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Accelerated gradient methods play a central role in optimization,
achieving optimal rates in many settings. Although many general-
izations and extensions of Nesterov’s original acceleration method
have been proposed, it is not yet clear what is the natural scope of
the acceleration concept. In this paper, we study accelerated meth-
ods from a continuous-time perspective. We show that there is a
Lagrangian functional that we call the Bregman Lagrangian, which
generates a large class of accelerated methods in continuous time,
including (but not limited to) accelerated gradient descent, its non-
Euclidean extension, and accelerated higher-order gradient meth-
ods. We show that the continuous-time limit of all of these methods
corresponds to traveling the same curve in spacetime at different
speeds. From this perspective, Nesterov’s technique and many of its
generalizations can be viewed as a systematic way to go from the
continuous-time curves generated by the Bregman Lagrangian to a
family of discrete-time accelerated algorithms.

convex optimization | accelerated methods | Lagrangian framework |
Bregman divergence | mirror descent

Optimization lies at the core of many fields concerned with
data analysis. It provides a mathematical language in which

both computational and statistical concepts can be expressed and
it delivers practical data analysis algorithms that can scale to the
enormous datasets that are increasingly the norm in science and
technology. The recent literature on data analysis and optimiza-
tion has focused on gradient-based optimization methods, given
their low per-iteration cost and the relative ease with which they
can be deployed on parallel and distributed processing archi-
tectures. Establishing that such methods do indeed address the
scalability problems inherent in large-scale data analysis raises
fundamental questions concerning the convergence rate of gra-
dient-based methods, the extent to which those rates can be in-
creased systematically, and whether there are upper bounds on
achievable rates.
In the body of theory and practice built up to answer such

questions, the phenomenon of acceleration plays a key role. In
1983, Nesterov introduced acceleration in the context of gradient
descent for convex functions (1), showing that it achieves an
improved convergence rate with respect to gradient descent and
moreover that it achieves an optimal convergence rate under an
oracle model of optimization complexity (2). The acceleration
idea has since been extended to a wide range of other settings,
including composite optimization (3–5), stochastic optimization
(6, 7), nonconvex optimization (8, 9), and conic programming
(10). There have been generalizations to non-Euclidean opti-
mization (11, 12) and higher-order algorithms (13, 14), and there
have been numerous applications that further extend the reach
of the idea (15–18).
Despite this compelling evidence of the value of the idea of

acceleration, it remains something of a conceptual mystery. Deri-
vations of accelerated methods do not flow from a single un-
derlying principle, but tend to rely on case-specific algebra (19).
The basic Nesterov technique is often explained intuitively in terms
of momentum, but this intuition does not easily carry over to non-
Euclidean settings (20). In recent years, the number of explana-

tions and interpretations of acceleration has increased (20–24), but
these explanations have been focused on restrictive instances of
acceleration, such as first-order algorithms, the Euclidean setting,
or cases in which the objective function is strongly convex or
quadratic. It is not yet clear what the natural scope of the accel-
eration concept is and indeed whether it is a single phenomenon.
In this paper we study acceleration from a continuous-time,

variational point of view. We build on recent work by Su et al.
(25), who show that the continuous-time limit of Nesterov’s
accelerated gradient descent is a second-order differential equa-
tion, and we take inspiration from the continuous-time analysis
of mirror descent (2). In our approach, rather than starting from
existing discrete-time accelerated gradient methods and deriving
differential equations by taking limits, we take as our point of
departure a variational formulation in which we define a func-
tional on continuous-time curves that we refer to as a Bregman
Lagrangian. Next, we calculate and discretize the Euler–Lagrange
equation corresponding to the Bregman Lagrangian. It turns out
that naive discretization (the Euler method) does not yield a stable
discrete-time algorithm that retains the convergence rate of the
underlying differential equation; rather, a more elaborate dis-
cretization involving an auxiliary sequence is necessary. This
auxiliary sequence is essentially that used by Nesterov in his
constructions of accelerated mirror descent (11) and accelerated
cubic-regularized Newton’s method (13) and later generalized by
Baes (14). Thus, from our perspective, Nesterov’s approach can be
viewed as a methodology for the discretization of a certain class of
differential equations. Given the complexities associated with the
discretization of differential equations, it is perhaps not surprising
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that it has been difficult to perceive the generality and scope of the
acceleration concept in a discrete-time framework.
Our Bregman Lagrangian framework permits a systematic

understanding of the matching rates associated with higher-order
gradient methods in discrete and continuous time. In the case of
gradient descent, Su et al. (25) show that the discrete and con-
tinuous-time dynamics have convergence rates of Oð1=ðekÞÞ and
Oð1=tÞ, respectively, and that these match using the identifica-
tion t= ek; for accelerated gradient descent, the convergence
rates are Oð1=ðek2ÞÞ and Oð1=t2Þ, respectively, which match us-
ing the identification t=

