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The volume and complexity of data processed by today’s personal computers are increasing

exponentially, placing incredible demands on the microprocessors. In the meantime, computing

performance that can be achieved by increasing the clock speed of a microprocessor is reaching

to physical limits thus making the architectural solutions more prominent. Due to this an important

architectural feature is added to recent microprocessors, single instruction multiple data (SIMD),

which is a set of instructions that can speed up an application performance by allowing basic

operation to be performed on multiple data elements in parallel with fewer instructions.

The SIMD computational technique was introduced in the IA-32 Intelw architecture with MMX

technology and then further enhanced with Intel’s introduction of streaming SIMD extensions

(SSE), SSE 2 (SSE2) and SSE 3 (SSE3). Although programming using these SIMD extensions

enables software to achieve higher performance, several exiting scientific applications are not

affected. This paper gives an overview of SIMD multimedia extensions. The features of these

extensions are introduced. Available methods for programming with multimedia instruction sets

are discussed. It also reviews recent trends to use multimedia extensions to accelerate many appli-

cations such as multimedia, scientific and engineering applications, and argues for further use in

other significant computationally intensive applications.
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extensions; instructions
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1. INTRODUCTION

A variety of multimedia processing algorithms are used in

media processing environments for capturing, manipulating,

storing and transmitting multimedia objects such as text,

handwritten data, 2D/3D graphics and audio objects. The

increasing number of multimedia applications produces a

commensurate increase in demand for cost-effective multi-

media processing. Traditionally, media processing was

implemented in expensive custom hardware specialized for

specific applications (e.g. speech, video and graphics) [1,

2]. Advances in conventional microprocessor design now

permit offloading some functionality to a general-purpose

processor, possibly sacrificing performance in return for

reduced cost. The key is to minimize this performance degra-

dation, potentially by adding architectural support for media

processing.

Multimedia instruction set architecture (ISA) extensions to

modern microprocessor have been developed to allow some

basic operations to be performed simultaneously on multiple

items in such a set, which means that achieving higher per-

formance by processing more data with fewer instructions.

This is done by supporting single instruction multiple data

(SIMD) parallel processing across multiple data elements

within specially enhanced processor registers. By providing

this support, these extensions attempt to capture some of the

potential speed-up due to the parallel nature of these multime-

dia algorithms.

Beginning with the Pentium II and Pentium with Intel

MMX technology processor families, four extensions have

been introduced to the IA-32 architecture (Intel architecture)

to permit IA-32 processors to perform SIMD operations.

These extensions include the MMX technology, streaming
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SIMD extensions (SSE) extensions, streaming SIMD extensions

2 (SSE2) extensions and streaming SIMD extensions 3 (SSE3)

extensions. Each of these extensions provides a group of

instructions that perform SIMD operations on packed integer

and/or packed floating-point data elements contained in the

64-bit MMX or the 128-bit XMM registers.

These SIMD multimedia extensions are not a technology

limited to the Intel x86 architecture. Other vendors offer

similar and possible binary compatible technologies

(Table 1). For example, AMD offers SIMD instructions via

its 3DNow! Instruction set. IBM and Apple Computer offer

a floating-point and integer SIMD instruction set in AltiVec

technology. A thorough survey and comparison among all

these multimedia instruction sets are reported by Slingerland

and Smith [3]. They compare the instruction set design in

detail (first comparing integer, then floating point and finally

data-type-independent functionality).

Just as many other technologies, multimedia ISA extensions

are not yet used to their full potential, even though a new gene-

ration is going to appear soon. Recently, some papers [4, 5]

were written to argue scientists, software developers and

professionals to use these instructions technologies in their

implementation to get high benefit of using modern CPUs.

Since the programs that use SIMD instructions can run

much faster than their scalar counterparts [6]. In the following

sections, the SIMD model will be discussed in more details, as

well as, the most common supporting technologies such as

MMX, its extensions (SSE, SSE2 and SSE3), 3DNow! and

AltiVec, with the main focus will go to the Intel’s multimedia

ISA extensions (MMX, SSE, SSE2 and SSE3) and their usage

to improve the performance of other applications rather than

those were intended for.

This review paper, in contrast to other survey papers, is the

first review that introduces the Intel’s SIMD extensions in

more detail and that does a detailed overview of the recent

research efforts to use these extensions. The applications that

have recently benefited from these multimedia extensions are

reported. It discusses the problems that prevent of using the mul-

timedia extensions extensively such as the lack of compilers

support. Some solutions for these problems and future pers-

pectives to improve the performance of many other computa-

tionally intensive applications are also suggested in this paper.

The rest of the paper is organized as follows: Section 2 gives

an overview of SIMD technique with detailed information

about current supporting technologies. Section 3 covers the

state-of-the-art of using Intel’s SIMD multimedia extensions

to speed up the computations of several applications. Con-

siderations for code implementation and programming

environment are outlined in Section 4. Future research direc-

tions to improve the performance of other applications based

on SIMD extensions are introduced in Section 5 and finally,

the conclusions are given in Section 6.

2. SIMD TECHNIQUE

SIMD mode represents one of the earliest styles of parallel

processing. It is the simplest method of parallelism and now

becoming the most common. SIMD aptly encapsulates the

parallel processing model. In most cases, the SIMD means

the same as vectorization [7]. The basic idea is to operate

the same instruction sequence simultaneously on large

number of discrete data sets. Figure 1 shows a typical SIMD

computation [8]. Two sets of four packed data elements (X0,

X1, X2 and X3 and Y0, Y1, Y2 and Y3) are operated on in

parallel with the same operation being performed on each cor-

responding pair of data elements. The results of the four par-

allel computations are stored as a set of four packed data

elements. In this way, computation with SIMD enables pro-

cessors supporting SIMD technique to execute one instruction

on multiple data points concurrently, which increase the

amount of data that can be processed in a given time interval.

Even though SIMD techniques have not found their way

into ubiquitous use, they have not completely died out.

Because, SIMD architectures still make a lot of sense for

special applications, which are inherently parallelizable tasks

Table 1. Microprocessors with SIMD technology

Manufacturer Microprocessor Name of the technology

Intel Pentium MMX/II MMX (MultiMedia

eXtensions)

Pentium III/Xeon MMX, SSE (Streaming

SIMD Extensions)

Pentium IV MMX, SSE, SSE2

(Streaming SIMD

Extensions 2)

PXA XScale

Pentium IV with

HT technology

MMX, SSE, SSE2, SSE3

(Streaming SIMD

Extensions 3)

HP PA-RISC MAX-2 (MultiMedia

Acceleration eXtensions)

AMD K6/K6-2/K6-III MMX/3DNow!

Athlon Extended MMX/3DNow!

Compaq

(digital)

Alpha MVI (Motion Video

Instruction)

Motorola PowerPC G4/G5 Velocity Engine (AltiVec)

SGI MIPS MDMX (MIPS Digital

Media eXtensions)

Sun SPARC VIS (Visual Instruction Set)

ARM ARMv6 NEON

PPC970 VMX

IBM P6 VMX (with some extensions)

BG/L and BG/P Double hummer extensions

(two-way float/double

SIMD)

Sony/Toshiba Cell (PPE) AltiVec
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and require a great deal of independent data computation.

These applications include 3D graphics, image processing,

speech recognition, scientific applications, database searches

and any other applications having such inherent parallelism.

In the last few years, many graphics processing units support-

ing SIMD technique have been designed to enhance the per-

formance of these applications [9–11].

