

Contents

Contents

 Introduction
Thank You .
Intended Audience
What You’ll Learn

 The Way of Emacs
Guiding Philosophy

LISP? .
Extensibility

Important Conventions
The Buffer
The Window and the Frame
The Point and Mark
Killing, Yanking and CUA
.emacs.d, init.el, and .emacs
Major Modes and Minor Modes

 First Steps
Installing and Starting Emacs

Starting Emacs

The Emacs Interface
Keys .

Caps Lock as Control
M-x: Execute Extended Command
Universal Arguments
Discovering and Remembering Keys

Configuring Emacs
The Customize Interface
Evaluating Elisp Code
The Package Manager
Color Themes

Getting Help
The Info Manual
Apropos
The Describe System

 The Theory of Movement
The Basics .

C-x C-f: Find file
C-x C-s: Save Buffer
C-x C-c: Exits Emacs
C-x b: Switch Buffer
C-x k: Kill Buffer
ESC ESC ESC: Keyboard Escape
C-/: Undo

Window Management
Working with Other Windows

Frame Management
Elemental Movement

Navigation Keys
Moving by Character

Moving by Line
Moving by Word
Moving by S-Expressions
Other Movement Commands
Scrolling

Bookmarks and Registers
Selections and Regions

Selection Compatibility Modes
Setting the Mark

Searching and Indexing
Isearch: Incremental Search
Occur: Print lines matching an expression .
Imenu: Jump to definitions
Helm: Incremental Completion and Selection
IDO: Interactively DO Things

Other Movement Commands
Conclusion .

 The Theory of Editing
Killing and Yanking Text

Killing versus Deleting
Yanking Text

Transposing Text
C-t: Transpose Characters
M-t: Transpose Words
C-M-t: Transpose S-expressions
Other Transpose Commands

Filling and Commenting
Filling .
Commenting

Search and Replace

Case Folding
Regular Expressions

Changing Case
Counting Things
Text Manipulation

Editable Occur
Deleting Duplicates
Flushing and Keeping Lines
Joining and Splitting Lines
Whitespace Commands

Keyboard Macros
Basic Commands
Advanced Commands

Text Expansion
Abbrev .
DAbbrev and Hippie Expand

Indenting Text and Code
RET: Indenting New lines
TAB: Indenting the Current Line
Indenting Regions

Sorting and Aligning
Sorting .
Aligning

Other Editing Commands
Zapping Characters
Spell Checking
uoted Insert

 The Practicals of Emacs
Exploring Emacs

Reading the Manual

Using Apropos
C-h: Exploring Prefix keys
C-h k: Describe what a key does
C-h m: Finding mode commands

Working with Log Files
Browsing Other Files

TRAMP: Remote File Editing
Multi-Hops and User Switching

Dired: Files and Directories
Navigation
Marking and Unmarking
Operations
Working Across Directories

Shell Commands
Compiling in Emacs

Shells in Emacs
M-x shell: Shell Mode
M-x ansi-term: Terminal Emulator
M-x eshell: Emacs’s Shell

 Conclusion
Other Resources

Chapter

Introduction

“I’m using Linux. A library that emacs uses to
communicate with Intel hardware.”

– Erwin, emacs, Freenode.

Thank You
Thank you for purchasing Mastering Emacs. This book has
been a long time coming. When I started my blog, Master-
ing Emacs, in , it was at the recommendation of a good
friend, Lee, who suggested that I share my thoughts on
Emacs and work flow in Emacs. At the time I had accrued
in an org mode file titled blogideas.org a large but random
assortment of ideas and concepts that I’d learned about and
wished someone had taught me. The end result of that file
is the blog and now this book.

Special Thanks

Introduction

I would like to thank the following people for
their encouragement, advice, suggestions and
critiques:

Akira Kitada, Alvaro Ramirez, Arialdo Mar-
tini, Bob Koss, Catherine Mongrain, Chandan
Rajendra, Christopher Lee, Daniel Hannaske,
Edwin Ong, Evan Misshula, Friedrich Paetzke,
Gabriela Hajduk, Gabriele Lana, Greg Sieranski,
Holger Pirk, John Mastro, John Kitchin, Jonas
Enlund, Konstantin Nazarenko, Lee Cullip,
Luis Gerhorst, Lukas Pukenis, Manuel Uberti,
Marcin Borkowski, Mark Kocera, Matt Wilbur,
Matthew Daly, Michael Reid, Nanci Bonfim,
Oliver Martell, Patrick Mosby, Patrick Martin,
Sebastian Garcia Anderman, Stephen Nelson-
Smith, Steve Mayer, Tariq Master, Travis
Jefferson, Travis Hartwell.

Like a lot of people, I was thrust into the world of Emacs
without knowing anything about it; in my case it was in
my first year of University where the local computer soci-
ety was made up primarily of Vim users. It was explained
to me, in no uncertain terms, that “you use Vim — that’s
it.” Not wanting to be told what to do, I picked the polar
opposite of Vim and went with Emacs.

Emacs proved to be a stable and reliable editor in all those
years, but it was a tough one to get to know. Despite the
extensive user documentation, it never helped me to learn
and understand Emacs.

Introduction

As it turns out, Emacs is a philosophy or even a religion. So,
the joke about the “Church of Emacs” is eerily accurate in
many ways, as you will find out in the next chapter.

Intended Audience
It’s a bit weird talking about the intended audience when
you’ve already bought the book on the subject. But it bears
mentioning anyway so no matter your Emacs skill level you
will get something out of this book.