ffiffiffi
e

p
k. This result has been extended to

the non-Euclidean case by Krichene et al. (12). Higher-order
gradient descent is a descent method that minimizes a regular-
ized ðp− 1Þst-order Taylor approximation of the objective func-
tion f, generalizing gradient descent (p= 2) and Nesterov
and Polyak’s cubic-regularized Newton’s method (p= 3) (26).
For the pth-order gradient algorithm, we show that the discrete-
and continuous-time dynamics have convergence rates of
Oð1=ðekp−1ÞÞ and Oð1=tp−1Þ, respectively, and that these match
using the identification t= e1=ðp−1Þk. The pth-order gradient al-
gorithm with a constant step size e has convergence rate
Oð1=ðekp−1ÞÞ when ∇p−1f is ð1=eÞ Lipschitz and, in continuous
time, as e→ 0, this algorithm corresponds to the pth rescaled
gradient flow, which is a first-order differential equation with a
matching convergence rate Oð1=tp−1Þ. Thus, the pth-order gra-
dient algorithm can be seen as a discretization t= δk of the
rescaled gradient flow with time step δ= e1=ðp−1Þ. Similarly, we
show that the accelerated higher-order gradient algorithm ach-
ieves an improved convergence rate Oð1=ðekpÞÞ under the same
assumption [i.e., ∇p−1f is ð1=eÞ Lipschitz]. In continuous time, as
e→ 0, this corresponds to the second-order Euler–Lagrange
curve of the Bregman Lagrangian with a matching convergence
rate Oð1=tpÞ. Thus, the pth-order accelerated algorithm can be
seen as a discretization t= δk of the Euler–Lagrange equation of
the Bregman Lagrangian with time step δ= e1=p.
In addition to its value in relating continuous-time and dis-

crete-time acceleration, the study of the Bregman Lagrangian
can provide further insights into the nature of acceleration. For
instance, it is noteworthy that the Bregman Lagrangian is closed
under time dilation. This means that if we take a Euler–Lagrange
curve of a Bregman Lagrangian and reparameterize time so we
travel the curve at a different speed, then the resulting curve is
also the Euler–Lagrange curve of another Bregman Lagrangian,
with appropriately modified parameters. Thus, the entire family
of accelerated methods corresponds to a single curve in space-
time and can be obtained by speeding up (or slowing down) any
single curve. Another insight is obtained by noting that from the
discrete-time point of view, an interpretation of acceleration starts
with a base algorithm, which we can accelerate by coupling with a
suitably weighted mirror descent step. From the continuous-time
point of view, however, it is the weighted mirror descent step that
is important because the base gradient algorithm operates on a
smaller time scale. Thus, Nesterov’s accelerated gradient methods
are but one possible implementation of second-order Bregman
Lagrangian curves as a discrete-time algorithm.
The remainder of this paper is organized as follows. In 1. The

Bregman Lagrangian, we introduce the general family of Bregman
Lagrangians and study its properties. In 2. Polynomial Convergence
Rates and Accelerated Methods, we demonstrate how to discretize
the Euler–Lagrange equations corresponding to the polyno-
mial subfamily of Bregman Lagrangians to obtain discrete-time
accelerated algorithms. In particular, we introduce the family
of higher-order gradient methods that can be used to complete the
discretization. In 3. Further Explorations of the Bregman Lagrangian,
we discuss additional properties of the Bregman Lagrangian,
including gauge-invariance properties, connection to classical
gradient flows, and the correspondence with a functional that we

refer to as a Bregman Hamiltonian. Finally, we end with a brief
discussion in 4. Discussion.

Problem Setting
We consider the optimization problem

min
x∈X

f ðxÞ,

where X ⊆Rd is a convex set and f :X →R is a continuously
differentiable convex function. To simplify the presentation in
this paper we focus on the case X =Rd. We also assume f has a
unique minimizer, xp∈X , satisfying the optimality condition
∇f ðxpÞ= 0. We use the inner product norm kxk= hx, xi1=2.
We consider the general non-Euclidean setting in which the

space X is endowed with a distance-generating function h :X →R

that is convex and essentially smooth (i.e., h is continuously dif-
ferentiable in X , and k∇hðxÞk

*
→∞ as kxk→∞). The function

h can also be used to define an alternative measure of distance in
X via its Bregman divergence,

Dhðy, xÞ= hðyÞ− hðxÞ− h∇hðxÞ, y− xi,

which is nonnegative because h is convex. When x is close to y, the
Bregman divergence is an approximation to the Hessian metric,

Dhðy, xÞ≈ 1
2
�
y− x,∇2hðxÞðy− xÞ�:= 1

2
ky−xk2∇2hðxÞ.

The Euclidean setting is obtained when hðxÞ= 1
2kxk2, in which

case the Bregman divergence and Hessian metric coincide be-
cause ∇2hðxÞ is the identity matrix.
In continuous time, the Hessian metric is generally studied

rather than the more general Bregman divergence; for instance,
this is the case for natural gradient flow, which is the continuous-
time limit of mirror descent (27, 28). By way of contrast, we shall
see that our continuous-time, Lagrangian framework crucially
employs the Bregman divergence.
In this paper we denote a discrete-time sequence in lowercase,

e.g., xk with k≥ 0 an integer. We denote a continuous-time curve
in uppercase, e.g., Xt with t∈R. An overdot means derivative
with respect to time, i.e., _Xt = d

dt Xt.

1. The Bregman Lagrangian
We define the Bregman Lagrangian

LðX ,V , tÞ= eαt+γt
�
DhðX + e−αtV ,XÞ− eβt f ðXÞ�, [1]

which is a function of position X ∈X , velocity V ∈Rd, and
time t∈T, where T⊆R is an interval of time. The functions
α, β, γ :T→R are arbitrary smooth (continuously differentiable)
functions of time that determine the weighting of the velocity,
the potential function, and the overall damping of the Lagrangian.
We also define the ideal scaling conditions

_βt ≤ eαt [2a]

_γt = eαt ; [2b]

these conditions are justified in the following section.

