application kernels.

Requirement of both tightly and loosely
coupled execution

Vector-SIMD architectures with the SU
and SIMDU executing in parallel show a
tightly coupled execution of the SU and

..

Related Work in Signal Processing
One similar architecture enhancement to the dynamic coupling

execution feature lies in the SA-1500,1 which supports both the paral-

lel execution method and tightly coupled method between a strong-

ARM core and an attached media coprocessor. However, the concur-

rent execution of two different kernels is precluded. Efficient commu-

nication and control flow handling mechanisms are also not supported

in the tightly coupled mode.

Using special structures for interlane communication is not a new

concept. Many previous architectures adopted the SRAM-based shuf-

fle network and the matrix register file.2-4 For the shuffle unit, the

crossbar is broadly adopted by vector-SIMD processors. Raghavan

and Munaga proposed a customized crossbar in domain-specific vec-

tor-SIMD processors.4 Such designs yield a power-efficient solution.

However, they cannot support new shuffle operations for different

applications post fabrication. AnySP employs the SRAM cells to

replace flip flop at the cross point.2 However, it needs too large a

memory space to represent shuffle patterns. MRF can provide effi-

cient data accessing for a fixed matrix size.3 In the case of multiple

submatrices, MRF provides no performance gain. Compared with

existing architectures, novelties of our interlane communication struc-

ture include the compression of memory space in the SRAM-based

shuffle network and the flexible configuration of the multigrained

matrix register file (MMRF).

Vector memory has been widely used in embedded or media pro-

cessors.5-7 In these processors, each SIMD lane can access only its

private memory bank. This limitation introduces too many interlane

communication operations and impacts the system performance. The

GPU provides the gather-scatter instructions to share memory space

among SIMD lanes. However, this adds to the hardware complexity to

deal with multiple cases of bank conflicts. Unaligned vector memory

(UAVM) is a middle scheme between the private and sophisticated

gather and scatter methods, achieving a good tradeoff between the

performance and the hardware cost. ARM NEON technology also has

similar unaligned memory access support.8 However, the NEON tech-

nology aligns memory accesses by just half of the vector line, whereas

our UAVM can access the vector memory from an arbitrary byte,

which can greatly improve the overall performance with reasonable

hardware cost.

References
1. S. Santhanam et al., “A Low-Cost, 300MHz, RISC CPU with

Attached Media Processor,” IEEE J. Solid-State Circuits, vol.

33, no. 11, 1998, pp. 1829-1839.

2. M. Who et al., “AnySP: Anytime Anywhere Anyway Signal

Processing,” Proc. 36th Ann. Int’l Symp. Computer Architec-

ture (ISCA 09), 2009, pp. 128-139.

3. A. Shahbahrami, B. Juurlink, and S. Vassiliadis, “Versatility of

Extended Subwords and the Matrix Register File,” ACM

Trans. Architecture and Code Optimization, vol. 5, no. 1,

2008, article 5.

4. P. Raghavan and S. Munaga, “A Customized Cross-Bar for

Data Shuffling in Domain Specific SIMD Processors,” Proc.

Architecture of Computing Systems, 2007, pp. 57-68.

5. X. Yang et al., “A 64-Bit Stream Processor Architecture for

Scientific Applications,” Proc. 34th Ann. Int’l Symp. Com-

puter Architecture (ISCA 07), 2007, pp. 210-219.

6. M. Wen et al., “Multiple-Morphs Adaptive Stream

Architecture,” J. Computer Science and Technology, vol. 20,

2005, pp. 635-646.

7. K. Berkel and F. Heinle, “Vector Processing as an Enabler for

Software-Defined Radio in Handheld Devices,” EURASIP J.

Applied Signal Processing, vol. 16, 2005, pp. 2613-2625.

8. V.G. Reddy, Neon Technology Introduction, ARM Corp.,

2008.

...

NOVEMBER/DECEMBER 2014 65

SIMDU. This can provide efficient SU assis-
tant operations for the SIMDU. Vector ker-
nels such as string search and image rotation
can benefit from this tightly coupled struc-
ture, owing to the frequent SU assistant oper-
ations, such as data sharing and control flow
handling.