The first and (most obvious) audience are people new to
Emacs. If you’ve never used Emacs before in your life, you
will hopefully find this book very useful. However, if
you’re new to Emacs and non-technical, then you’re going
to have a harder time. Emacs, despite being suitable for
much more than just programming, is squarely aimed at
computer-savvy people. Although it’s perfectly possible
to use Emacs anyway, this book will assume that you’re
technically inclined, but not necessarily a programmer.

If you’ve tried Emacs before but given up, then I hope this
book is what convinces you to stick with it. But it’s fine if
you don’t; some languages or environments don’t (contrary
to what a lot of Emacs users would claim) work well with
Emacs. If you’re primarily a Microsoft Windows developer
working with Visual Studio, using Emacs is going to be a
case of two steps forward, one step back: you gain unprece-
dented text editing and tool integration but lose all the ben-
efits a unified would give you.

If you’re a Vim refugee, then welcome to the dark side! If
your primary objective is to use Emacs’s Vim emulation lay-

Introduction

ers, then some of this book is redundant; it concerns itself
with the default Emacs bindings and it teaches “the Emacs
way” of doing things. But not to worry: a lot of the tips and
advice herein are still applicable, and who knows — maybe
you’ll switch away from Evil mode in time.

And finally, if you’re an existing Emacs user but struggling
to take it to the next level, or maybe you just need a refresher
course “from the ground up,” then this book is also for you.

What You’ll Learn
Covering all of Emacs in just one book would be a Sisyphean
task. Instead, I aim to teach you what you need to be produc-
tive in Emacs, which is just a small subset of Emacs’s capabil-
ity. Hopefully, by the end of this book, and with practice,
you will know enough about Emacs to seek out and answer
questions you have about the editor.

To be more specific, I will teach you, in broad terms, six
things:

What Emacs is about A thorough explanation of impor-
tant terminology and conventions that Emacs uses
which in many cases differs greatly from other editors.
You will also learn what the philosophy of Emacs is,
and why a text editor even has a philosophy. I will
also talk about Vim briefly and the Editor Wars and
what the deal is with all those different keys.

Getting started with Emacs How to install Emacs, how to
run it, and how to ensure you’re using a reasonably

http://en.wikipedia.org/wiki/Editor_war

Introduction

new version of Emacs. I explain how to modify Emacs
and what you need to do to make your changes perma-
nent. I will introduce the Customize interface and how
to load a color theme. And finally, I’ll talk about the
user interface of Emacs and some handy tips in case
you get stuck.

Discovering Emacs Emacs is self-documenting; but what
does it mean and how can you leverage that aspect
to discover more about Emacs or answer questions
you have about particular features? I will show you
what I do when I have to learn how to use a new
mode or feature in Emacs, and how you can use the
self-documenting nature of Emacs to find things for
which you’re looking.

Movement How to move around in Emacs. At first glance a
simple thing to do, but in Emacs there are many ways
of going from where you are to where you need to
go in the fewest possible keystrokes. Moving around
is probably half the battle for a developer and know-
ing how to do it quickly will make you more efficient.
Some of the things you’ll learn: moving by syntactic
units, and what exactly syntactic units are; using win-
dows and buffers; searching and indexing text; select-
ing text and using the mark.

Editing As in the chapter on movement, I will show you
how to edit text using a variety of tools offered to you
by Emacs. This includes things like editing text by bal-
anced expressions, words, lines, paragraphs; creating
keyboard macros to automate repetitive tasks; search-

Introduction

ing and replacing; registers; multi-file editing; abbre-
viations; remote file editing; and more.

Productivity Emacs can do more than just edit text and this
chapter is only a taste of what attracts so many people
to Emacs: its tight integration with hundreds of exter-
nal tools. I will whet your appetite and show you some
of the more interesting things you can do when you
choreograph Emacs’s movement and editing.

Chapter

The Way of Emacs

“The purpose of a windowing system is to put
some amusing fluff around your one almighty
emacs window.”

– Mark, gnu.emacs.help.

If you imagine the span of the modern computing era be-
ginning in the s, then Emacs has been there longer than
just about everything else. It was first written by Richard
Stallman as a set of macros on top of another editor, called
, back in .1 is now mostly remembered for be-
ing even more obtuse and hard to understand than Emacs
and -era WordPerfect combined. Since then, there have
been many competing implementations of Emacs but today
you’re only likely to encounter XEmacs and Emacs.

https://www.gnu.org/software/emacs/manual/html_mono/efaq.
htmlOrigin-of-the-term-Emacs

https://www.gnu.org/software/emacs/manual/html_mono/efaq.html#Origin-of-the-term-Emacs
https://www.gnu.org/software/emacs/manual/html_mono/efaq.html#Origin-of-the-term-Emacs

The Way of Emacs

This book will only concern itself with Emacs. Once
upon a time XEmacs was the more advanced and feature
rich editor, but this is no longer the case: from Emacs on-
wards Emacs is the best Emacs out there. The history
of XEmacs and Emacs is an interesting one. It was one
of the first major forks2 in a free software project and both
XEmacs and Emacs are developed in parallel to this day.

Note

To almost everyone, the word Emacs refers specif-
ically to Emacs. I will only spell out the full
name when I am distinguishing between differ-
ent implementations. When I mention Emacs, I
always talk about Emacs.