Convergence Rates of the Euler–Lagrange Equation. In this section we
show that—under the ideal scaling assumption [2]—the Bregman
Lagrangian [1] defines a variational problem, the solutions to
which minimize the objective function f at an exponential rate.
Given a general Lagrangian LðX ,V , tÞ, we define a functional

on curves fXt : t∈Tg via integration of the Lagrangian: JðXÞ=R
T
LðXt, _Xt, tÞdt. From the calculus of variations, a necessary
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condition for a curve to minimize this functional is that it solve
the Euler–Lagrange equation:

d
dt

�
∂L
∂V

�
Xt, _Xt, t

��
=
∂L
∂X

�
Xt, _Xt, t

�
. [3]

Specifically, for the Bregman Lagrangian [1], the partial derivatives are

∂L
∂X

ðX ,V , tÞ= eγt+αt
�
∇hðX + e−αtV Þ−∇hðXÞ

− e−αt∇2hðXÞV − eβt∇f ðXÞ�
[4a]

∂L
∂V

ðX ,V , tÞ= eγtð∇hðX + e−αtV Þ−∇hðXÞÞ. [4b]

Thus, for general functions αt, βt, γt, the Euler–Lagrange equa-
tion [3] for the Bregman Lagrangian [1] is a second-order differ-
ential equation given by

X
::
t + ðeαt − _αtÞ _Xt + e2αt+βt

	
∇2h

�
Xt + e−αt _Xt

�
−1
∇f ðXtÞ

+  eαtð _γt − eαtÞ	∇2h
�
Xt + e−αt _Xt

�
−1�∇h�Xt + e−αt _Xt
�

−∇hðXtÞ
�
= 0.

[5]

We now impose the ideal scaling condition [2b]. In this case
the last term in [5] vanishes, so the Euler–Lagrange equation
simplifies to

X
::
t + ðeαt − _αtÞ _Xt + e2αt+βt

	
∇2h

�
Xt + e−αt _Xt

�
−1
∇f ðXtÞ= 0. [6]

In [6], we have assumed the Hessian matrix ∇2hðXt + e−αt _XtÞ is
invertible. But we can also write equation [6] in the following
way, which requires only that ∇h be differentiable,

d
dt
∇h

�
Xt + e−αt _Xt

�
=−eαt+βt∇f ðXtÞ. [7]

To establish a convergence rate associated with solutions
to the Euler–Lagrange equation—under the ideal scaling
conditions—we take a Lyapunov function approach. Defining
the energy functional

Et =Dh
�
xp ,Xt + e−αt _Xt

�
+ eβtðf ðXtÞ− f ðxpÞÞ, [8]

we immediately obtain a convergence rate, as shown in Theorem
1.1. The derivation of the energy functional [8] is given in SI
Appendix, C. Deriving the Energy Functional.

Theorem 1.1. If the ideal scaling [2] holds, then solutions to the
Euler–Lagrange equation [7] satisfy

f ðXtÞ− f ðxpÞ≤O
�
e−βt

�
.

Proof: The time derivative of the energy functional is

_Et =−
�
d
dt
∇h

�
Xt + e−αt _Xt

�
, xp −Xt − e−αt _Xt

�
+ _βte

βtðf ðXtÞ− f ðxpÞÞ

+ eβt
�
∇f ðXtÞ, _Xt

�
.

If Xt satisfies the Euler–Lagrange equation [7], then the time
derivative simplifies to

_Et =−eαt+βtDf
�
xp,Xt

�
+
�
_βt − eαt

�
eβtðf ðXtÞ− f ðxpÞÞ,

where Df ðxp,XtÞ= f ðxpÞ− f ðXtÞ− h∇f ðXtÞ, xp −Xti is the Bregman
divergence of f. Note that Df ðxp,XtÞ≥ 0 because f is convex, so the

first term in _Et is nonpositive. Furthermore, if the ideal scaling
condition [2a] holds, then the second term is also nonpositive, so _Et ≤ 0.
Because Dhðxp,Xt + e−αt _XtÞ≥ 0, this implies that for any t≥ t0 ∈T,
eβtðf ðXtÞ− f ðxpÞÞ≤ Et ≤ Et0. Thus, f ðXtÞ− f ðxpÞ≤ Et0e

−βt =Oðe−βtÞ,
as desired.

■
For a given αt, which determines γt by [2a], the optimal

convergence rate is achieved by setting _βt = eαt , resulting in
convergence rate Oðe−βtÞ=Oðexpð− R t

t0
eαs   dsÞÞ. In 2. Polynomial

Convergence Rates and Accelerated Methods we study a sub-
family of Bregman Lagrangians that have a polynomial con-
vergence rate, and we show how we can discretize the resulting
Euler–Lagrange equations to obtain discrete-time methods that
have a matching, accelerated convergence rate. In 3. Further
Explorations of the Bregman Lagrangian we study another sub-
family of Bregman Lagrangians that have an exponential con-
vergence rate and discuss its connection to a generalization of
Nesterov’s restart scheme. In the Euclidean setting, our deri-
vations simplify. We present these derivations in SI Appendix,
H. Further Properties and comment on the insight that they
provide into the question posed by Su et al. (25) on the sig-
nificance of the value 3 in the damping coefficient for Nester-
ov’s accelerated gradient descent.