However, there are also vector kernels
such as fast Fourier transform (FFT), inverse

discrete cosine transform (IDCT), and quanti-
zation,4 which keep the SIMDU busy doing
intensive computations, while the SU stays
mostly idle, conducting only simple operations
such as variable initialization and loop control-
ling. Performance degradation and wasted
hardware resources are also seen in scalar ker-
nels, besides vector kernels, where the SIMDU
is relegated while the SU is being occupied.

From this analysis, it seems that if scalar
and vector kernels could run concurrently on
the SU and SIMDU, respectively, both per-
formance and resource utilization would be
improved. However, this requires exposure of
the parallelism between scalar and vector ker-
nels (PSVK). For independent scalar and vec-
tor kernels, the PSVK is obvious. Moreover,
most of the scalar kernels are chained with
vector kernels—such as in Resource Element
Mapping Demapping with FFT, Resource
Element Mapping with STBC (Space Time
Block Code) encoding,4 and the IDCT trans-
formation and quantization kernels with
reordering (IQ þ R).4 Motion estimation
kernels can also be divided into chained scalar
and vector kernels.

The chained structure exhibits abundant
PSVK with the help of the software pipelined
scheme. As Figure 1a shows, Resource Element
Mapping (REM in the figure) takes the result
of STBC as input. If we divide the input data
stream into a group of data blocks, we can
pipeline these two kernels as shown in Figure
1b. Thus, a large amount of PSVK is exposed.

With abundant PSVK exposed, a loosely
coupled execution of the SU and SIMDU
should also be supported, so that both scalar
and vector kernels can be executed concur-
rently on corresponding units.

Communication among SIMD lanes
Interlane communication operations

include register-level shuffle operations2 and
matrix-oriented data accessing patterns.5

Shuffle operations are usually conducted
on the shuffle unit. In traditional vector-
SIMD processors, shuffle units must preload
the shuffle patterns of applications into gen-
eral registers. This can consume a large
amount of register space. AnySP adopts an
SRAM-based crossbar to eliminate this prob-
lem.2 However, the SRAM-based method
can cause unacceptable area overhead by

STBC_encoding(**Signal,**Coeff, Block_length)

Signal+=Antenna_Num*Block_length*i

Loop Body:

for(i = 0; i<Coding_length/Block_length-1; i++)

{

REM(**Antenna, Block_length)

STBC_encoding(**Signal, **Coeff, Block_length)

Antenna+=Antenna_Num*Block_length*i

Signal+=Antenna_Num*Block_length*i

}

Epilogue:

REM(**Antenna, Block_length)

(b)

STBC_encoding(**Signal,**Coeff,Coding_length)

{

for(i = 0; i<Coding_length/SIMD_width; i++)

{
for(j = 0; j<Antenna_Num; j++)

for(k = 0; k<4; k++)

Antenna[j][i] += Signal[i][k] * Coeff[j][k])

}

}

REM(**Antenna, Coding_length)

{

for(j=0; j<Antenna_Num; j++)

{
for(i=0; i<Coding_length; i++)

{
Index = mapping_table[j][i]

Mapping_result[j][Index]=Antenna[j][i]
}

}

}

(a)

Prologue:

Figure 1. Parallelism exposed by pipeline execution. Chained SIMD and

scalar kernels (a). Pipelined execution (b).

..

SIGNAL PROCESSING

..

66 IEEE MICRO

increasing the SIMD width. An ideal shuffle
unit should eliminate the consumption of
registers with reduced area penalty.

Signal-processing applications contain a
large amount of matrix operations with
different matrix sizes, such as the 2 � 2 and
4 � 4 matrices in wireless communication
domain and the 8 � 8 matrices in video
processing applications. Matrix operations
cause a large amount of data rearrange over-
head resulting from the column-wise data-
accessing pattern. A matrix register file
(MRF),5 which supports both row-wise and
column-wise data accessing, can be a better
solution for efficient matrix operations.
However, an MRF can provide efficient sup-
port only for fixed-sized matrices. For differ-
ent-size matrices, MRF is used as general
registers. Because signal-processing applica-
tions have different matrix sizes, they should
support multiple-sized-matrix data accessing.