2.1. MMX technology

The MMX technology [12] was introduced in the later

fifth-generation Pentium processors as a kind of add-on that

improves image manipulation, encryption, video com-

pression/decompression and I/O processing. It was originally

designed to accelerate the multimedia and communication

applications. Since it exploits the parallelism inherent in

many of these applications using SIMD technique, yet main-

tains full compatibility with all existing IA microprocessors,

operating systems and applications. MMX technology

usually delivers 1.5 to 2 times speedup for the multimedia

and communications applications in comparison to running

on the same processor but without using MMX technology

[13, 14]. MMX technology defines a simple and flexible

SIMD execution model to handle 64-bit packed integer data

[15, 16]. This model adds the following features to IA-32

architecture, while maintaining backwards compatibility

with all IA-32 applications and operating-system code:

(i) Eight 64-bit data registers, called MMX registers

(MM0–MM7).

(ii) Four MMX data types (packed bytes, packed words,

packed double words and quad word).

(iii) Fifty-seven MMX instructions.

2.1.1. MMX registers

The eight 64-bit general-purpose registers of the MMX archi-

tecture can be directly addressed within the assembly by desig-

nating the register names MM0–MM7 in MMX instructions.

These registers are used to hold MMX data only, and cannot

be used to hold addresses nor are they suitable for calculations

involving addresses. Although MM0–MM7 appear as

separate registers in the Intel Architecture, the Pentium pro-

cessors alias these registers with the floating point unit’s

(FPU) registers (ST0–ST7). Each of the eight MMX 64-bit

registers is physically equivalent to the lower order 64-bits

of each of the FPU’s registers as shown in Fig. 2. The

MMX registers overlay the FPU registers in much the same

way that the 16-bit general-purpose registers overlay the

32-bit general-purpose registers.

2.1.2. The MMX data types

The MMX technology defines four different packed data

types: an 8-byte array, a four-word array, a two-element

double word array and a quadword object. Each element

within the packed data type is a fixed-point integer. The

decimal point of the fixed-point values is implicit and is left

for the user to control for maximum flexibility. An MMX reg-

ister processes one of these four data types as shown in Fig. 3.

As an example, graphics pixel data are generally rep-

resented in 8-bit integers, or bytes. With MMX technology,

eight of these pixels are packed together in a 64-bit quantity

and moved into an MMX register. When an MMX instruction

executes, it takes all eight of the pixel values at once from the

FIGURE 3. The MMXTM technology packed data types.

FIGURE 1. SIMD execution model.

FIGURE 2. MMX and FPU register aliasing [12].
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MMX register, performs the arithmetic or logical operation on

all eight elements in parallel, and writes the result into an

MMX register.

2.1.3. MMX ISA

MMX defines a set of instructions (57 MMX instructions) that

perform parallel operations on multiple data elements packed

into 64-bits. These 57 instructions cover several functional

areas including:

(i) basic arithmetic operations such as add, subtract, mul-

tiply, arithmetic shift and multiply-add;

(ii) comparison operations;

(iii) conversion instructions to convert between the new

data types: pack data together, and unpack from

small to larger data types;

(iv) logical operations such as AND, AND NOT, OR and

XOR;

(v) shift operations;

(vi) data instructions for MMX register-to-register trans-

fers, or 64 and 32-bit load/store to memory and

(vii) state instruction to handle MMX to floating point

transitions.

Arithmetic, comparison and shift instructions are designed

to support the different packed integer data types; these

instructions have a different opcode for each supported data

type. As the MMX registers overlay the FPU registers, the

FPU and MMX instructions cannot be mixed in the same com-

putation sequence (i.e. concurrently). Executing of an MMX

instruction sequence can be start at any time. In addition, to

return the FP (floating point) stack to a sane state after

MMX operations, an exit MMX machine state (EMMS)

instruction must be used. This instruction resets the FPU so

a new sequence of FPU calculations may be begun. The

CPU does not save the FPU state across the execution of the

MMX instructions; executing EMMS clears all the FPU regis-

ters. Because saving FPU state is very expensive, and the

EMMS instruction is quite slow, it is not a good idea to fre-

quently switch between the MMX and FPU calculations.

Instead, the execution of MMX and FPU instructions should

be at different times during program’s execution. Moreover,

all MMX instructions, except the EMMS instruction, refer-

ence and operate on two operands: the source and the destina-

tion operand. The first operand is the destination and the

second operand is the source. The instruction overwrites the

destination operand with the result. Complete coverage of

all these instructions can be found in [17, 18].

An interesting feature of the architecture is saturation arith-

metic [19]. During the normal addition of unsigned integers,

an overflow condition typically results in a truncated value

(often called wraparound arithmetic). This means, adding

two large values may give a result smaller than the addends.

In applications such as computer graphics, image processing

and data compression, this may create anomalies: adding

two darker shade values may result in a lighter shade value;

subtracting two lighter shade values may result in a darker

shade value! To fix this problem, saturation arithmetic is

used which sets the result to the largest value in the range of

the data type in case of overflow. Similarly, during an under-

flow, the result is set to the smallest value in the range of the

data type. The MMX instructions support signed and unsigned

saturation arithmetic in addition to the traditional, wraparound

arithmetic. Simple examples demonstrating the essentials of

SIMD programming using MMX instructions are given in

[20]. Also, Peleg and Weiser [12] provide a comprehensive

discussion on the rationale, design and applications of the

MMX technology.

2.2. Streaming SIMD Extensions (SSE)

SSE was introduced by Intel in Pentium III processor family.

These extensions are an update to the MMX technology.

Therefore, processors supporting SSE also support the original

MMX instructions. This means that standard MMX-enabled

applications run as they did on MMX-only processors. SSE

extensions expand the SIMD execution model by adding

facilities for handling packed and scalar single-precision

floating-point values contained in 128-bit registers.

2.2.1. SSE data types

SSE extensions introduced one data type, the 128-bit packed

single-precision floating-point data type, to the IA-32 architec-

ture as shown in Fig. 4. This data type consists of four IEEE

32-bit single-precision floating-point values packed into

double quadword. This 128-bit packed single-precision

floating-point data type is operated on in the XMM registers

or in memory. More information can be found in [8].

2.2.2. SSE programming environment and instruction set

SSE extensions add some other registers to the execution

environment over those of MMX as shown in Fig. 5, these

registers are:

(i) XMM registers: These eight 128-bit registers are used

to operate on packed or scalar single-precision

floating-point data. These registers can be accessed

directly using the names XMM0–XMM7; and they

can be accessed independently from x87 FPU, MMX

registers and from the general-purpose registers.

They can only be used to perform calculations on

data; and cannot be used to address memory.

FIGURE 4. 128-bit packed single-precision floating-point data type.
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(ii) MXCSR registers: This is a 32-bit register and contains

control and status information for SIMD floating-point

operations.

(iii) MMX registers: These eight registers are used to

perform operations on 64-bit packed integer data.

They are also used to hold operands for some oper-

ations performed between the MMX and XMM

registers.

(iv) General-purpose registers: As mentioned before, the

MMX and XMM registers cannot be used to address

memory, eight 32-bit general-purpose registers are

introduced to SSE mode to address operands in

memory. The general-purpose registers are also used

to hold operands for some SSE instructions.

(v) EFLAGS register: This 32-bit register is used to record

the result of some comparison operations.

The SSE extensions consist of 70 new instructions that can

operate on the XMM registers, MMX registers and/or

memory. Intel Corporation [17, 18] provides a detailed descrip-

tion of these instructions, which can be divided into four

categories:

(i) SIMD single-precision floating-point instructions that

operate on packed and single-precision floating-point

values located in XMM registers and/or memory.

(ii) MXCSR state management instructions that allow

saving and restoring the state of the MXCSR control

and status register.

(iii) The 64-bit SIMD integer instructions that perform

additional operations on packed byte, words or double-

word contained in MMX registers.

(iv) Cacheability control, prefetch and instruction ordering

instructions, which provide control over the caching of

non-temporal data when storing data from the MMX

and XMM registers to memory.

SSE extensions are fully compatible with all software

written for IA-32 processors. Recently, most software

companies writing graphics and sound-related software have

updated those applications to be SSE-aware applications and

use the feature of SSE. For example, the high-powered

graphics application such as Adobe Photoshop supports SSE

instructions for higher performance on processors equipped

with SSE. Microsoft included the support for SSE in its

DirectX 6.1 and later video and sound drivers, which included

with Windows 98, Me, 2000, NT and XP.