Time Dilation. A notable property of the Bregman Lagrangian
family is that it is closed under time dilation. This means if
we take the Euler–Lagrange equation [5] of the Bregman
Lagrangian [1] and reparameterize time to travel the curve at a
different speed, the resulting curve is also the Euler–Lagrange
equation of a Bregman Lagrangian with a suitably modified set
of parameters.
Concretely, let τ :T→T′ be a smooth (twice-continuously dif-

ferentiable) increasing function, where T′= τðTÞ⊆R is the image
of T. Given a curve X :T′→X , we consider the reparameterized
curve Y :T→X defined by

Yt =XτðtÞ. [9]

That is, the new curve Y is obtained by traversing the original
curve X at a new speed of time determined by τ. If τðtÞ> t, then
we say that Y is the sped-up version of X, because the curve Y at
time t has the same value as the original curve X at the future
time τðtÞ.
For clarity, we let Lα,β,γ denote the Bregman Lagrangian [1]

parameterized by α, β, γ. Then we have the following result
whose proof is provided in SI Appendix, A. Proof of Theorem 1.2.

Theorem 1.2. If Xt satisfies the Euler–Lagrange equation [5] for the
Bregman Lagrangian Lα,β,γ , then the reparameterized curve Yt =XτðtÞ
satisfies the Euler–Lagrange equation for the Bregman Lagrangian
L~α,~β,~γ , with modified parameters

~αt = ατðtÞ + log _τðtÞ [10a]

~βt = βτðtÞ [10b]

~γt = γτðtÞ. [10c]

Furthermore, α, β, γ satisfy the ideal scaling [2] if and only if
~α, ~β,~γ do.
We note that in general, when we reparameterize time by a

time-dilation function τðtÞ, the Lagrangian functional transforms
to ~LðX ,V , tÞ= _τðtÞ  L�X , 1

_τðtÞV , τðtÞ�. Thus, another way of stating
the result in Theorem 1.2 is to claim that
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L~α,~β,~γðX ,V , tÞ= _τðtÞLα,β,γ



X ,

1
_τðtÞV , τðtÞ

�
, [11]

which we can easily verify by directly substituting the definition
of the Lagrangian [1] and the modified parameters ~α, ~β,~γ [10a–
10c].
In 2. Polynomial Convergence Rates and Accelerated Methods,

we show that the Bregman Lagrangian generates the family of
higher-order accelerated methods in discrete time. Thus, the
time-dilation property means that the entire family of curves for
accelerated methods in continuous time corresponds to a single
curve in spacetime, which is traveled at different speeds. This
result suggests that the underlying solution curve has a more
fundamental structure that is worth exploring further.

2. Polynomial Convergence Rates and Accelerated Methods
In this section, we study a subfamily of Bregman Lagrangians [1]
with the following choice of parameters, indexed by a parameter
p> 0,

αt = log p− log t [12a]

βt = p log t+ logC [12b]

γt = p log t, [12c]

where C> 0 is a constant. The parameters α, β, γ satisfy the ideal
scaling condition [2] (with an equality on the first condition [2a]).
The Euler–Lagrange equation [6] is given by

X
::
t +

p+ 1
t

_Xt +Cp2tp−2
�
∇2h



Xt +

t
p
_Xt

��−1
∇f ðXtÞ= 0 [13]

and, by Theorem 1.1, it has an Oð1=tpÞ rate of convergence. As a
direct result of the time-dilation property (Theorem 1.2), the
entire family of curves [13] can be obtained by speeding up the
curve in the case p= 2 by the time-dilation function τðtÞ= tp=2. In
SI Appendix, B. Existence and Uniqueness of Solution to the Poly-
nomial Family we discuss the issue of the existence and unique-
ness of the solution to the differential equation [13].
The case p= 2 of equation [13] is the continuous-time limit of

Nesterov’s accelerated mirror descent (11), and the case p= 3 is the
continuous-time limit of Nesterov’s accelerated cubic-regularized
Newton’s method (13). The case p= 2 has also been derived in-
dependently in the recent work of Krichene et al. (12); in the
Euclidean case, when the Hessian ∇2h is the identity matrix, we
recover the differential equation of Su et al. (25).

Naive Discretization. We now turn to the challenge of discretizing
the differential equation in [13], with the goal of obtaining a dis-
crete-time algorithm whose convergence rate matches that of the
underlying differential equation. As we show in this section, a naive
Euler method is not able to match the underlying rate. To match
the rate a more sophisticated approach is needed, and it is at this
juncture that Nesterov’s three-sequence idea makes its appearance.
We first write the second-order equation [13] as the following

system of first-order equations:

Zt =Xt +
t
p
_Xt [14a]

d
dt
∇hðZtÞ=−Cptp−1∇f ðXtÞ. [14b]

Now we discretize Xt and Zt into sequences xk and zk with time
step δ>0. That is, we make the identification t= δk and set

xk =Xt, xk+1 =Xt+δ ≈Xt + δ _Xt and zk =Zt, zk+1 =Zt+δ ≈Zt + δ _Zt.
Applying the forward-Euler method to [14a] gives the equation
zk = xk + δk

p
1
δ ðxk+1 − xkÞ or, equivalently,

xk+1 =
p
k
zk +

k− p
k

xk. [15]