Unaligned vector memory access
Vector-SIMD architectures always adopt a

multibanked memory structure (vector mem-
ory) for a large memory bandwidth. However,

the irregular memory access seriously restricts
the available bandwidth. Although direct
memory access and MRF can regulate some
irregular memory accesses into regular ones,
irregular memory accesses remain that limit
the available memory bandwidth. After an
investigation of the signal-processing kernels
FIR (finite impulse response), Autocor, and
SAD (sum of absolute difference), we discov-
ered that the UAVM access, which lets the vec-
tor load and store instructions to start
accessing the vector memory from any byte
address, is the most typical irregular access
mode. In the FIR, Autocor, and SAD kernels,
the unaligned memory access occupies about
45 to 80 percent of the irregular memory
accesses. Thus, it is necessary to efficiently sup-
port the unaligned vector access.

Our evaluation informed a coordination-
aware architectural analysis, where the coor-
dination lies between the SU and SIMDU,
and among SIMD lanes and memory banks.

The FT-Matrix architecture
Figure 2 shows the FT-Matrix architec-

ture. The instruction fetch and dispatch

Instruction dispatch

SMTM

I-cache
Ins.

fetch

L
A
N
E

MMRF

S
P
E

S
A
G
U

D-cache

Vector arithmetic ins.Scalar ins. Vector memory
ins.

512
512

SIMD unit

V
A
G
U

Memory
banks

Scalar unit

512

512
2*323232

To EMI

To EMI

To DMA
512

MC

I-Buff

DCE

512

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

L
A
N
E

UAVM

Figure 2. FT-Matrix architecture block diagram. The instruction fetch and dispatch units supply

instructions to the scalar unit (SU), SIMD unit (SIMDU), and vector memory. (DCE: dynamic

coupling execution; DMA: direct memory access; I-Buff: instruction buffer; Ins.: Instruction;

MC: micro control unit; MMRF: multigrained matrix register file; SAGU: scalar address

generation unit; SMTM: shuffle unit with matrix template memory; SPE: scalar processing

element; UAVM: unaligned vector memory; VAGU: vector address generation unit.)

...

NOVEMBER/DECEMBER 2014 67

units, under the SU’s control, supply instruc-
tions to the SU, SIMDU, and vector mem-
ory. The SU contains a scalar processing
element and a scalar address-generation unit.
The SIMDU consists of 16 lanes. The func-
tion units in each lane are organized in a very
long instruction-word manner. The vector
memory contains multiple memory banks
and a vector address-generation unit.

Dynamic coupling execution
We introduce a DCE scheme that can

dynamically switch the execution of the SU
and SIMDU between tightly and loosely
coupled modes.

As Figure 2 shows, the cornerstone of
DCE is a micro control unit and an instruc-
tion buffer (I-Buff). The micro control unit
is responsible for SU assistant functions and
conducting instruction saving and issuing of
the I-Buff. The I-Buff is used to save vector
kernel instructions.

With these components, the FT-Matrix
architecture can be dynamically switched to a
loosely coupled mode in which the SU runs
as a single scalar core while the SIMDU
fetches instructions from I-Buff under the
micro control unit’s control. Vector kernel
instructions are prefetched into I-Buff. The
scalar and vector kernels can be processed
concurrently on corresponding units.

To support smooth switching between the
two modes, we introduce two special instruc-
tions: Start L and Wait. The default execu-
tion mode is the tightly coupled one. After
vector kernel instructions are prefetched into
the I-Buff, the Start L instruction instructs
the SIMDU to fetch instructions from I-Buff
under the guide of the micro control unit,
and then the entire architecture turns into
the loosely coupled mode. The Wait instruc-
tion forces the SU to keep querying the
SIMDU until all the lanes are idle. Then the
execution mode is turned back into the
tightly coupled one. Programmers can also
change the execution mode from loosely
coupled to tightly coupled by using
interrupts.

Matrix-style communication
The matrix-style communication com-

prises a shuffle unit with matrix template

memory (SMTM) and a multigrained matrix
register file (MMRF).