2.3. Streaming SIMD extensions 2

SSE2 was introduced into the IA-32 architecture in the

Pentium IV and Intel Xeon processors. SSE2 allowed the

ability to perform more computations in parallel, and extended

those instructions introduced in MMX technology and SSE

extensions. Notably, SSE2 introduces SIMD computations

on two double-precision floating-point data elements. SSE2

extensions add the following features to the IA-32 archi-

tecture, while maintaining backward compatibility with all

existing IA-32 Processors, applications and operating

systems:

(i) Six data types.

(ii) Instructions to support the additional data types and

extend existing SIMD integer operations.

(iii) Modifications to existing IA-32 instructions to support

SSE2.

These new features provide the ability to perform SIMD

operations on pairs of packed double-precision floating-point

values. This permits higher precision computations to be

carried out in XMM registers, which enhance the processor

performance in scientific and engineering applications. They

also provide the ability to operate on 128-bit packed integer

(bytes, words, doublewords and quadwords) in XMM regis-

ters. This provides greater flexibility and greater throughput

when performing SIMD operations on packed integers.

Using the full set of SIMD registers, data types and instruc-

tions provided with the MMX technology and SSE/SSE2

extensions, programmers can develop algorithms that finely

mix the packed single- and double-precision floating-point

data on 64-and128-bit packed integer data.

No new registers or other instruction execution states are

defined with SSE2 extensions. SSE2 instructions use the

XMM registers, MMX registers and/or IA-32 general-

purpose registers. SSE2 extensions are fully compatible

with all software written for IA-32 processors. All exiting

software continues to run correctly, without modification,

on processors that incorporate SSE2 extensions, as well as

in the presence of applications that incorporate these exten-

sions. For more information about SSE2, see [8, 17, 18].

Also, Intel Corporation [21] gives guidelines for integrating

the SSE and SSE2 extensions into an operating system

environment.

FIGURE 5. SSE execution environment.
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2.4. Streaming SIMD extensions 3

SSE3 was introduced into the IA-32 architecture in the Pentium

IV processor, which supports Hyper-Threading technology.

SSE3 extensions include 13 new instructions. Ten of these

13 instructions support the SIMD execution model used with

SSE/SSE2 extensions. One SSE3 instruction accelerates x87

style programming for conversion of a floating-point value to

integer. The remaining two instructions accelerate the synchro-

nization of threads. SSE3 does not introduce new data types

and its programming environment is unchanged from that

shown in Fig. 5. For detailed information about SSE3 and its

instructions, see [8, 17, 18, 21]. In the following two sections,

we will briefly discuss other two well-known technologies

supporting SIMD multimedia ISA, namely 3DNow! and

AltiVec.

2.5. 3DNow! technology

The 3DNow! technology was designed by AMD [22–24] as

an extension to MMX/SSE to support single-precision float-

point arithmetic. The AMD-K6-2 microprocessor is the first

implementation of 3DNow! technology. It is also

implemented on the AMD-K6-III, and AMD AthlonTM pro-

cessors. The AMD Athlon processor implements five new

3DNow! technology instructions that add streaming and

digital signal processing (DSP) technologies.

3DNow! technology is a group of instructions, which opens

the traditional processing bottlenecks for floating-point-intensive

and multimedia applications. It uses the MMX registers but

with 45 new floating-point instructions that can operate on

one or two single-precision floating-point values at a time.

3DNow! supports addition, subtraction, multiplication, div-

ision, conversion to and from integers, negation, comparison,

absolute, data prefetching and reciprocal square root. It is

also possible to compute division and reciprocal square root

to just 12-bit precision for extra speed. Using these

instructions, applications can implement more powerful

solution to create a more productive PC platform [25]. Just

as with SSE, 3DNow! also supports single-precision floating-

point SIMD operations and enables up to four floating-point

operations per cycle. 3DNow! floating-point instructions can

be mixed with MMX instructions with no performance

penalties.

According to AMD, 3DNow! provides approximately the

same level of improvement to MMX as did SSE, but in

fewer instructions with less complexity. Although similar in

capability, they are not compatible at the instruction level so

that software specifically written to support SSE will not

support 3DNow!, and vice versa. Also such as SSE,

3DNow! is well supported by software including Microsoft

Windows 9x, Windows NT 4.0 and all newer Microsoft opera-

ting systems. Application programming interfaces such as

Microsoft’s DirectX 6.x API and SGI’s Open GL API have

been optimized for 3DNow! technology, as have the drivers

for many leading 3D graphic accelerator suppliers, including

3Dfx, ATI and Matrox.

Examples of the type of improvements that 3DNow!

enables are faster frame rates on high-resolution scenes, near

theater-quality audio, much better physical modeling of real-

world environments, sharper and more detailed 3D imaging

and smoother video playback [25].

2.6. AltiVecTM technology

AltiVec technology [26–28] is Freescale’s high-performance

SIMD expansion to PowerPCwRISC processor architecture.

It extends the PowerPCw architecture through the addition

of 128-bit vector execution unit. This engine operates concur-

rently with the existing PowerPC’s scalar integer and floating

units and enables highly parallel operations-up to 16 opera-

tions in a single clock cycle. There is virtually no performance

penalty for mingling integer, FPU and AltiVec technology

operations [29]. Unlike many other extensions, which have

supported media processing by leveraging existing functional-

ity from the integer or floating-point data paths, AltiVec

devotes a significant portion of the chip area to the new fea-

tures and emphasizes the growing role of multimedia.

AltiVec is a 128-bit wide extension with its own dedicated

register file. It requires 32 registers of 128-bit width in its

implementation as compared with only eight registers of

same width in SSE, SSE2 and SSE3. Each value within an

AltiVec register is a vector that is made up of elements. It con-

sists of 162 floating-point and integer SIMD instructions.

AltiVec instructions perform simultaneous operations on all

elements within an AltiVec vector register. Depending on

data size, vectors are 4, 8 or 16 elements long. These instruc-

tions offer support for:

(i) 16-way parallelism for 8-bit signed and unsigned

integers;

(ii) 8-way parallelism for 16-bit signed and unsigned

integers;

(iii) 4-way parallelism for 32-bit signed and unsigned inte-

gers and IEEE floating-point numbers.

There are a few instructions supporting bit-wise operations

as well as making it possible to treat 128 bit of data at once in a

single instruction. The target applications for AltiVec included

IP telephony gateways, multi-channel modems, speech pro-

cessing systems, echo cancellers, image and video processing

systems, scientific array processing systems as well as network

infrastructure such as Internet routers and virtual private

network servers. AltiVec can also accelerate many of time

consuming traditional computing and embedded processing

operations such as memory copies, string compares and page

clears.
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3. RELATED WORKS

As mentioned before, SIMD extensions improve the perform-

ance of applications characterized by: inherent parallelism,

recurring memory access patterns, localized recurring opera-

tions performed on the data and data-independent control

flow. Many applications have these characteristics and their

performance can be improved using SIMD extensions. Unfor-

tunately, with all the advantages that SIMD multimedia ISA

extensions introduce, only few applications have benefited

of using these extensions. This section gives a comprehensive

overview of up to date related research that make use of the

Intel’s SIMD multimedia extensions on a single processor to

enhance the performance of these few applications such as

multimedia, data security, database and general scientific

applications.

3.1. Multimedia processing

Multimedia computing presents challenges from the perspec-

tives of both software and hardware. For example, multimedia

standards such as MPEG-1, MPEG-2, MPEG-4, MPEG-7,

H.263 and JPEG 2000 involve the execution of complex

media processing tasks in real-time. The need for real-time

processing of complex algorithms is further accentuated by

the increasing interest in 3D image and stereoscopic video pro-

cessing. Each media in a multimedia environment requires

different processes, techniques, algorithms and hardware.