Similarly, applying the backward-Euler method to equation [14b]
gives 1

δ ð∇hðzkÞ−∇hðzk−1ÞÞ=−CpðδkÞp−1∇f ðxkÞ, which we can
write as the optimality condition of the following weighted mir-
ror descent step,

zk = argmin
z

�
Cpkp−1h∇f ðxkÞ, zi+ 1

e
Dhðz, zk−1Þ

�
, [16]

with step size e= δ p. In principle, the two updates [15] and [16]
define an algorithm that implements the dynamics [14a] and [14b]
in discrete time. However, we cannot establish a convergence rate
for the algorithm in [15] and [16]; indeed, empirically, we find that
the algorithm is unstable. Even for the simple case in which f is a
quadratic function in two dimensions, the iterates of the algorithm
initially approach and oscillate near the minimizer, but eventually
the oscillation increases and the iterates shoot off to infinity.

A Rate-Matching Discretization.We now discuss how to modify the
naive discretization scheme in [15] and [16] into an algorithm whose
convergence rate matches that of the underlying differential equa-
tion. Our approach is inspired by Nesterov’s constructions of
accelerated mirror descent (11) and accelerated cubic-regularized
Newton’s method (13), which maintain three sequences in the al-
gorithms and use the estimate sequence technique to prove con-
vergence. Indeed, from our point of view, Nesterov’s methodology
can be viewed as a rate-matching discretization methodology.
Specifically, we consider the following scheme, in which we

introduce a third sequence yk to replace xk in the updates,

xk+1 =
p

k+ p
zk +

k
k+ p

yk [17a]

zk = argmin
z

�
Cpkðp−1Þh∇f ðykÞ, zi+ 1

e
Dhðz, zk−1Þ

�
, [17b]

where kðp−1Þ:= kðk+ 1Þ⋯ðk+ p− 2Þ is the rising factorial. A suffi-
cient condition for the algorithm [17] to have an Oð1=ðekpÞÞ con-
vergence rate is that the new sequence yk satisfies the inequality

h∇f ðykÞ, xk − yki≥Me1=ðp−1Þk∇f ðykÞkp=ðp−1Þ*
, [18]

for some constantM > 0. Note that in going from [15] to [17a] we
have replaced the weight p

k by
p

k+ p; this is only for convenience in
the proof given below and does not change the asymptotics be-
cause p

k=Θ
� p
k+ p

�
as k→∞. Similarly, we replace k p−1 in [16] by

the rising factorial kðp−1Þ in [17b] to make the algebra easier, but
we still have kðp−1Þ =Θðkp−1Þ.
The following result also requires a uniform convexity as-

sumption on the distance-generating function h. Recall that h is
σ-uniformly convex of order p≥ 2 if its Bregman divergence is
lower bounded by the pth power of the norm,

Dhðy, xÞ≥ σ

p
ky− xkp. [19]

The case p= 2 is the usual definition of strong convexity. An
example of a uniformly convex function is the pth power of the
norm, hðxÞ= 1

pkx−wkp for any w∈X , which is σ-uniformly con-
vex of order p with σ = 2−p+2 (ref. 13, lemma 4).
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Theorem 2.1.Assume h is 1-uniformly convex of order p≥ 2, and the
sequence yk satisfies the inequality [18] for all k≥ 0. Then the al-
gorithm [17] with the constant C≤Mp−1=pp and initial condition
z0 = x0 ∈X has the convergence rate

f ðykÞ− f ðxpÞ≤Dhðx* , x0Þ
CekðpÞ

=O



1
ekp

�
. [20]

The proof of Theorem 2.1 uses a generalization of Nesterov’s
estimate sequence technique and can be found in SI Appendix,
D. Proof of Theorem 2.1. We note that with the scaling e= δ p as
in the previous section, the convergence rate Oð1=ðekpÞÞmatches
the Oð1=tpÞ rate in continuous time for the differential equation
[13]. We also note that the result in Theorem 2.1 does not require
any assumptions on f beyond the ability to construct a sequence
yk satisfying [18]. In the next section, we will see that we can
satisfy [18] using the higher-order gradient method, which re-
quires a higher-order smoothness assumption on f; the resulting
algorithm is then the accelerated higher-order gradient method.

Higher-Order Gradient Method.We study the higher-order gradient
update, which minimizes a regularized higher-order Taylor ap-
proximation of the objective function f.
Recall that for an integer p≥ 2, the ðp− 1Þ st-order Taylor ap-

proximation of f centered at x∈X is the ðp− 1Þ st degree polynomial

fp−1ðy; xÞ=
Xp−1
i=0

1
i!
∇if ðxÞðy− xÞi = f ðxÞ+ h∇f ðxÞ, y− xi

+⋯+
1

ðp− 1Þ!∇
p−1f ðxÞðy− xÞp−1.

We say that f is L smooth of order p− 1 if f is p-times continuously
differentiable and ∇p−1f is L Lipschitz, which means for all x, y∈X ,

��∇p−1f ðyÞ−∇p−1f ðxÞ��
p
≤Lky− xk. [21]

For a constant N > 0 and step size e> 0, we define the update
operator Gp,e,N :X →X by

Gp,e,NðxÞ= argmin
y

�
fp−1ðy; xÞ+ N

ep
ky− xkp

�
. [22]

When f is smooth of order p− 1, the operator Gp,e,N has the
following property, which generalizes (ref. 13, lemma 6). We
provide the proof in SI Appendix, E. Proof of Lemma 2.2.