Shuffle unit with matrix template memory.
The SMTM (see Figure 2) comprises the
matrix template memory, the transform
logic, and the crossbar. An application’s com-
pressed shuffle patterns (CSPs) are prestored
in the template memory and selected by the
template memory index. The transform logic
decompresses a CSP into an extended shuffle
pattern, which drives the crossbar to shuffle
source data elements.

To improve the memory efficiency of
shuffle patterns, we adopt the binary coding
compression scheme, which compresses the
selection vector of each output port to its cor-
responding binary code. Besides, shuffle
patterns with different shuffle grains are com-
pressed separately. For a shuffle operation
with a word grain, the needed bits will be
compressed from 2N 2 to N logN

2 �1
� �

=4.
This scheme leads to high memory efficiency.

Multigrained matrix register file. The
MMRF supports both row-wise and col-
umn-wise accesses of multigrained matrices.
The MMRF consists of 16� 16 32-bit regis-
ters. It includes 16 row-vector registers and
16 column-vector registers. The MMRF can
be dynamically configured into one 16 � 16
matrix, four 8 � 8 matrices, and 16 4 � 4
matrices. As Figure 3 shows, when dealing
with 4 � 4 sized matrices, four elements of
independent result matrices can be generated
concurrently. Additional data alignment
operations, which are needed in traditional
vector-SIMD architectures, are eliminated.
The MMRF is implemented with a hierarch-
ical, fully customized design method.

Unaligned vector memory
The vector memory comprises several vec-

tor banks. With the help of UAVM, vector
data accesses can be started from an arbitrary
byte address rather than from the start of a
vector line.

To support UAVM, the possible addresses
for each vector bank can be in the current
line or the next line. Thus, we introduce
additional selection logic to make decisions
between two addresses. This simple selection
logic does not delay the vector memory’s

..

SIGNAL PROCESSING

..

68 IEEE MICRO

cycle time. We also need an input data reor-
der unit (IDRU) and an output data reorder
unit (ODRU), constructed with N-barrel
shifters (where N is the SIMD width), to cir-
cular-shift vector data elements. For the read
operation, the IRU right-circular shifts the
vector data elements to the corresponding
SIMD lanes; for the write operation, the vec-
tor data elements are left-circular shifted and
written to vector banks.

Chip implementation
We completed the FT-QMBase chip (see

Figure 4) with four FT-Matrix cores. FT-
QMBase was implemented in the 65 nm
technology, working at 500 MHz. The inter-
core communication mechanism was based
on our previous design.6 It implemented
peripheral equipment, including a DDR3
controller and serial rapid I/Os. Each FT-
Matrix core’s area was 25:67 mm2. The pro-
posed new features consumed a total area of
4.05 percent of each FT-Matrix core.

FT-Matrix programs were written in a
C-based formation with special pragma,
intrinsic functions, and libraries provided by
our in-house programming model. The cor-
responding compiler was built on the GCC

compiler, which automatically compiles
programs into SU and SIMDU instructions,
correspondingly.

Performance evaluation
We developed a cycle-accurate microarch-

itectural simulator for the FT-Matrix archi-
tecture, and we validated the simulator with
the real FT-Matrix core.

We compared the FT-Matrix architec-
ture’s performance with that of the baseline
vector-SIMD architecture, which did not
support new features proposed in the FT-
Matrix. To provide a reasonable comparison
with current vector-SIMD DSPs, we also
built three key features of the AnySP2 into
the baseline architecture, forming an AnySP-
like architecture. These features included
flexible function units, a swizzle network,
and a multiple output adder tree. Other fea-
tures of AnySP were not included because
they were orthogonal to the new FT-Matrix
features. We selected several representative
application kernels from the wireless com-
munication4 and video processing7 domains.
Table 1 lists the detailed parameters.