This type of applications often presents data parallelisms.

Therefore, using SIMD extensions can improve their perform-

ance significantly. Much work has been done to present multi-

media applications implementations on general-purpose

processors with the SIMD media ISA extensions [30–48].

There are a large number of other important studies

to improve multimedia applications performance using

SIMD extensions. The results of over 25 research groups or

individual researchers that have presented video coding

implementations using SIMD multimedia extensions on

general-purpose processors are summarized by Lappalainen

et al. [49].

The discrete wavelet transform (DWT) mainly used in

image/video compression (especially in JPEG2000 and

MPEG-4) has been implemented using SIMD extensions in

many works [50–52] to reduce the execution time of 2D/3D

wavelet transform. Recently, the performance comparison of

SIMD implementations of the DWT has been introduced by

Shahbahrami et al. [53]. In this paper, they focused on

SIMD implementations of the 2D DWT. The transforms con-

sidered in their work are Daubechies’ real-to-real method of

four coefficients (Daub-4) and the integer-to-integer lifting

scheme. Daub-4 is implemented using SSE and the lifting

scheme using MMX, and their performance is compared to

C implementations on a Pentium IV processor. The MMX

implementation of the lifting scheme is up to 4x faster than

the corresponding C program for an 1-level 2D DWT,

whereas the SSE implementation of Daub-4 is up to 2.6

faster than the C version. It also has been shown that when

64 k aliasing occurs the speedups are significantly higher

than when it does not occur. This is because with 64 k aliasing

the programs are entirely memory-bound and MMX and SSE

reduce the number of memory accesses by a factor of 4. If 64 k

aliasing does not occur the processing time is not insignificant

but the maximum speedup of 4 cannot be achieved due to

overhead required for rearranging data, loop overhead and

due to lack of spatial locality. On the other hand, some

common wavelet filters (e.g. Haar, Biorthogonal 4/12,

Biorthogonal 7/9 and Biorthogonal 7/9 with Lifting) were

implemented in [54] using SIMD operations based on the

1-D transforms, producing reasonable speedups.

Padua et al. [55] used MMX technology to improve the pro-

cessing time of large satellite images. Seven operations com-

monly present in many digital image-processing algorithms

were implemented in both MMX assembly and C. The

results suggested that the routines in MMX as being a good

alternative in the construction of image processing systems.

In spite of the apparently difficulty in construct this routines,

once they are written as a library their use can bring a great

improvement.

Geometry processing is also an inherently parallel task,

since each object vertex can be processed independently.

Using SIMD instructions, operations on multiple vertices

can be performed in one instruction [56]. Ma and Yang [57]

evaluated the performance impact of using Intel SSE for 3-D

geometry processing. They used SIMD-PF to improve the

computational throughput by processing four vertices in para-

llel. Their experimental results showed that the Intel SSE pro-

vides significant speedup for geometry pipeline. The speedup

ranges from 3.0x to 3.8x. The layout of vertices in memory is

crucial for the effectiveness of SIMD-FP. Also, prefetching

shows significant performance improvement for lighting.

However, for transformation, it shows little performance

benefit. Sometimes, the prefetching overhead even outweighs

the benefit.

Optimizing of multimedia application performance using

SIMD extensions was also investigated in many other works

[58–62]. For example, improving fast Fourier transform per-

formance using SIMD extensions was studied in detail in

[63–65], desirable improvements were achieved based on

the SIMD extensions. Another example is H.263/H.264, an

emerging video coding standard, which aims at compressing

high-quality video contents at low-bit rates. The complexity

of H.263/H.264 standard poses a large amount of challenges

to implement the encoder/decoder in real-time via software

on personal computers. On the basis of the SIMD extensions,

some articles [66–70] discussed the problem. Chen et al. [71]

analyze the software implementation of H.264 encoder and

decoder on general-purpose processors with media instruc-

tions and multi-threading capabilities. Specifically, the
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authors discussed how to optimize the algorithms of H.264

encoders and decoders on Intel Pentium IV processors. They

first analyzed the reference implementation to identify the

time-consuming modules, and presented optimization

methods using media instructions to improve the speed of

these modules. After appropriate optimizations, the speed of

the codec improved by more than 3x. Nonetheless, the

H.264 encoder is still too complicated to be implemented in

real-time on a single processor. Thus, they studied how to par-

tition the H.264 encoder into multiple threads, which then can

be run on systems with multiple processors or multi-threading

capabilities. The authors also analyzed different multi-

threading schemes that have different quality/performance,

and proposed a scheme with good scalability (i.e. speed) and

good quality. Their encoder can obtain another 3.8x speedup

on a four-processor system or 4.6x speedup on a four-

processor system with Hyper-Threading technology.

An optimized method to quarter-pixel interpolations used in

H.264/AVC using SIMD instructions is presented in [72]. The

implementation of the proposed method is approximately six

times faster than that of the JM reference software for the

H.264/AVC quarter-pixel interpolation operation, which

needs multiple bilinear and 6-tap filtering.

On the other hand, microprocessor vendors have provided

special-purpose instructions to accelerate the sum-of-absolute

differences (SAD) similarity measurement. The usefulness of

these special-purpose instructions is limited except for the

motion estimation kernel. The limitations of these special-

purpose instructions such as psadbw and pdist in media

SIMD extensions are discussed by Shahbahrami et al. [73].

In this paper, the authors design and evaluate a variety of

SIMD instructions for different data types. They synthesize

special-purpose instructions using a few general-purpose

SIMD instructions. In addition, they employ the extended sub-

words technique to avoid conversion overhead and to increase

parallelism. In this technique, there are four extra bits for

every byte of register. These extra bits provide much more

room for many operations to be performed without overflow

and avoid packing/unpacking overhead instructions. Their

results show that using different SIMD instructions and

extended subwords achieve a speedup ranging from 10.39 to

14.57 over C performance for SAD, sum-of-squared differ-

ences (SSD) with interpolation, and SSD functions in the

motion estimation kernel, whereas MMX achieves a speedup

ranging from 4.61 to 7.42. Additionally, the proposed SIMD

instructions improve the performance of similarity measure-

ment for image histograms by a factor ranging from 8.69

(1-way) to 11.70 (4-way) over C, whereas for MMX

speedup is between 2.90 (1-way) and 4.33 (4-way).

3.2. Data security

The current data security techniques and tools are not flexible

and fast enough to be useful for the next generation information

technologies, e.g. mobile personal communications, electronic

commerce and the Internet. Cryptographic algorithms are

often organized as an iteration of a common sequence of oper-

ations. In many applications, encryption and/or hashing forms

a computational bottleneck, and an increased performance of

these basic cryptographic primitives is often directly reflected

in an overall improvement of the system performance [74].

Elliptic curve cryptosystems are considering a vital techno-

logy for cryptography because of their high security with

shorter key-length and faster computation than existing other

cryptographic schemes. To increase the performance of ellip-

tic curve computations, Aoki et al. [75] proposed two tech-

niques for parallel computing with SIMD instructions, which

significantly enhance the speed of elliptic curve scalar multi-

plication. They implicitly assumed that the time for computing

multiplication by a constant over the definition field is negli-

gible. Their computation time for computing Elliptic Curve

ADDition (ECADD) and doubling (ECDBL) is 5M þ S and

2M þ 3S, where M and S are the computation time of a mul-

tiplication and a squaring of the definition field, respectively.

They evaluated one of them based on a real implementation

on a Pentium III, which incorporates the SIMD architecture.

Their study showed that the proposed method, based on

SIMD operations, is about 4.4 times faster than the conven-

tional methods.