Because of Emacs’s age there are a number of… oddities.
Weird choices of terminology and historical anachronisms
persist because in most cases Emacs was ahead of the editor-
 curve for many decades and thus had to invent its own
terminology for things. There are talks of replacing Emacs’s
own vernacular with words familiar to everyone, but that
is still a long way off.

Despite the lack of marketing, a small core of Emacs devel-
opers, the anachronisms and terminology that predates the
modern Personal Computing-era, there are many people
out there who just love using Emacs. When Sublime Text
showed off its mini-map feature (a miniature display of the
source code) someone immediately coded up a minimap
package doing the same thing in Emacs. In fact, it is this

http://www.jwz.org/doc/lemacs.html

http://www.sublimetext.com/
http://www.emacswiki.org/emacs/MiniMap
http://www.jwz.org/doc/lemacs.html

The Way of Emacs

extensibility that attracts some to – and repels others from
– Emacs.

This chapter will talk about the Way of Emacs: the terminol-
ogy and what Emacs means to a lot of people, and why un-
derstanding where Emacs comes from will make it easier to
adopt it.

Guiding Philosophy
Emacs is a tinkerer’s editor. Plain and simple. People who
hack on Emacs do it because almost every facet of it is
extensible. It is the original extensible, customizable, self-
documenting editor. If you come from other text editors,
the idea of being able to change anything may seem like an
unnecessary distraction from your work – and indeed, a
lot of Emacs hacking does happen at the expense of one’s
real job – but once you realize that you can shape your
editor to do what you want it to do, it opens up a world of
possibilities.

That means you can truly rebind all of Emacs’s keys to your
liking; you are not hidebound by your ’s undocumented
and buggy nor the limitations that would follow if you
did change things — such as your custom navigation keys
not working in, say, the search & replace window or in the
internal help files. Truly, in Emacs, you can change every-
thing — and people do. Vim users are migrating to Emacs
because, well, Emacs is often a better Vim than Vim.

Emacs pulls you in. Once you start using Emacs for the edit-
ing, you realize that using Emacs for , email, database ac-
cess, command-line shells, compiling your code or surfing

The Way of Emacs

the Internet is just as easy as editing text – and you get to
keep your key bindings, theme and all the power of Emacs
and elisp to configure or alter the behavior of everything.

And when everything is seamlessly tied together you avoid
the usual context switches of going from application to ap-
plication: most Emacs users use little more than the editor,
a browser and maybe a dedicated terminal application.

Emacs’s history

Emacs’s source code repository (now in Git)
stretches back over years and has more than
, commits and nearly committers.

If you want to modify Emacs, or any of the myriad pack-
ages available to you, Emacs Lisp (also known informally as
elisp) is what you will have to write. There have been a few
attempts to graft other languages onto elisp and Emacs but
with no lasting effect. As it turns out, is actually a per-
fect abstraction for a very advanced tool like Emacs. And
most modern languages wouldn’t necessarily stand the test
of time: was briefly considered in the s as it was popu-
lar at the time — but that has the distinction of being even
more obscure than , nowadays.

The only downside is that fiddling with your Emacs config-
uration is something you will have to learn to live with (and
in no less, but as I explain in the next part that’s actually
a good thing.) That’s why I reinforced the point that it’s a
tinkerer’s editor. If you hate the idea of tweaking anything
and want everything out of the box, you have two options
left:

The Way of Emacs

Use a starter kit There are many free starter kits that come
equipped with additional packages and what the
author thinks are sensible default settings. They can
be a good way to start out but with the caveat that
you don’t know where Emacs ends and the starter
kits’ added functionality begins.

I recommend you look at one of the following starter
kits widely used:

• Steve Purcell’s .emacs.d
https://github.com/purcell/emacs.d

• Bozhidar Batzov’s Prelude
https://github.com/bbatsov/prelude

Use the defaults Certainly an option but Emacs, I would
say, is rather lacking out of the box. You are expected
to configure Emacs to your liking or use a starter kit.
For an editor that is so radically different from main-
stream editors, the maintainers are surprisingly conser-
vative about changing the defaults for fear of upsetting
the old guard (who, of all people, should know how to
configure Emacs.)

LISP?

Emacs is powered by its own implementation called
Emacs Lisp or just elisp. Many are put off or intimidated by
this esoteric language; that’s a shame, because it’s a practical
and fun way to learn in an editor built up around the
idea of . Every part of Emacs can be inspected, evaluated
or modified because the editor is approximately percent

https://github.com/purcell/emacs.d
https://github.com/bbatsov/prelude

The Way of Emacs

elisp and percent C code. It’s also a practical way to learn
a radical paradigm: that code and data are interchangeable
and malleable; that the language, owing to its simple syntax,
is trivially extensible with macros.
Unfortunately, there’s no getting around learning elisp at
some point. In this book, I will talk about the Customize in-
terface: a dynamically generated interface of customizable
options in Emacs. However, something as simple as rebind-
ing a key means you’ll have to interact with elisp. But it’s
not all bad. Most of the problems you’re likely to encounter
have already been solved by someone else a long time ago;
it’s a simple matter of searching the Internet for a solution
to your problems.

Despite the relative unpopularity of elisp versus more “mod-
ern” languages like Python, Ruby and JavaScript, I doubt
Emacs would have had the same power of extensibility if
a more traditional imperative/object-oriented language had
been used. What makes such a fantastic language is that
source code and data structures are intrinsically one and the
same: the source code you read as a human is almost
identical to how the code is manipulated as a data structure
by — the distinction between the questions “What is
data?” and “What is code?” are nil.