Figure 5 illustrates the FT-Matrix architec-
ture’s overall performance. Compared with

B1,1 B1,4B1,3B1,2

B2,1 B2,4B2,3B2,2

B3,1 B3,4B3,3B3,2

B4,1 B4,4B4,3B4,2

F1,1 F1,4F1,3F1,2

F2,1 F2,4F2,3F2,2

F3,1 F3,4F3,3F3,2

F4,1 F4,4F4,3F4,2

D1,1 D1,4D1,3D1,2

D2,1 D2,4D2,3D2,2

D3,1 D3,4D3,3D3,2

D4,1 D4,4D4,3D4,2

H1,1 H1,4H1,3H1,2

H2,1 H2,4H2,3H2,2

H3,1 H3,4H3,3H3,2

H4,1 H4,4H4,3H4,2

A1,1 A1,4A1,3A1,2

A2,1 A2,4A2,3A2,2

A3,1 A3,4A3,3A3,2

A4,1 A4,4A4,3A4,2

E1,1 E1,4E1,3E1,2

E2,1 E2,4E2,3E2,2

E3,1 E3,4E3,3E3,2

E4,1 E4,4E4,3E4,2

G1,1 G1,4G1,3G1,2

G2,1 G2,4G2,3G2,2

G3,1 G3,4G3,3G3,2

G4,1 G4,4G4,3G4,2

C1,1 C1,4C1,3C1,2

C2,1 C2,4C2,3C2,2

C3,1 C3,4C3,3C3,2

C4,1 C4,4C4,3C4,2

I 1,1 J1,1 K 1,1 L 1,1

A1,1 A1,2 A1,3 A1,4 C1,1 C1,2 C1,3 C1,4 E1,1 E1,2 E1,3 E1,4 G1,1 G1,2 G1,3 G1,3

B1,1 B2,1 B3,1 B4,1 D1,1 D2,1 D3,1 D4,1 F1,1 F2,1 F3,1 F3,1 H1,1 H2,1 H3,1 H4,1

Figure 3. Part of matrix multiplication with the MMRF. Four elements of result matrices are

generated concurrently, eliminating unnecessary data alignment operations.

...

NOVEMBER/DECEMBER 2014 69

the baseline and AnySP-like architecture, the
average performance gain is approximately
58.5 and 30.6 percent, respectively.

Comparison with the AnySP-like architecture
As Figure 5 shows, FT-Matrix performs

better than the AnySP-like architecture. This
is mainly because of the DCE feature, which
can hide the execution time of scalar kernels.
Features such as MMRF and UAVM further
improve FT-Matrix’s performance by reduc-
ing memory access and shuffle operations.
Additionally, because most of the fused opera-

tions in signal-processing applications are
multiply-add, the MAC (multiply-accumulate
operation) unit in each SIMD lane of FT-
Matrix can well support the multiply-add
operations and compensate for the lack of
flexible function units. As for SMTM, it is
functionally equal to the swizzle network in
the AnySP-like architecture. One exception is
the intraprediction (Intra) kernel, in which
the fused operations such as shuffle-add and
add-shift can well accelerate the overall per-
formance, whereas FT-Matrix supports only
the multiply-add operation. FT-Matrix does

2 mm

14 mm

Figure 4. The FT-QMBase chip. The chip’s layout (a). A photograph that shows FT-QMBase is

implemented on a 14� 12 ¼ 168 mm2 die in a 65-nm process (b) is the chip package.

Table 1. Kernel parameters from our performance comparison of the FT-Matrix

and the baseline vector-SIMD architecture.

Application Description

Fast Fourier transform and resource element

demap (FFTþ RED)

FFT: 2,048-point Radix-2

1,200 subcarriers, 12 symbols

Space Time Block Code encoding and resource

element map (STBCþ REM)

STBC: 4T4R antennae

1,200 subcarriers, 12 symbols

Motion estimation 1 ref-frame with full search

Block size: 16� 16

Inverse discrete cosine transform, quantilization,

and reorder (IQþ R)

4� 4 macro block

Multiple input, multiple output decoding and

deinterleaving (MIMOþ DeInt)

4T4R, 14,400 resource elements

Lookup-table-based mapping

Intraprediction (Intra) 9 models with 4� 4 luma block

Subpixel interpolation (SPI) 4� 4 macro-block 1/2- or 1/4-pixel

interpolation

..

SIGNAL PROCESSING

..