Lemma 2.2. Let x∈X , y=Gp,e,NðxÞ, and N > 1. If f is L= ðp− 1Þ!
e

smooth of order p− 1, then

h∇f ðyÞ, x− yi≥
�
N2 − 1

�ðp−2Þ=ð2p−2Þ
2N

e1=ðp−1Þk∇f ðyÞkp=ðp−1Þ
*

. [23]

Furthermore,

�
N2 − 1

�ðp−2Þ=ð2p−2Þ
2N

e1=ðp−1Þk∇f ðyÞk1=ðp−1Þp

≤ kx− yk
≤

1

ðN − 1Þ1=ðp−1Þ
e1=ðp−1Þk∇f ðyÞk1=ðp−1Þp .

[24]

The inequality [23] means that we can use the update operator
Gp,e,N to produce a sequence yk satisfying the requirement [18]
under a higher-order smoothness condition on f. We state the
resulting algorithm in the next section.

Higher-Order Gradient Method. In this section, we study the fol-
lowing higher-order gradient algorithm defined by the update
operator Gp,e,N :

xk+1 =Gp,e,NðxkÞ. [25]

The case p= 2 is the usual gradient descent algorithm, and the
case p= 3 is Nesterov and Polyak’s cubic-regularized Newton’s
method (26).
If f is smooth of order p− 1, then the algorithm [25] is a de-

scent method. Furthermore, we can prove the following rate of
convergence, which generalizes the results for gradient descent
and the cubic-regularized Newton’s method. We provide the
proof in SI Appendix, F. Proof of Theorem 2.3.

Theorem 2.3. If f is ðp− 1Þ!
e smooth of order p− 1, then the algorithm

[25] with constant N > 0 and initial condition x0 ∈X has the con-
vergence rate

f ðxkÞ− f ðxpÞ≤ pp−1ðN + 1ÞRp

ekp−1
=O



1

ekp−1

�
, [26]

where R= supx : f ðxÞ≤f ðx0Þkx− xpk is the radius of the level set of f from
the initial point x0.

Rescaled Gradient Flow. We can take the continuous-time limit of
the higher-order gradient algorithm as the step size e→ 0. The
resulting curve is a first-order differential equation that is a
rescaled version of gradient flow. We show that it minimizes f
with a matching convergence rate. In the following, we take
N = 1 in [25] for simplicity (the general N simply scales the vector
field by a constant). We provide the proof of Theorem 2.4 in SI
Appendix, G. Proof of Theorem 2.4.

Theorem 2.4. The continuous-time limit of the algorithm [25] is the
rescaled gradient flow

_Xt =−
∇f ðXtÞ

k∇f ðXtÞkðp−2Þ=ðp−1Þp

, [27]

where we define the right-hand side to be the zero if ∇f ðXtÞ= 0.
Furthermore, the rescaled gradient flow has convergence rate

f ðXtÞ− f ðxpÞ≤ ðp− 1Þp−1Rp

tp−1
=O



1
tp−1

�
, [28]

where R= supx : f ðxÞ≤f ðX0Þkx− xpk is the radius of the level set of f
from the initial point X0.
Equivalently, we can interpret the higher-order gradient al-

gorithm [25] as a discretization of the rescaled gradient flow [27]
with time step δ= e1=ðp−1Þ, so t= δk= e1=ðp−1Þk. With this identi-
fication, the convergence rates in discrete time, Oð1=ðekp−1ÞÞ,
and in continuous time, Oð1=tp−1Þ, match. The convergence rate
for the continuous-time dynamics does not require any as-
sumption beyond the convexity and differentiability of f (as in the
case of the Lagrangian flow [6]), whereas the convergence rate
for the discrete-time algorithm requires the higher-order
smoothness assumption on f. We note that the limiting case
p→∞ of [27] is the normalized gradient flow, which has been
shown to converge to the minimizer of f in finite time (29). We
also note that unlike the Lagrangian flow, the family of rescaled
gradient flows is not closed under time dilation.

Accelerated Higher-Order Gradient Method. By the result of Lemma
2.2, we can use the higher-order gradient update Gp,e,N to pro-
duce a sequence yk satisfying the inequality [18], to complete the
algorithm [25] that implements the polynomial family of the
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Bregman Lagrangian flow [13]. Explicitly, the resulting algorithm
is as follows:

xk+1 =
p

k+ p
zk +

k
k+ p

yk [29a]

yk = argmin
y

�
fp−1ðy; xkÞ+ N

ep
ky− xkkp

�
[29b]

zk = argmin
z

�
Cpkðp−1Þh∇f ðykÞ, zi+ 1

e
Dhðz, zk−1Þ

�
. [29c]

By Theorem 2.1 and Lemma 2.2, we have the following guarantee
for this algorithm.