The data-as-code, the macro system and the ability to “ad-
vise” arbitrary functions – meaning you can modify the be-
havior of existing code without copying and modifying the
original – give you an unprecedented ability to alter Emacs
to suit your needs. What would in most software projects
be considered code smells or poor architecture is actually a
major benefit in Emacs: you can hook, replace or alter exist-

The Way of Emacs

ing routines in Emacs to suit your needs without rewriting
large swathes of someone else’s source code.

This book will not teach elisp in any great detail: Emacs has
a built-in elisp introduction3 and I highly recommend it if
you are curious — and honestly you should be. is fun
and this is a great way to learn and use a powerful language
in a practical environment. Don’t let the parentheses scare
you; they are actually its greatest strength.

Emacs as an Operating System

When you run Emacs you are in fact launching a tiny C
core responsible for the low-level interactions with your op-
erating system’s . That includes mundane things like file-
system and network access; drawing things to the screen or
printing control codes to the terminal.

The cornerstone of Emacs though is the elisp interpreter —
without it, there is no Emacs. The interpreter is creaky and
old; it’s struggling. Modern Emacs users expect a lot from
their humble interpreter: speed and asynchrony are the two
main issues. The interpreter runs in a single thread and inten-
sive tasks will lock the thread. But there are workarounds;
the issues, manifold though they are, do not deter people
from writing ever-more sophisticated packages.

When you write elisp you are not just writing snippets of
code run in a sandbox, isolated from everything — you are
altering a living system; an operating system running on an
operating system. Every variable you alter and every func-

https://www.gnu.org/software/emacs/manual/eintr.html

https://www.gnu.org/software/emacs/manual/eintr.html

The Way of Emacs

tion you call is carried out by the very same interpreter you
use when you edit text.

Emacs is a hacker’s dream because it is one giant, mutable
state. Its simplicity is both a blessing and a curse. You can
re-define live functions; change variables left and right; and
you can query the system for its state at any time — state that
changes with every key stroke as Emacs responds to events
from your keyboard to your network stack. Emacs is self-
documenting because it is the document. There are no other
editors that can do that. No editor comes close.

And yet Emacs never crashes — not really, anyway. Emacs
has an uptime counter to prove that it doesn’t (M-x emacs-
uptime) — multi-month uptimes are not uncommon.

So when you ask Emacs a question – as I will show you how
to do later – you are asking your Emacs what its state is. Be-
cause of this, Emacs has an excellent elisp debugger and un-
limited access to every facet of Emacs’s own interpreter and
state — so it has excellent code completion too. Any time
you encounter a expression you can tell Emacs to evalu-
ate it, and it will: from adding numbers to setting variables
to downloading packages.

Extensibility

Extensibility is important, but emphasizing that importance
is difficult if you don’t know the scope of possibilities in
Emacs. I’ve included just a few examples of what Emacs can
do – or more importantly still, what Emacs can enable people
to do – here.

The Way of Emacs

A speech interface for the blind For years, Emacs-
peak4 has offered blind or visually impaired Emacs
users a way of interacting with Emacs, and the world,
through a speech interface that understands the con-
tent of what appears on your screen. Emacspeak will
change the voice characteristics of the speech engine
to reflect different syntactic elements in source code,
or to emphasize layout, fonts or graphical icons. For
blind Emacs users, Emacspeak is a lifeline that has
enabled them to continue working by using Emacs’s
many tools, such as e-mail or web browsing.

The fact that this functionality has been around for
years is in itself impressive, but Emacs’s ability to sup-
port this sort of transformational software is beyond
inspiring.

Remote file editing Emacs’s 5 seamlessly lets you
edit remote files using a variety of network protocols,
including , , rsync, and more, as though the
files were local.

Shell access Emacs has a built-in -capable Terminal em-
ulator; an Emacs wrapper around shells, such as bash;
and a full-blown shell called Eshell written entirely in
elisp.

ORG mode A to-do, agenda, project planner, literate
programming, note-taking (and more!) application.
It is widely considered the best text-based organizer ever

http://emacspeak.sourceforge.net/
Transparent Remote (file) Access, Multiple Protocol

http://emacspeak.sourceforge.net/

The Way of Emacs

— a feat only surpassed by the fact that people switch
to Emacs just to use it.

And much more Official or unofficial support for almost
every programming environment; built-in man page
and info reader; a very sophisticated directory and file
manager; seamless support for almost every major ver-
sion control system; and thousands of other features,
large or small.

Important Conventions
There are some important Emacs conventions that I need to
talk about before we continue. It’s quite important that you
memorize them or at least refer back to this page if you’re
in doubt. They will crop up again and again in the book
and elsewhere and knowing them is paramount if you want
to make use of Emacs’s extensive, internal documentation.
This is not an exhaustive list of conventions used in Emacs
or even in this book. I will introduce specific terms and con-
cepts throughout the book, though some terms transcend
specific topics and are therefore important to know before-
hand.

The Way of Emacs

The Buffer

Most text editors and s are file based: they display text from
a file, and they save the text to a file. That’s it.

In Emacs, all files are buffers, but not all buffers are files. If
you want a throw-away area to temporarily store snippets
from a log file, or manipulate text, or whatever your reason

— you just create and name a new buffer. Emacs won’t hassle
you for a filename. The buffer will exist in Emacs and only
Emacs. You have to explicitly save it to a file on disk to make
it persist.