70 IEEE MICRO

not support the flexible function unit because
of its complex compiler support.

Performance gain of architecture novelties
In this section, we describe performance

gains of architecture novelties.

The DCE. The DCE scheme can well exploit
the parallelism between scalar and vector ker-
nels, while maintaining the efficiency of the
traditional tightly coupled execution. The per-
formance gain of the loosely coupled mode is
affected by the overlap ratio of scalar and vec-
tor kernels, because scalar and vector kernels
can execute only in a sequential manner in the
baseline architecture. Thus, the equality of
execution time for scalar and vector kernels is
important to the final performance gain; the
closer they are, the higher the speedup that
can be achieved. As Figure 5 shows, the execu-
tion time of the REM and R is about 75 and
80 percent of STBC and IQ, respectively,
leading to high performance gain.

The SMTM. The performance gain of
SMTM is mainly affected by the amount of
shuffle operations needed in application ker-
nels. Compared with FFT, kernels such as
STBC and multiple input, multiple output
(MIMO) need only a few shuffle operations,
thanks to MMRF’s help, and the speedup by
SMTM is a little smaller. Video applications
such as SPI, IQ þ R, motion estimation,
and intraprediction (Intra-Pre) have a large
amount of irregular data accesses and multi-
ple data grains, leading to a large amount
of shuffle operations. Therefore, SMTM
can give high performance gain. In our
experiment, the speedup of motion estima-
tion and Intra is about 15 and 18 percent,
respectively.

The MMRF. MMRF can exhibit high per-
formance gain for applications with both col-
umn-wise and row-wise accesses, such as the
IQ þ R, MIMO þ DeInt, and SPI kernels.
IQ þ R and MIMO þ DeInt have a larger

2.5

DCE SMTM MMRF UAVM

A: Baseline

B: AnySP-like

C: FT-Matrix

N
or

m
al

iz
ed

 s
p

ee
d

up

2.0

1.5

1.0

0.5

A B C A B C A B C A B C A B C A B C A B

SPIIntra
MIMO
&DelntME IQ&R

C

FFT
&RED

STBC
&RM

Figure 5. Overall performance of the FT-Matrix architecture. The average performance gain was approximately 58.5 percent

compared with the baseline and 30.6 percent compared to the AnySP-like architecture.

...

NOVEMBER/DECEMBER 2014 71

performance gain than SPI because of the
diverse matrix sizes. For other applications,
the relatively low performance gain is due to
their lack of column-wise accesses.

The UAVM. The advantage of UAVM is
affected by the amount of unaligned memory
accesses. Motion estimation achieves a per-
formance gain of 25 percent because of the
massive sliding accesses to block data ele-
ments. In other kernels, such as Intra, SPI,
and IQ þ R, the proportion of unaligned
memory accesses is relatively smaller. Their
speedups by UAVM are between 5 and 13
percent. In wireless communication applica-
tions, the STBC kernel must rearrange the
data elements to keep each antenna’s data
stream continuous. The UAVM can exhibit
high performance gain. The memory access
type in FFT and MIMO kernels are aligned.
Thus, the role of UAVM is weak for these
two kernels.

Interferences among architecture novelties
Because the DCE feature aims at the

cooperation between the SU and SIMDU, it
is orthogonal with features such as SMTM,
MMRF, and UAVM. However, the MMRF
and UAVM can greatly reduce the number of
shuffle operations, which will otherwise be
done on the SMTM. This interference is
profitable. As for the MIMO kernel, to fulfill
the column-wise data accesses, it needs 13
register accesses and 20 shuffle operations.
With the help of MMRF, only eight register
access operations are enough. An additional
performance gain of 25 percent can be
obtained, compared with barely the support
of SMTM. A similar benefit can be obtained
with the help of UAVM. As for IQ þ R, the
additional performance gain by using
UAVM with SMTM is 10 percent larger
than using only the SMTM feature.