Efficient algorithms for assembling an ECADD, ECDBL

and k-iterated ECDBL (k-ECDBL) with SIMD operation are

also introduced in [76]. These algorithms are written for the

proposed addition formulas using only basic operations of

the definition field namely multiplications, squarings,

additions and subtractions. If A is the computation time of

an addition or a subtraction of the definition field, the proposed

ECADD requires time of 4M þ 2S þ 6A with eight auxiliary

variables. The proposed ECDBL requires 2M þ 3S þ 7A

with seven auxiliary variables. And the computation time of

the k-ECDBL formula requires 2kM þ (2k þ 1)S þ 7kA.

Using the signed binary chain, a scalar multiplication can be

computed �10% faster than the previously fastest known

algorithm by Aoki et al. Combined with the sliding window

methods or the width-w NAF window method, the authors

achieved �10% faster parallelized scalar multiplication

algorithms with SIMD operations.

In [77], four versions of Secure Hashing Algorithms (SHA),

namely SHA-1, SHA-256, SHA-384 and SHA-512, are ana-

lyzed to determine possible performance gains that can be

achieved using SIMD operations, and performed on integers.

The author pointed out the appropriate parts of each algorithm,

where SIMD instructions can be used, and showed that each

SHA algorithm has a great potential to boost both its speed

and throughput using SIMD technology.

An optimized implementation of Advanced Encryption

Standard (AES) algorithm in software based on the Intel’s

SIMD architecture is described in [78]. In this implemen-

tation, the author has optimized AES by following a top-down
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approach in which the use of SMD instructions is the final step

in the optimization process. The study showed that the proposed

technique yields a significant increase in the performance and

thereby the throughout of AES. For the encryption benchmarks,

the execution speed in clock cycles/byte is 88.56 and 61.13

without and with SIMD, respectively. On other hand, the

execution speed for decryption benchmarks is 89.00 without

using SIMD and 54.43 with SIMD instructions. It also demon-

strated that AES is a good candidate for optimization using

SIMD approach.

3.3. Database

As database technology becomes pervasive, database manage-

ment systems have been deployed in a wide variety of appli-

cations. The rapid growth of data volume for the past

decades has intensified the need for high-speed database

management systems. Most database queries and, more

recently, data warehousing and data mining applications, are

very data- and computation-intensive and therefore demand

high processing power. Few researchers have actively

sought to design and develop architectures and algorithms

for faster query execution using SIMD technique [10].

Special attention has been given to increase the perform-

ance of the most important database operations such as aggre-

gation, indexed searches, joins and selection. Zhou and Ross

[79] described SIMD implementation of many important data-

base operations including sequential scans, aggregation,

indexed searches and joins. To better utilize SIMD instruc-

tions, they assume that the underlying data is stored column-

wise as a contiguous array of fixed-length numeric values.

Considerable performance gains were achieved by exploiting

the inherent parallelism of SIMD instructions and reducing

branch mispredictions. Their study showed that using an

SIMD parallelism of four, the CPU time for the new algor-

ithms is from 10% to more than four times less than for the tra-

ditional algorithms. Also, superlinear speedups are obtained as

a result of the elimination of branch misprediction effects.

3.4. Scientific applications

In contrast to the wide usage of SIMD extensions in accelera-

ting multimedia applications, no significant research has yet

reported into scientific applications-based SIMD extensions.

Current research into using SIMD instructions in scientific

applications is clearly at a very early stage, and it will be a

long time before any generally useful systems based these

instructions emerge [80]. There are few studies that investi-

gate use of the SIMD extensions in different directions of

scientific and engineering applications. These studies will be

covered here.

The comparison and alignment of DNA and protein

sequences are important tasks in molecular biology and bioin-

formatics. One of the most well-known algorithms to perform

the string-matching operation present in these tasks is the

Smith–Waterman (SW) algorithm [81]. However, it is a com-

putation intensive algorithm, and many researchers have

developed heuristic strategies to avoid using it, especially

when using large databases to perform the search. There are

some efficient implementations of the SW algorithm on

general-purpose processors [82]. SW algorithm was

implemented in [83] using Intel SIMD multimedia extensions

(MMX and SSE). Six-fold speed-up relative to the fastest pre-

viously known SW implementation on the same hardware was

achieved by an optimized 8-way parallel processing approach.

A speed of more than 150 million cell updates per second was

obtained on a single Pentium III 500 MHz microprocessor. A

semi-heuristic database searching algorithm, namely ParA-

lign, specifically designed to exploit the advantages of the

SIMD technology to perform both rapid and sensitive

sequence database searches is introduced in [84]. Another

implementation of the SW algorithm that combines fine

grain and coarse grain parallelism and multi-level scheduling

is presented in [85] achieving a speedup of 143 on a cluster of

16 dual-CPU Pentium IV Xeons.

Of course, matrix calculations form the kernel of many

scientific applications especially mathematical algorithms. A

faster matrix–matrix multiply immediately benefits these

algorithms. A general matrix–matrix multiplication method

using SIMD features of the Pentium III processor is presented

in [86, 87], achieving 2.09 times faster than the leading public

domain matrix–matrix multiply routines. Muezerie et al. [88]

also evaluated the use of SIMD floating point instructions for

matrix calculations. They proved that with a little effort the

use of single-precision floating-point vector operations can

speed up significantly computational intensive matrix

calculations.

Another issue related to matrix calculations is solving linear

system equations. Fung et al. [89] have presented the basic

operations involved in utilizing the SSE features of the

Pentium III processor to speed up LU decomposition algori-

thm that is commonly used in solution of linear system

equations. In order to examine the effectiveness of SSE, a

set of experiments was conducted with both the real and

complex valued linear system equations of various dimen-

sions. According to their results, approximately a speedup

ratio of 2.5 can easily be obtained in the case of complex

number algorithm. By utilizing special data structure and

related intrinsics provided in the Intel’s C compiler, the per-

formance of an existing LU decomposition algorithm could

be improved 80% on the average without any need for

additional hardware.

Use of parallelization for polynomial root finding methods,

which are also computationally intensive, has enormous effect

on their execution time. Moslemi et al. [90] have chosen four

widely used polynomial root finding methods namely,

Newton’s, Durand–Kerner’s, Aberth–Ehrlich’s and QD and

implemented them using SIMD instructions with C þþ and
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assembly language. Experiments showed that a speedup of

three or higher can be achieved, depending on the order of

polynomial, required accuracy and the method employed.

Scientific applications are various. For example, normalized

cross correlation (NCC) is often the adopted similarity

measure due to its robustness with respect to photometric

variations. But with large size images and/or templates the

matching process using NCC algorithm can be computation-

ally very expensive. Speeding up the calculations of NCC

algorithm using SIMD extensions has been studied in [91],

achieving significant improvements over the brute force

NCC algorithm.

Finding the minimum or maximum value in an array forms

an important step in a variety of applications. Aart et al. [92]

discuss vectorization schemes that take advantage of the

streaming-SIMD-extensions in commonly used floating-point

MIN and MAX reductions. Performance advantages of the

presented vectorization schemes for various reduction

kernels and applications are demonstrated on a 3 GHz

Pentium IV processor with HT Technology and 2 GB main

memory using the 9.0 Intel Cþþ/Fortran compilers. The

impact of the proposed schemes on applications as a whole

can be substantial, as demonstrated with an application in

the Polyhedron benchmarks. For example, for GAS_DYN

application, a substantial speed-up of over 5.5 in total is

observed and the other benchmarks exhibit satisfactory speed-

ups from all the optimizations performed by the Intel Fortran

compiler.

Software receivers have had a discernable impact on the

GNSS research community. Often such receivers are

implemented in a compiled programming language, such as

C or C þ þ. A software receiver must emulate the DSP algor-

ithms executed on dedicated hardware in a traditional receiver.

The DSP algorithms, most notably correlation, have a high

computational cost; this burden precludes many software

receivers from running in real time. However, the compu-

tational cost can be lessened by utilizing SIMD operations.

Gregory and James [93] demonstrate how C/Cþþ compatible

code can be written to directly utilize the SIMD instructions.