Corollary 2.5. Assume f is ðp− 1Þ!
e smooth of order p− 1, and h is

1-uniformly convex of order p. Then the algorithm [29] with con-
stants N > 1 and C≤ ðN2 − 1Þðp−2Þ=2=ðð2NÞp−1ppÞ and initial con-
ditions z0 = x0 ∈X has an Oð1=ðekpÞÞ convergence rate.
The resulting algorithm [29] and its convergence rate recover

the results of Baes (14), who studied a generalization of Nesterov’s
estimate sequence technique to higher-order algorithms. We
note that the convergence rate Oð1=ðekpÞÞ of algorithm [29] is
better than the Oð1=ðekp−1ÞÞ rate of the higher-order gradient
algorithm [25], under the same assumption of the ðp− 1Þ st-order
smoothness of f. This gives the interpretation of the algorithm
[29] as “accelerating” the higher-order gradient method. Indeed,
in this view the “base algorithm” that we start with is the higher-
order gradient algorithm in the y-sequence [29b], and the ac-
celeration is obtained by coupling it with a suitably weighted
mirror descent step in [29a] and [29c].
However, from the continuous-time point of view, where our

starting point is the polynomial Lagrangian flow [13], the algo-
rithm [29] is only one possible implementation of the flow as a
discrete-time algorithm. As pointed out in 2. Polynomial Con-
vergence Rates and Accelerated Methods, it is only the x- and
z-sequences [29a] and [29c] that play a role in the correspon-
dence between the continuous-time dynamics and their discrete-
time implementation, and the requirement [18] in the y update is
needed only to complete the convergence proof. Indeed, the
higher-order gradient update [29b] does not change the contin-
uous-time limit, because from [24] in Lemma 2.2 we have that
kxk − ykk=Θðe1=ðp−1ÞÞ, which is smaller than the δ= e1=p time step
in the discretization of [13]. Therefore, the x and y sequences in
[29] coincide in continuous time as e→ 0. Thus, from this point
of view, Nesterov’s accelerated methods (for the cases p= 2 and
p= 3) are one of possibly many discretizations of the polynomial
Lagrangian flow [13]. For instance, in the case p= 2, Krichene
et al. (ref. 12, section 4.1) show that we can use a general regularizer
in the gradient step [29b] under some additional smoothness as-
sumptions. If there are other implementations, it would be in-
teresting to see whether the higher-gradient methods have some
distinguishing property, such as computational efficiency.

3. Further Explorations of the Bregman Lagrangian
In addition to providing a unifying framework for the generation
of accelerated gradient-based algorithms, the Bregman Lagrangian
has mathematical structure that can be investigated directly. In
this section we briefly discuss some of the additional perspective
that can be obtained from the Bregman Lagrangian. See SI
Appendix, H. Further Properties for technical details of the results
discussed here.

Hessian vs. Bregman Lagrangian. The presence of the Bregman
divergence in the Bregman Lagrangian [1] is particularly striking.
In the non-Euclidean setting, intuition might suggest using the

Hessian metric ∇2h to measure a “kinetic energy” and thereby
obtain a Hessian Lagrangian. This approach turns out to be
unsatisfying, however, because the resulting differential equation
does not yield a convergence rate and the Euler–Lagrange equation
involves the third-order derivative ∇3h, posing serious difficulties
for discretization. As we have seen, the Bregman Lagrangian, on
the other hand, readily provides a rate of convergence via a Lya-
punov function; moreover, the resulting discrete-time algorithm
in [29] involves only the gradient ∇h via the weighted mirror
descent update.

Gradient vs. Lagrangian Flows. In the Euclidean case, it is known
classically that we can view gradient flow as the strong-friction limit
of a damped Lagrangian flow (ref. 30, p. 646). We show that the
same interpretation holds for natural gradient flow and rescaled
gradient flow. In particular, we show in SI Appendix, H. Further
Properties that we can recover natural gradient flow as the strong-
friction limit of a Bregman Lagrangian flow with an appropriate
choice of parameters. Similarly, we can recover the rescaled gra-
dient flow [27] as the strong-friction limit of a Lagrangian flow that
uses the pth power of the norm as the kinetic energy. Therefore, the
general family of second-order Lagrangian flows is more general
and includes first-order gradient flows in its closure. From this point
of view, a particle with gradient-flow dynamics is operating in the
regime of high friction. The particle simply rolls downhill and stops
at the equilibrium point as soon as the force −∇f vanishes; there is
no oscillation because it is damped by the infinitely strong friction.
Thus, the effect of moving from a first-order gradient flow to a
second-order Lagrangian flow is to reduce the friction from infinity
to a finite amount; this permits oscillation (cf. refs. 12, 25, and 31),
but also allows faster convergence.

Bregman Hamiltonian. One way to understand a Lagrangian is to
study its Hamiltonian, which is the Legendre conjugate (dual
function) of the Lagrangian. Typically, when the Lagrangian
takes the form of the difference between kinetic and potential
energy, the Hamiltonian is the sum of the kinetic and potential
energy. The Hamiltonian is often easier to study than the La-
grangian, because its second-order Euler Lagrangian equation is
transformed into a pair of first-order equations. In our case, the
Hamiltonian corresponding to the Bregman Lagrangian [1] is the
following Bregman Hamiltonian,

HðX ,P, tÞ= eαt+γt
�
Dhpð∇hðXÞ+ e−γt P,∇hðXÞÞ+ eβt f ðXÞ�,

which indeed has the form of the sum of the kinetic and potential
energy. Here the kinetic energy is measured using the Bregman
divergence of h* , which is the convex dual function of h. See SI
Appendix, H. Further Properties for further discussion.