Emacs uses these buffers for more than just editing text. It
can also act like an / device and talk to another process,
such as a shell like bash or even Python.

Almost all of Emacs’s own commands act on buffers. So
when you tell Emacs to, for example, search & replace it

The Way of Emacs

will actually search and replace on a buffer – maybe the active
buffer you’re writing in, or perhaps a temporary duplicate
– and not an internal data structure like you might think.
In Emacs, the buffer is the data structure. This is an extremely
powerful concept because the very same commands you
use to move around and edit in Emacs are almost always the
same ones you use behind-the-scenes in elisp. So once you
memorize Emacs’s own user commands, you can use them
in a simple function call to mimic what you’d do by hand.

The Window and the Frame

When you look at a buffer on the screen it is displayed in
a window. But in Emacs, a window is just a tiled portion of
the frame, which is what most window managers call a win-
dow. In Emacs, it is the other way around; and yes, it’s very
confusing.

If you look at the screenshot above, you will see two win-
dows and one frame. Each frame can have one or more win-
dows, and each window can have exactly one buffer.

So, a buffer must be viewed in a window in order to be dis-
played to the user, and for the window to be visible to the
user it must be in a frame.

Note

Think of it as a physical window having a frame,
each frame made up of window panes.

In Emacs, you are free to create as many frames as you like,
and in each frame you’re free to split and tile that frame into

The Way of Emacs

multiple windows. If you use a large screen monitor (and
who doesn’t, these days), it is very beneficial to use Emacs’s
tiling system to show multiple buffers on the screen.

Modeline, Echo Area, and Minibuffer

The figure above is an example of a Terminal Emacs session.
Emacs uses the modeline to communicate facts about Emacs
and the buffer you’re in. The modeline looks like this:

-UUU:**--F3 *scratch* All L4 (Lisp Interaction) --

There’s a lot of information conveyed in a fairly small area.
What you should care about to begin with are the name and
modes. In this case, the buffer is named *scratch* and the ma-
jor mode is Lisp Interaction. Most editors have a similar con-
cept known as a status bar.

All sorts of optional information can be displayed in the mod-
eline: laptop battery power, the current function or class
you’re in, what source control revision or branch you’re us-
ing, and much more.

The Way of Emacs

The minibuffer is directly below the modeline and it is
where errors and general information are shown:

-UUU:**--F3 *scratch* All L4 (Lisp Interaction) --
M-x insert-hello-world

In this case, I have triggered Emacs’s extended command func-
tionality – indicated by the M-x symbol, a concept that I will
talk about in the chapter on keys – and I’ve typed the com-
mand insert-hello-world into the M-x prompt.

The echo area and the minibuffer share the same spot on the
screen. The minibuffer is nearly identical to a normal buffer:
you can use most of your editing commands, and the one-
line minibuffer will expand to multiple lines if necessary. It
is how you communicate with Emacs: if you want to search
for a string you write the string you want to search for in
the minibuffer. It supports a variety of complex completion
mechanisms to help you find what you need and is a tool
you will use often.

The Point and Mark

The point is just another word for the caret or cursor. The
Emacs documentation is rather inconsistent in its use of point
or cursor; you will see both. Nevertheless, the point itself is
your current position in a buffer. It’s often represented (par-
ticularly in Emacs’s doc strings and documentation) as -!- —
but in this book I will use █ to represent the point. Each
buffer tracks the position of the point separately, so if you
switch between buffers the location of each point is remem-
bered separately.

The Way of Emacs

Note

In Emacs, we talk a lot about a “current buffer,”
which can mean two things – only one of which
is interesting to us, at the present – and that is
whichever buffer has the point (the other case is ba-
sically the same, but involves programmatically
changing the buffer in elisp.) A buffer that has the
point is the current buffer because it is the one you
write and move around in. Only one buffer can
ever be the current buffer at a time, and it is this
buffer that has the point.

The point, in Emacs, has more utility than just acting as
a visual marker for where characters you type end up on
the screen. It is also one part of a duo called the point and
mark. The point and mark represents the boundary for a
region, which is a contiguous block of text, usually, in the
current buffer. In other editors, it is called the selection or
the highlight. Most editors don’t have specific names for the
beginning and end of a region but in Emacs we do, and in
Selections and Regions I will talk more about the reason.

Tip

Historically, Emacs did not show you the visible
region on the screen but instead you had to men-
tally visualize it. Emacs has supported visual re-
gions for a very long time now, called the tran-
sient mark mode (or just .) It is enabled by de-
fault. Surprisingly, there’s some value in not us-
ing at all, but I will talk about that much
later.

The Way of Emacs

But like the point, the mark is more than what it seems. It
serves as a boundary for the region, yes, but it is also a beacon
you can use to return to from other parts in the buffer. The
mark is typically invisible.

Killing, Yanking and CUA

The first – and perhaps most abhorrent, to beginners – de-
viation from de-facto user interface standards is Emacs’s clip-
board system. Cut, copy and paste are known, almost univer-
sally, to most as Ctrl+x or Shift+Del; Ctrl+c or Ctrl+Ins; and
Ctrl+v or Shift+Ins, respectively.

In Emacs, the keys and the terminology differ greatly:
killing is cutting; yanking is pasting; and copying is
awkwardly known as saving to the kill ring (or just copy,
informally.)