First, an analysis is carried out to demonstrate why

the real-time operation is not possible when using traditional

C/Cþþ code. Second, a tutorial outlines how to write and

insert x86 assembly, with SIMD operations, into C/Cþþ

code. Finally, a C/Cþþ compatible SIMD enabled arithmetic

library is added to the global positioning system toolbox for

use in software receivers.

4. CONSIDERATIONS FOR IMPLEMENTATION

4.1. Programming environment

Including SIMD extensions on all contemporary CPU designs

is not in itself a solution to handling applications workloads.

Apowerful SIMD extensions instruction set is worthless

without the means to utilize it. Here, a brief overview of

exiting compiler techniques that support SIMD operations

and coding methodologies that may be used to implement an

application using SIMD instructions will be given.

4.1.1. Compilers limitations

In spite of the fact that the SIMD extensions are present in

most of current processors, today it is still difficult to find com-

pilers that can generate efficient SIMD instructions-based

code sequences, due to the difficulty of automatically extract-

ing parallelism from conventional sequential C programs. In

the mean time, the small number of commercial compilers

that can automatically use these instructions are in most

cases expensive and the results are unsatisfactory. This area

is now a thriving field for research and development, with

some reports of new compiler techniques have been recently

appeared [94, 95]. One preferable previous research is an

SIMD compiler experimentally developed for compiling the

SIMD within a register (SWAR) [96]. This model is

implemented for multiple target architectures: initially as

compatible libraries, then as optimizing compilers accepting

a simple high-level parallel language; namely SWARC

(a data parallel C language mainly target at using SIMD

instructions) [97]. However, as restrictions exist in the way of

facilitating SIMD instructions, the success of a data parallel

language approach greatly depends on the existence of effec-

tive parallel methods for the application fields and a well-

defined parallel language for their succinct descriptions. The

lack of assuming specific parallel methods at the language

design stage of SWARC limits the applicability of the

language.

To effectively utilize microprocessors with enhanced SIMD

instructions for accelerating image processing tasks, Kyo et al.

[98] described a method and an extended C language for para-

llel implementation and description of image filter tasks, as

well as an SIMD compiler for the extended C language that

generates efficient SIMD code sequences for image filters on

Intel Pentium processors. First they showed that, based on a

parallel method called row-wise method and the use of a

data parallel C language called 1DC, a succinct and compu-

tational efficient description for symmetric image filters can

be achieved. Then, they described the design and development

of an SIMD compiler called 1DCC for translating 1DC

descriptions into SIMD code sequences based on the genera-

tion and optimization of code blocks containing loop struc-

tures of SIMD instructions. The performance of code

sequences for the Intel Pentium processors, generated by

1DCC from row-wise method-based 1DC descriptions of

various image filter tasks, are compared with code sequences

generated by the latest C compiler from conventional C

descriptions. Benchmark results showed that 1DC codes out-

perform C codes up to four times for word operation dominant

image filters, and up to seven times for a byte operation domi-

nant image filter.
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Some of the recent researches [99–101] on compilation

techniques have reduced the complexity of the programming

task with the goal of minimizing the effort for the programmer

in learning a new language and to keep very high the perform-

ance of the compiled code. For instance, the complexity of the

programming model of MMX and SSE is discussed by Conte

et al. [102]. They introduce a programming methodology and

the Aphelium compiler. The performance of Aphelium is

based on optimizing the code for MMX and Intel P6 processor

core, which is used in all Pentium processors since Pentium

Pro. Thus, there is no support for other multimedia ISA exten-

sions or processor cores.

Leupers [103] presents a novel code selection technique

capable of exploiting SIMD instructions when compiling

plain C source code. It permits to take the advantage of

SIMD instructions while still using portable source code.

His approach builds on the classical tree-based code selection

paradigm, but it generates alternative covers. The detailed

code selection is performed only later, when enough infor-

mation for the generation of SIMD instructions for an entire

data flow graph is available. This may be sufficient for

current processors, but new SIMD architectures are bound to

offer higher levels of parallelism. Larsen and Amarasinghe

[104] propose a robust compiler algorithm for synthesizing

SIMD instructions from the statements in single basic blocks

instead of in loop nests only.

In some applications, higher parallelism could be achieved

if compilers inserted permutation instructions that reorder the

data in registers, using compiler-known functions. Each of

such functions directly corresponds to a specific SIMD

instruction. By inserting such functions in a program, the pro-

grammer instructs the compiler which instructions need to be

selected, and the compiler finishes the job by performing

register allocation and code scheduling. The permutation topic

is discussed recently in some works. Kudriavtsev and Kogge

[105] describe how SIMD instructions can be created from

regular code, and how the ordering of individual operations

in the SIMD instructions can be determined to minimize the

number of permutation instructions. In their approach, individ-

ual memory operations are grouped into SIMD operations

based on their effective addresses. The SIMD data flow

graph is then constructed by following data dependences

from SIMD memory operations. Then, the orderings of opera-

tions are propagated from SIMD memory operations into the

graph. This approach is not tied to any particular architecture

and can be relatively easily ported to any SIMD instruction set.

The potential of this approach is demonstrated with Intel’s

SSE, because the architecture is wide spread and well

known. This approach scales well with the number of opera-

tions in SIMD instructions (SIMD width) and can be used to

compile a number of important kernels, achieving up to 35%

speedup.

Another different issue related to compiler technology is the

energy consumption. It is not obvious that SIMD operations

can save any energy; if n operations are executed in parallel,

each of them might consume the same amount of energy as

if there were executed sequentially. The influence of compiler-

generated code containing SIMD operations with respect to

energy consumption is investigated for the first time by

Lorenz et al. [106]. In this paper, the effects of SIMD opera-

tions on the energy consumption are shown for several bench-

marks and MP3 applications. The study concluded that

making use of SIMD operations leads to an average reduction

of 72% in terms of energy and 76% in terms of performance.

4.1.2. Coding methodologies

With the lack of adequate compiler support for SIMD exten-

sions, it has been clear that SIMD extensions still enhance

applications performance. Today, SIMD multimedia instruc-

tion set can be utilized in three ways.

4.1.2.1. Assembly language. This is the most effective

method because programming directly in assembly language

for a target platform may produce the required performance

gain, but it is also more tedious and error prone than any

other methods. On other hand, assembly code itself is not por-

table across the different processor architectures. Slingerland

and Smith [107, 108] used it to measure the performance

of multimedia instruction sets. They study the performance

of MMX/3DNow!, MMX/SSE, AltiVec and VIS on optimized

kernels extracted from a broad multimedia workload.

They compare the performance obtained with the

assembly-optimized kernels to C-compiled kernels on each

platform.

4.1.2.2. Shared libraries. These libraries are often avail-

able from microprocessor manufacturers, but they tend to

only cover particular functions and for some particular class

of microprocessors. For example, Intel’s assembly libraries

[109] provide the versions of many common signal proces-

sing, vector arithmetic and image processing kernels that

can be called as C functions. Moreover, often there is a mis-

match between the functions available in a library and what

the target application requires to be efficient.

4.1.2.3. Vectorizing compilers. Ideally, high-level

language compiler would be able to automatically identify par-

allelizable sections of code and generate appropriate SIMD

instructions. There have been many proposed methods of auto-

matic SIMD vectorization with limited success [95, 110]. As an

example of vectorizing compilers that make use of the built-in

functions, the Intel C þþ compiler [111]. It provides a set of

intrinsics for MMX, SSE and SSE2 SIMD support, C þþ

SIMD vector classes, and a loop vectorizer that extracts

SIMD parallelism from code automatically [112]. It can

deliver significant applications performance improvement for

Microsoft Windows as well as Linux operating system environ-

ments. In the Windows environment, the Intel C þþ compiler
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is source and binary compatible with Microsoft Visual C þþ

and plugs into the Microsoft.NET IDE, in Linux it is binary

compatible with the corresponding version of gcc. On the

other hand, the Portland group also offers the PGIw Worksta-

tion Fortran/C/C þþ compilers that support automatic usage

of SSE/SSE2 extensions. The CodeplayTM announces the

VectorC compiler for all x86 extensions and the Crescent

Bay Software extends VAST to generate codes for AltiVec

extension.