Gauge Invariance. The Euler–Lagrange equation of a Lagrangian
is gauge invariant, which means it does not change when we add
a total time derivative to the Lagrangian. For the Bregman
Lagrangian with the ideal scaling condition [2b], this property im-
plies that we can replace the Bregman divergenceDhðX + e−αtV ,XÞ
in [1] by its first term hðX + e−αtV Þ. This might suggest a different
interpretation of the role of h in the Lagrangian.

Natural Motion. The natural motion of the Bregman Lagrangian (i.e.,
the motion when there is no force,−∇f ≡ 0) is given byXt = ae−γt + b,
for some constants a, b∈X . Note that even though the Bregman
Lagrangian still involves the distance-generating function h, its natural
motion is actually independent of h. Thus, the effect of h is felt only
via its interaction with f—this can also be seen in [6] where h and f
appear together only in the final term. Furthermore, assuming
eγt →∞, the natural motion always converges to a limit point, which a
priori can be anything. However, as we see from Theorem 1.1, as soon
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as we introduce a convex potential function f, all motions converge to
the minimizer xp of f.

Exponential Convergence Rate via Uniform Convexity. In addition to
the polynomial family in 2. Polynomial Convergence Rates and
Accelerated Methods, we can also study the subfamily of Bregman
Lagrangians that have exponential convergence rates Oðe−ctÞ,
c> 0. As we discuss in SI Appendix, H. Further Properties, in this
case the link to discrete-time algorithms is not as clear. Using the
same discretization technique as in 2. Polynomial Convergence
Rates and Accelerated Methods suggests that to get a matching
convergence rate, constant progress is needed at each iteration.
From the discrete-time perspective, we show that the higher-

order gradient algorithm [25] achieves an exponential conver-
gence rate when the objective function f is uniformly convex.
Furthermore, we show that a restart scheme applied to the
accelerated method [29] achieves a better dependence on the
condition number; this generalizes Nesterov’s restart scheme for
the case p= 3 (ref. 13, section 5).
It is an open question to understand whether there is a better

connection between the discrete-time restart algorithms and the
continuous-time exponential Lagrangian flows. In particular, it is
of interest to consider whether a restart scheme is necessary to
achieve exponential convergence in discrete time; we know it is
not needed for the special case p= 2, because a variant of
Nesterov’s accelerated gradient descent (32) that incorporates the
condition number also achieves the optimal convergence rate.

4. Discussion
In this paper, we have presented a variational framework for
understanding accelerated methods from a continuous-time
perspective. We presented the general family of Bregman
Lagrangians, which generates a family of second-order Lagrangian
dynamics that minimize the objective function at an accelerated
rate compared with gradient flows. These dynamics are related
to each other by the operation of speeding up time, because the
Bregman Lagrangian family is closed under time dilation. In the
polynomial case, we showed how to discretize the second-order
Lagrangian dynamics to obtain an accelerated algorithm with a
matching convergence rate. The resulting algorithm accelerates a
base algorithm by coupling it with a weighted mirror descent
step. An example of a base algorithm is a higher-order gradient
method, which in continuous time corresponds to a first-order
rescaled gradient flow with a matching convergence rate. Our
continuous-time perspective makes clear that it is the mirror
descent coupling that is more important for the acceleration
phenomenon rather than the base algorithm. Indeed, the higher-

order gradient algorithm operates on a smaller time scale than
the enveloping mirror descent coupling step, so it makes no
contribution in the continuous-time limit, and in principle we can
use other base algorithms.
Our work raises many questions for further research. First, the

case p= 2 is worthy of further investigation. In particular, the
assumptions needed to show convergence of the discrete-time
algorithm (∇p−1f is Lipschitz) are different from those required
to show existence and uniqueness of solutions of the continuous-
time dynamics (∇f is Lipschitz). In the case p= 2, however, these
assumptions match. This result suggests a strong link between
the discrete- and continuous-time dynamics that might help us
understand why several results seem to be unique to the special
case p= 2. Second, in discrete time, Nesterov’s accelerated
methods have been extended to various settings, for example to
the stochastic setting. An immediate question is whether we can
extend our Lagrangian framework to these settings. Third, we
want to understand better the transition from continuous-time
dynamics to discrete-time algorithms and whether we can es-
tablish general assumptions that preserve desirable properties
(e.g., convergence rate). In 2. Polynomial Convergence Rates
and Accelerated Methods we saw that the polynomial conver-
gence rate requires a higher-order smoothness assumption in
discrete time, and in 3. Further Explorations of the Bregman
Langrangian we discussed whether the exponential case requires a
uniform convexity assumption. Finally, our work to date focuses on
the convergence rates of the function values rather than the iter-
ates. Recently there has been some work extending ref. 25 to study
the convergence of the iterates (33) and some perturbative aspects
(34); it would be interesting to extend these results to the general
Bregman Lagrangian.
At an abstract level, the general family of Bregman Lagrangians

has a rich mathematical structure that deserves further study;
we discussed some of these properties in 3. Further Explorations
of the Bregman Langrangian. We hope that doing so will give us
new insights into the nature of the optimization problem in
continuous time and help us design better dynamics with
matching discrete-time algorithms. For example, we can study
how to use some of the appealing properties of the Hamiltonian
formalism (e.g., volume preservation in phase space) to help us
discretize the dynamics. We also wish to understand where the
Bregman Lagrangian itself comes from, why it works so well,
and whether there are other Lagrangian families with similarly
favorable properties.
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