O ur evaluation results show that the FT-
Matrix architecture greatly improves

the performance of traditional vector-SIMD
architectures. In future work, we will extend
the coordination-aware research among mul-
ticores, which includes efficient intercore
communication and work distribution. MICR O

Acknowledgments
We thank Haiyan Sun, Zhengtao Li,

Yuanxi Peng, Shuwei Sun, Shenggang Chen,
Zhong Liu, and Liu Yang for their efforts on
this work. This work is supported by the
Core Electronic Devices, High-End General
Purpose Processor, and Fundamental System
Software of China (no. 2009ZX01034-001-
001-006).

..
References
1. Y. Lee et al., “Exploring the Tradeoffs

Between Programmability and Efficiency in

Data-Parallel Accelerators,” Proc. 38th Ann.

Int’l Symp. Computer Architecture (ISCA

11), 2011, pp. 129-140.

2. M. Who et al., “AnySP: Anytime Anywhere

Anyway Signal Processing,” Proc. 36th

Ann. Int’l Symp. Computer Architecture

(ISCA 09), 2009, pp. 128-139.

3. C. Rowen et al., “The World’s Fastest DSP

Core: Breaking the 100 GMAC/s Barrier,”

Proc. 23rd Hot Chips Conf., 2011.

4. Physical Channels and Modulation, 3GPP

TS 36.211, European Telecommunications

Standards Institute, www.3gpp.org/ftp

/specs/archive/36 series/36.211.

5. A. Shahbahrami, B. Juurlink, and S. Vassilia-

dis, “Versatility of Extended Subwords and

the Matrix Register File,” ACM Trans. Archi-

tecture and Code Optimization, vol. 5, no. 1,

2008, article 5.

6. S. Chen and J. Wan, “YHFT-QDSP: High-

Performance Heterogeneous Multi-Core

DSP,” J. Computer Science and Technol-

ogy, vol. 25, 2010, pp. 214-224.

7. T. Wiegard et al., “Overview of the H.264/

AVC Video Coding Standard,” IEEE Trans.

Circuits and Systems for Video Technology,

vol. 13, no. 7, 2003, pp. 560-576.

Shuming Chen is a professor at the
National University of Defense Technology,
China. His research interests focus on VLSI
design and the effects of radiation on inte-
grated circuits. Chen has a PhD in com-
puter science from the National University
of Defense Technology, China.

..

SIGNAL PROCESSING

..

72 IEEE MICRO

Yaohua Wang is an associated professor at
the National University of Defense Technol-
ogy, China. His research interests include
microarchitecture and signal processing.
Wang has a PhD in electronic science and
technology from the National University of
Defense Technology, China.

Sheng Liu is an associated professor at the
National University of Defense Technology,
China. His research focuses on memory sys-
tems. Liu has a PhD in electronic science
and technology from the National Univer-
sity of Defense Technology, China.

Jianghua Wan is an associated professor at
the National University of Defense Technol-
ogy, China. His research focuses on VLSI
design. Wan has a PhD in computer science
from the National University of Defense
Technology, China.

Haiyan Chen is a professor at the National
University of Defense Technology, China.
Her research focuses on memory design.
Chen has an MS in computer science from
the National University of Defense Technol-
ogy, China.

Hengzhu Liu is a professor at the National
University of Defense Technology, China.
His research interests include VLSI design
and built-in self-test. Liu has a PhD in com-
puter science from the National University
of Defense Technology, China.

Kai Zhang is a PhD student at the National
University of Defense Technology, China.
His research focuses on VLSI design. Zhang
has a PhD in electronic science and technol-
ogy from the National University of
Defense Technology, China.

Xiangyuan Liu is an associated professor
at the National University of Defense
Technology, China. His research focuses on
circuit design. Liu has a PhD in electronic

science and technology from the National
University of Defense Technology, China.

Xi Ning is a PhD student at the National
University of Defense Technology, China.
His research focuses on microwave solid-cir-
cuit design. Ning has an MS in electronic
science and technology from the National
University of Defense Technology, China.

Direct questions and comments about this
article to Shuming Chen, College of Com-
puter Science and Technology on Parallel
and Distributed Processing Laboratory,
National University of Defense Technology,
Changsha, Hunan, P.R. China, 410073;
smchen@nudt.edu.cn.

...

NOVEMBER/DECEMBER 2014 73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