Today programming mechanisms via intrinsics library and

C þþ class are easier to use than assembly language, particu-

larly because programmers do not have to explicitly mange the

media registers, and they especially make it easier to develop

large applications. This comes at the cost of application speed.

Code implemented using these mechanisms is fast, but not as

fast as corresponding code written in assembly language. In

some cases with a compiler that do a good job for register allo-

cation and instruction scheduling, it is possible that the code

written with intrinsics could be faster than assembly code.

Recently, the Gnu compiler collection (gcc 4.2 and later ver-

sions) also does a good job [113, 114]. It supports intrinsic

functions for several multimedia extensions including

AtliVec, SSE2 and 3DNow!. Figure 6 illustrates the trade-offs

involved in the performance of hand-code assembly versus the

ease of programming and portability [115].

4.2. Alignment of data

Alignment is putting data and code in the memory in addresses

that are more efficient for the hardware to access. In other

word, alignment is a property of a memory address, expressed

as the numeric address modulo a power of 2. For example, the

address 0x0001103F modulo 4 is 3; that address is said to be

aligned to 4n þ 3, where 4 indicates the chosen power of

2. The alignment of an address depends on the chosen

power of 2. The same address modulo 8 is 7. An address is

said to be aligned to X if its alignment is Xn þ 0. CPUs

execute instructions that operate on data stored in memory,

and the data are identified by their addresses in memory. In

addition to its address, a single datum also has a size. A

datum is called naturally aligned if its address is aligned to

its size and misaligned otherwise. For example, an 8-byte

floating-point datum is naturally aligned if the address used

to identify it is aligned to 8. In most processors, movement

from and to memory must be word-aligned addresses. Specifi-

cally, a quadword is expected to be aligned on an 8-byte

boundary [95].

Accessing a block of memory from a location that is not

aligned on a natural vectorsize boundary is often prohibited

or bears a heavy performance penalty. These memory align-

ment constraints raise problems that can be handled using

the data reordering mechanisms [105]. Such mechanisms are

costly, and usually involve with generating the extra

memory accesses and special code for combining data

elements from different vectors in each iteration of the loop.

In order to avoid these penalties, techniques such as loop

peeling and static and dynamic alignment detection [116,

117] can be used. Many CPUs, such as those based on

Alpha, IA-64, IA-32, MIPS and SuperH architectures, refuse

to read misaligned data. When a program requests that, one

of these CPUs access data that is not aligned, the CPU

enters an exception state and notifies the software that it

cannot continue. On ARM, MIPS and SH device platforms,

for example, the operating system default is to give the appli-

cation an exception notification when a misaligned access is

requested.

Data alignment is considered as one of the principal pro-

blems in writing a compiler that automatically uses the

SIMD extensions. Namely, the vector registers are 128-bits/

each and correspond to one cacheline containing 16 bytes. It

is critical that data loaded into a 128-bit register are aligned

beginning on a cacheline (block) boundary. For SIMD exten-

sions such as AltiVec, if the data are not properly aligned, the

address is truncated to the nearest block boundary and the

loaded data are incorrect. For example, if ‘float’ elements

a[1] through a[4] are to be loaded and the cacheblock

begins at a[0], the elements a[0] through a[3] will be loaded

in the register. Management of these alignments makes auto-

vectorization difficult and limits its scope [118]. In order to

provide the best performance for memory accesses in the mul-

timedia extensions that load or store consecutive subwords

from/to memory, the memory access must be correctly

aligned. This means that an n-byte transfer must be set on

an n-byte boundary.

This alignment constraint can significantly impact the effec-

tiveness of SIMD vectorization. For example, the addition of

two arrays of size 1024 � 1024, whose addresses are either

aligned or unaligned, aligned code is 1.47 times faster than

unaligned code using SSE instructions [119]. If aligned

access cannot be guaranteed, the programmer should consider

the alignment in software using overhead instructions. This

means that the data from two consecutive aligned addresses

FIGURE 6. Application speed versus ease of the development for

different environments.
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must explicitly merge. Fridman [120] has explained three sol-

utions for data alignment. First, maintaining multiple replica-

tions of coefficients. This approach used by Intel for MMX

and SSE implementation of the FIR filter. Second method

depends on the memory system support for misaligned

accesses, as in SSE memory systems [60]. Third, accessing

the aligned memory addresses before and after the misaligned

memory address and providing misaligned subwords using

rearrangement instructions. These techniques have some limit-

ations. For example, the replication of the coefficients has two

drawbacks. It needs large memory for replication of the n filter

coefficients. Also, this method cannot be applied to algor-

ithms, which use dynamic data. In the memory system that

supports misaligned accesses, however, a single misaligned

access is significantly slower than an aligned access. More-

over, using a permutation unit and shifter in the third

method causes the extra execution time and larger code size

of the program.

Larsen et al. [121] have concentrated on the detection of

memory alignments and with techniques to increase the

number of aligned references in a loop. They used loop

peeling to align accesses. The loop peeling method is equiv-

alent to the Eager-Shift policy with the restriction that all

memory references in the loop must have the same misalign-

ment. Their approach scales better with the SIMD width, and

can be applied to many SIMD media ISA extensions. Eichen-

berger et al. [122] describe their approach to the problem of

SIMD vectorization (SIMDization) with data alignment con-

straint. They have proposed a systematic method to simdizing

loops with misaligned stride one-memory references for

SIMD architecture with alignment constraints. In their

method, data reorganization instructions are automatically gen-

erated during the simdization to align data in registers. These

instructions are inserted into the simdized code to satisfy the

actual alignment constraints. They have introduced a data reor-

ganization operator, vshiftstream(o1,o2), which shifts all

values of a register stream from offsets o1 to o2. In general,

they focused on generating the optimized SIMD codes in the

presence of misaligned references.

Two important limitations of the alignment framework pro-

posed by Eichenberger et al. [122], i.e. inefficiently handling of

run-time alignment and a lack of support for length conversion

are addressed in [123]. In this paper, Eichenberger et al. [122]

propose a technique to efficiently shift arbitrary streams to an

arbitrary offset, regardless whether the alignments or offsets

are known at the compile time or not. This technique enables

the application of the more advanced alignment optimizations

such as Eager- and Lazy-Shift policies to run-time alignment.

On a G5 machine with a 16-byte wide VMX/AltVec unit,

their technique demonstrates a 19–34% improvement of per-

formance over prior art on a benchmark stressing the impact

of misaligned data. They address the second limitations by sup-

porting length conversion in alignment handling. Speedup

factors from 1.02 to 8.14 for real benchmarks are demonstrated

over sequential execution. However, their algorithm can gener-

ate permutation instructions to align data for misaligned data

references, but they do not address the general problem of gen-

erating permutations.

The alignment problem, the behavior of multimedia exten-

sions on the aligned and unaligned memory accesses and

cacheline split are discussed in detail by Shahbahrami et al.

[119]. They evaluate the advantages and disadvantages of

different techniques to avoid misaligned memory accesses

such as replication of data in memory, padding of data struc-

tures, loop peeling and shift instructions. They show that the

MMX implementation of the FIR filter using the replication

of data is up to 2.20 times faster than the MMX implemen-

tation with misaligned accesses. Furthermore, the MMX and

SSE implementations using the loop peeling technique are

up to 1.45 and 1.66 faster than their implementation for

addition of two arrays with different sizes, respectively.

They also show that the unaligned memory accesses have a

large performance penalty. For example, the MMX and SSE

aligned codes for addition of two arrays are up to 2.26 and

2.72 times faster than their implementations using misaligned

accesses on the Pentium III and IV processors, respectively.