The reasons, as before, are historical. Most of the keys and
terminology stem from IBM’s Common User Access6 ()
and Apple. But the was introduced in , many years
after Emacs had settled on its own terminology and stan-
dards.

In Selection Compatibility Modes, I will explain how you
can switch to modern clipboard keys, with certain caveats,
and why you shouldn’t do that. Instead, I’ll show you why
Emacs’s system is better for text editing.

http://en.wikipedia.org/wiki/IBM_Common_User_Access

http://en.wikipedia.org/wiki/IBM_Common_User_Access

The Way of Emacs

.emacs.d, init.el, and .emacs

A favorite pastime of Emacs users is sharing with other
Emacs hackers little snippets of code or customizations that
make their lives easier.

Historically, these settings were kept in a file called .emacs,
but most keep their customizations in ~/.emacs.d/init.el on
Linux and %HOME%\init.el on Windows. Since Emacs now
writes several more files to your file system, they are kept
in a directory called .emacs.d to avoid cluttering your home
directory.

So, when people talk about their init file, or their “.emacs
file,” or if they tell you to put something in said file, that’s
what they’re referring to. If you are new to Emacs, you
should use ~/.emacs.d/init.el. When you add something
to the file you will need to tell Emacs to run it. There
are many ways of doing this, and I will explain how in
Evaluating Elisp Code, but my preferred recommendation
for beginners is to close Emacs and restart it.

Note

Starter kits in Emacs are very common now.
They’re community additions to Emacs that
bundle many changes and even entire third-
party packages and if you use one, you should
read their documentation for best practices on
where to store your own changes.

Emacs will not save changes for you. If you want Emacs to
keep changes, you must do it through the Customize inter-
face. That means it is your responsibility to save changes you

The Way of Emacs

want to keep to init.el. Likewise, if you made a mistake and
broke something in Emacs or if you made changes you do
not care for, simply quit and restart Emacs.

Major Modes and Minor Modes

Major modes in Emacs control how buffers behave. So, if
you want to edit Python code and you visit a file in Emacs
called helloworld.py, then Emacs will know, through a cen-
tralized register that maps file extensions to major modes,
that this is a Python file and it should use the Python major
mode. Each buffer will always have a major mode. The major
mode may be basic and offer no font locking (syntax highlight-
ing) and no specific functionality, or it may be the complete
opposite and introduce font locking, an advanced indenta-
tion engine, and specialized commands.

Note

Font Locking is the correct term for syntax high-
lighting in Emacs, and in turn is made up of faces
of properties (color, font, text size, and so on)
that the font locking engines use to pretty-print
the text.

You are free to change a buffer’s major mode at any time by
typing the command for another one. In addition to Emacs’s
register of file extensions and associated major modes, there
is another system for files with ambiguous (or no) file exten-
sions at all: Emacs will scan the first portion of the file and
try to infer the major mode from that. Rarely, Emacs will
get it wrong and you will need to change it.

The Way of Emacs

It’s important to remember that each buffer can have just
one major mode. Minor modes, by contrast, are typically
optional add-ons that you enable for some (or all) of your
buffers. One example is flyspell mode, a minor mode that spell
checks text as you write.

The major mode is always displayed in the modeline. Some
minor modes are also displayed in the modeline, but usually
only the ones that alter the buffer or how you interact with
it in some way.

Chapter

First Steps

I use Emacs, which might be thought of as a ther-
monuclear word processor.

– Neal Stephenson, In the Beginning… was the
Command Line.

Installing and Starting Emacs
Before I get into the nitty-gritty of installing Emacs, you
should check and see if it’s installed already. In most normal
Linux distributions it is not; therefore, you have to be extra
vigilant if it is: it might be an ancient version.

Checking Emacs’s version

You can check Emacs’s version by typing emacs
--version.

First Steps

As of the upcoming version is Emacs . If your
version of Emacs is version .x or older — upgrade. If it’s
.x or newer, then that’s fine. If you’re still on .x you can
get by with what you have, but my view is to always use
the latest release. Not so much for the bug fixes (because
Emacs is actually extremely stable) but for the features and
the fact that most package authors assume you’re using the
latest version. (Having said that, if you’re on a very obscure
platform it may not be possible for you to upgrade at all.)

If you’re using XEmacs or another non- Emacs, you re-
ally should switch. Ten or twelve years ago, XEmacs was
leading the pack but Emacs caught up and exceeded the
capabilities of XEmacs a long time ago.

Surprisingly, Emacs ran on some incredibly old platforms1

until Emacs . (released in July), including the follow-
ing: Tandem Integrity S; Apollo SR.x; the Acorn; the
Harris Night Hawk Series and Series ; and about
another two or three dozen more obscure platforms.

Emacs does officially support the usual flavor of s and
Linux, Mac , -, and Microsoft Windows.

I will not go into too great a detail on how to do this in this
book. Emacs was made to be a cross platform but there are
always some trade-offs if you don’t run them on Linux. Mac
, in particular, seems to attract a great deal of conflicting
advice on how to best run Emacs; the best advice I can offer
is to try out a few different approaches and find one that fits
you.

http://www.gnu.org/software/emacs/MACHINES

http://www.gnu.org/software/emacs/MACHINES

First Steps

Microsoft Windows Emacs releases official builds for Mi-
crosoft Windows on their official site.2 Extracting and
running the executable is all it takes.

Most external tool support will not work on Win-
dows. Functionality like built-in grep support requires
the coreutils to be present. You can, however,
run Emacs from Cygwin3 and get a Linux-like envi-
ronment on Windows that way. Alternatively, the
cross-compiled GnuWin4 project has almost every
Linux command line program that runs natively on
Windows.

Mac OSX One approach (though there are several) is
to use an unofficial build of Emacs.5 There is also
Aquamacs but it differs from Emacs quite a bit.
The topic itself is rather complex. Some prefer using
a package manager like homebrew and others do
not. Generally, people who use homebrew often use
the homebrew version of Emacs also. EmacsWiki’s
article6 on installing Emacs on Mac is a good
place to start if you want to compile Emacs yourself.

Linux Emacs is almost always present in your distribution’s
package manager. Some distros are slow to update
to new minor releases (which are rarely minor at all,
adding a lot of new functionality and bug fixes) so it
may be worth your while to build from source.

http://ftp.gnu.org/gnu/emacs/windows/
http://www.cygwin.com/
http://gnuwin.sourceforge.net/
http://emacsformacosx.com/
http://www.emacswiki.org/emacs/EmacsForMacOS

http://ftp.gnu.org/gnu/emacs/windows/
http://www.cygwin.com/
http://gnuwin32.sourceforge.net/
http://emacsformacosx.com/
http://www.emacswiki.org/emacs/EmacsForMacOS

First Steps

On Ubuntu, it’s as easy as apt-get install emacs24.
If you want to build your own version of Emacs
from source, I recommend you use apt-get build-dep
emacs24 to build and install Emacs’s dependencies.
From that point on it’s easy to follow the usual
configure, make, make install procedure.

Starting Emacs

Starting Emacs is as simple as running emacs from the com-
mand line. If you run the command from a window man-
ager, then Emacs will launch as Emacs — as opposed to
Terminal Emacs where Emacs is running inside a terminal.

You can force Emacs to run in a terminal, even in a window
manager, by giving it the argument -nw, like so: emacs -nw.

There’s a host of command line switches you can pass to
Emacs, but you only need four to get started:

Switch Purpose

--help Display the help
-nw Forces Emacs to run in terminal mode
-q Do not load an init file (such as init.el)
-Q Does not load the site-wide startup file7, your

init file, nor X resources

If Emacs is giving you error messages when you start it, you
can use -q to prevent your init file from loading. If that fixes
the errors — then you have a broken init file and should take

The site-wide file is a global settings file like your own init file

First Steps

steps to remedy that: revert to an older version, comment
out code until it works, or ask for help.

The Emacs binary follows the usual command line conven-
tions: emacs [switches] [file1, file2, ...].

The Emacs way is to keep it running and do all your edit-
ing in a dedicated Emacs instance. Emacs will typically start
slower than other editors (as it has a lot more packages and
features) as it’s designed for long-running sessions and not
quick edits.

Emacs Client-Server

So, how do you deal with situations where you’re whiling
away at the command line but have to edit a file? Maybe
you’re writing an email from the command line or writing
a commit message — you’d want to use Emacs, and ideally
the same instance of Emacs you already have running. The
answer, ignoring the fact that Emacs has first-class support
for both email and source control systems, is Emacs’s client-
server mode. (Yes, Emacs has a client-server architecture.)

Note

The client-server functionality is fantastic, but I
wouldn’t spend too much time playing around
with it until you’re comfortable with Emacs ba-
sics.

The myriad advantages of Emacs’s server mode are:

First Steps

A persistent session means Emacs will re-use the same ses-
sion instead of spawning a new, distinct copy of Emacs
every time.

It works well with $EDITOR by opening the files in your
shared Emacs session and automatically signalling the
calling program when the session finishes.

Fast file opening from the command line using the
emacsclient binary. The Emacs client will connect to
the local Emacs server instance and instruct it to open
the file.

To use the client-server functionality, you must explicitly
start the server:

M-x server-start launches a server inside an already-running
Emacs instance. The instance turns into a server when you
type this; there’s no visual feedback, per se, that it’s running.
When you exit this Emacs instance, it will shut down the
server also — so if you want a server daemon you need the
option below.

emacs --daemon will run Emacs as a daemon. It will call
server-start, as above, but will return control to your
terminal immediately and run in the background, waiting
for client requests.

If you go the server route, you cannot use the default emacs bi-
nary any more. That binary will spawn standalone instances
only. You must use the similarly-named emacsclient instead.
Set your $EDITOR environment variable to emacsclient and
things should just work from then on.

First Steps

The emacsclient binary has its own set of switches you
should know about:

Switch Purpose

--help Displays the help.
-c Creates a graphical frame (if X is available)

or a terminal frame if X is unavailable.
-nw Creates a terminal frame.
-n The client will return immediately instead of

waiting for you to save your changes.
Useful if you just want to open a bunch of files.

When you launch an emacsclient instance, the client will
wait for the file(s) to finish editing. Pressing C-x # will switch
to the next buffer you’re editing through a client — when
you’ve done this for the file(s) you opened, Emacs will sig-
nal to the client to exit and return control to the terminal.
If you’re using a tool like git that lets you use your $EDITOR
to edit commit messages when using other editors, git will
wait until it receives the go-ahead from your editor that it
has saved the commit messages to a temporary file before
resuming with the commit operation.

You can add the -n switch if you want the client to just
open the files and not wait. I find this useful if I’m doing
exploratory work or if I want the files “permanently” open
in Emacs.