Ivan et al. [124] have shown how the pointer alignment

analysis can be used to improve code quality for multimedia

processors with SIMD instruction sets. A method statically

determines alignment information for program pointers have

been described, and implemented using the OCE compiler fra-

mework. Initial experiments indicate that the method can sig-

nificantly improve the quality of the code when compared with

code, which uses dynamic alignment checking. By removing

the dynamic checks, the code size can be reduced by a

factor of as much as 4.5. The number of cycles can be

reduced by the degree of SIMD parallelism.

Alvarez et al. [125] analyze the performance impact of

extending the Altivec SIMD ISA with unaligned memory

operations. Their results show that for several kernels in the

H.264/AVC media codec, unaligned access support provides

a speedup up to 3.8 times compared with the plain SIMD

version, translating into an average of 1.2 times in the entire

application. In addition to providing a significant performance

advantage, the use of unaligned memory instructions makes

programming SIMD code much easier both for the manual

developer and the autovectorizing compiler.

4.3 Selection a suitable SIMD extension

As described earlier, SIMD extensions are available on any

recent PC. If it is there, why not it be used? But, before

coding an application, the following questions should be

answered:

(i) Will the current code benefit by using MMX, SSE,

SSE2 or SSE3 technology?

(ii) Is this code integer or floating-point?
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(iii) What coding techniques should be used?

(iv) How the data types should be arranged and aligned?

Figure 7 provides a flowchart for the process of converting

code to MMX technology, or SSE, or SSE 2.

Moreover, to use any of the SIMD multimedia ISA exten-

sions optimally, the following situations must be evaluated:

(i) Fragments that are computationally intensive.

(ii) Fragments that are executed often enough to have an

impact on performance.

(iii) Fragment that with little data-dependent control flow.

(iv) Fragments that require floating-point computations.

(v) Fragments of computation that can coded using fewer

instructions.

(vi) Fragments that require help in using the cache hierar-

chy efficiently.

Using one of the commercial tools such as the Intel VTune

performance analyzer [126], these tasks may be easier to

evaluate. Intel’s VTune is one of the standard performance

analyzers for the x86 architectures. It uses Pentium on-chip

performance monitoring hardware counters that keep track

of many processor-related events. For each event type,

VTune can count the total number of events during an

FIGURE 7. Converting to Streaming SIMD Extensions chart [115].
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execution of a program and locate the spots in the program’s

source code where these events took place (with correspond-

ing frequencies). Additionally, VTune also permits to

perform a dynamic analysis (simulation) of a portion of a

code. The simulation takes a lot of time and is therefore

useful mainly for short segments of code. In other word, it

helps in understanding the performance characteristics of soft-

ware at all levels: the system, application, microarchitecture.

Generally, keep in mind that a good candidate code is the

code that contains small-sized repetitive loops that operate

on sequential arrays of integers of 8, 16 or 32 bits, single-

precision 32-bit floating-point, double-precision 64-bit

floating-point, using the smallest possible data type enables

more parallelism with the use of a longer vector, and,

careful management of memory operands can improve per-

formance use.

5. FUTURE RESEARCH DIRECTIONS

The SIMD multimedia ISA extensions are very powerful, and

can easily meet their goal of providing cheap performance for

multimedia applications. Not only multimedia applications

can benefit from this, but actually also many more compu-

tation intensive applications. Scientific applications with

uniform structure map very well to SIMD architectures.

Examples of such applications include molecular dynamics,

seismic modeling with finite-grid methods and circulation pat-

terns in the ocean and atmosphere. These applications typi-

cally have fixed data and calculations that are uniform over

the entire data set.

Many mathematical methods have been developed and

implemented in an iterative manner. These methods construct

a sequence of approximations that converge to a certain object

and repeat this procedure until the required accuracy is satis-

fied. Examples of such methods are: iterated function system

for fractal image modeling [127], eigenvalue problems,

solving large system of linear equations and finding zeros/

minimum points by iterative methods [128]. When we are

dealing with such iterative methods, one major problem is

their convergence time, since most of these methods take a

long time to converge. Some of such methods can be paralle-

lized well, and the parallelization of them improves the con-

vergence time to great extent. This suggests that the

convergence times of such methods can be markedly

reduced using an appropriate SIMD extension.

Also, re-implementation of SIMD in the current micropro-

cessors allow even faster variations of the database operations

and searching algorithms such as SW [81, 83] and ParAlign

[84] algorithms, because these microprocessors include

128-bit wide registers which can be divided into 16 8-bit

units. On the other hand, other algorithms for other database

operations and queries such as sorting, join and indexed

search must be developed. Data mining tasks such as cube

roll up and drill-down, classification and clustering, which

may benefit from SIMD instructions should be investigated.

Other interesting research topics include compiler techno-

logy for SIMD extensions, which is still in its infancy. Cur-

rently, to use multimedia instructions, programmers need to

hand code the most time-consuming portion of each algorithm.

So, how to efficiently support the multimedia instructions with

high-level language compiler level is still an open question.

Another interesting question that remains to be answered is

to ask how well prefetching would continue to hide the

memory bottleneck if the application memory access patterns

were less spatially local. Although previous literature has

found that multimedia applications are primarily of very

small working sets, there are several applications that

involve complex global interaction between data, such as

image segmentation or shape from shading computer vision

algorithms.

On the other hand, one drawback of the SIMD model used

in general-purpose processors is that some instructions need to

be added to support packing and unpacking of the registers.

Thus, the performance increase due to the parallelization of

the calculations is negated to some extent by the overhead

of packing and unpacking. To improve the performance,

some advanced data rearrangement may be performed by the

compiler. Some studies [88, 129] stated that the speedup

obtained for larger data trends to decrease. This is due to

increasing data packing and unpacking overhead that even-

tually dominates the speedup gained by SIMD computations.

To minimize this overhead even more, and thus improve the

performance, more advanced transformations would also

need to be performed. For example, to perform some opera-

tions on a subset of an array, one could first pack all relevant

elements in a temporary array, perform the computation

using SIMD instructions and finally put the result back into

the original array.

The alignment information can serve as a basis for program

transformations. One possibility is to use alignment infor-

mation to cause the compiler to lay out arrays in memory dif-

ferently. For example, if the alignment analysis shows that an

array is unaligned for access by a loop where SIMD instruc-

tions would be appropriate, the array could be placed at a

different address and thereby avoid the need for preloop

code [124].

Finally, as multimedia standards become more complex,

processors need to scale their SIMD extensions in order to

provide the performance required to new applications as

described in [130]. Scaling these extensions not only need to

address performance issues, but also power consumption,

design complexity and cost. The first way for scaling SIMD

extensions consist of adding execution units to the SIMD pipe-

line. The advantage of this way is that it could improve the

performance at no programming cost. The other approach of

scaling is to increase the width of SIMD registers, i.e. from

current 128-bit in SSE3 to 256-bit, 512-bit or more.
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6. CONCLUSION

Although the state-of-the-art scientific and engineering appli-

cations are getting more complicated and demand more com-

putational capabilities than before, the performance of

personal computers has improved significantly due to the

rapid growth of clock frequency as well as the enhancement

of SIMD multimedia extensions. These extensions can dra-

matically improve the performance of today’s applications,

at the expense of development time. This paper gives a com-

prehensive overview of SIMD multimedia extensions, and its

supporting microprocessors. The features of these multimedia

extensions are addressed with main focus on common ones

namely; the MMX/SSE/SSE2/SSE3 extensions of Intel

Pentium processors. The recent use of these extensions in

common applications such as multimedia, and scientific appli-

cations has been surveyed in details. Some considerations for

compiler technology, programming environment and code

implementation are reported in the paper. Also, this article

aims to exploit these technologies in other significant scientific

and engineering applications. For this purpose, several

research directions for improving the performance of these

applications using SIMD multimedia extensions are suggested

in this paper.
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