First Steps

The Emacs Interface

When you first launch Emacs, you’re greeted with the splash
screen. It’s probably one of the first things most Emacs hack-
ers disable, along with the scroll bars, the menu and tool bar.
Until you’re comfortable with Emacs I would recommend
you leave the elements enabled since they will provide
you with a quick way to access common functionality that
you may not remember how to do off-hand, although they
take up valuable real estate on your screen.

First Steps

If you’re using Emacs in the Terminal, you can still access
the menu bar by pressing F10.

If you don’t see a user interface similar to the figure above,
it’s most likely due to customizations made to your init file.
The quickest way to test this is to close Emacs and restart
it with emacs -q. If that fixes things, then it’s definitely cus-
tomizations made to your Emacs. Most starter kits assume
you’re reasonably familiar with Emacs and they often disable
things like the menu bar and tool bar.

You are actually free to play around with Emacs now: the
arrows keys will work fine and, combined with the menu bar,
you can open and save files. Emacs will auto-detect most file
types and apply the correct major mode to it — if it doesn’t,
you may have to install third-party packages, which I will
talk about later.

Keys
The most important subject in Emacs. Emacs is famous for
two things: its obscure keyboard incantations and that it’s
the kitchen sink editor that can do everything. The comic
strip xkcd8 humorously referenced that part of Emacs lore.
A much older joke is that Emacs stands for “Escape Meta
Alt Control Shift.”

Nevertheless, key modifiers are a big part of day-to-day
Emacs use so being able to “decode” a string of keys is
important.

http://xkcd.com//

http://xkcd.com/378/

First Steps

In Emacs, there are several modifier keys you can use, each
with its own character:

Modifier Full Name

C- Control
M- Meta (“Alt” on most keyboards)
S- Shift

Two more exist for historical reasons (Super and Hyper)
but don’t have dedicated keys on today’s keyboards, but for
consistency with Space Cadet keyboards9 still exist inter-
nally; another key (Alt) does exist on modern keyboards but
is bound (and known by) as Meta in Emacs:

Modifier Full Name

s- Super (not shift!)
H- Hyper
A- Alt (redundant and not used)

Super and Hyper can still be used, and if you’re the owner
of a Microsoft Windows-compatible keyboard with the
Start and Application Context buttons, you can rebind
them to serve as Super and Hyper which is very useful.
Emacs supports the modifiers natively but you need to tell
your operating system or window manager to bind them.

Important

http://home.comcast.net/~mmcm/kbd/SpaceCadet.html

http://home.comcast.net/~mmcm/kbd/SpaceCadet.html

First Steps

Owing to the limitations of terminals, there are
some key bindings you simply cannot type if
you’re running Emacs in a terminal. My advice
is to run Emacs in a , if at all possible.

Knowing the modifiers is only one half of the equation
though.

In Emacs, we formally define a key sequence (or just key) to
mean a sequence of keyboard (or mouse) actions and a com-
plete key to mean one or more keyboard sequences that invoke
a command; if the sequence of keys is not a complete key, then
you have a prefix key. And if the key sequence is not recog-
nized by Emacs at all it is invalid, and an error is displayed
in the echo area.

That’s a rather dry definition, so let’s look at a few examples.

C-d calls a command named delete-char. To invoke it, hold
down control and press d. As the key is a complete key,
it will call the command delete-char and immediately
delete the character next to point.

C-M-d is similar to the example above, but this time you must
hold down both control and meta before you press d.

Let’s try a few prefix keys. Prefix keys are basically subdivi-
sions — a way of grouping keys and increasing the number
of possible key combinations. For instance, the prefix key
C-x has several dozen keys bound to it. C-x is a prefix key
you will use all the time.

First Steps

C-x C-f in Emacs runs a command called find-file. The way
to interpret it is to first hold down control and then
press and release x. In your echo area, Emacs will dis-
play – after a small idle period of about a second – C-x-
(with a dash at the end) which is Emacs’s way of telling
you that it expects additional keys. Finally, type C-f
which should be easy for you to do now: hold down
control and press f.

To type C-x C-f, you don’t have to release the control
key between each key — keeping control pressed helps
you maintain something I call tempo, which I will talk
about later.

C-x 8 P has two prefix keys: first C-x and then 8, which is a
subcategory to C-x. So 8 on its own wouldn’t do any-
thing (it would just print the number 8) nor would C-x
or even C-x 8 — both are still prefix keys. The key is
complete only when you finish with P.

We call sets of keys that belong to a particular prefix
key key maps, which is how Emacs internally tracks
the mapping between a key and a command. In this
case, the key map C-x 8 has a variety of utility charac-
ters used in writing or mathematics but not bound on
most keyboards. For instance, C-x 8 P will insert the
paragraph symbol ¶.

C-M-% is a tricky one for beginners. Using what you’ve
learned above, hold down control and alt (and as
you’ll remember from the table above, Meta is Alt)
but also shift. The % character is typically shared with

First Steps

a number on the keyboard number range and the
implication here is you must type shift also.
If you don’t press shift, you’re actually typing C-M-5
(on a US keyboard, anyway.)
It bears mentioning that this particular key is bound
to a popular command (M-x query-replace-regexp) and
is an example of a key that you cannot type in Terminal
Emacs because of the terminal’s technical limitations
(and not Emacs.)

TAB, F1–F12 and so on are occasionally written like this, but
also in angle brackets: <tab>, <f1>. It’s important you
don’t confuse TAB with the characters T A B. I will only
use the former notation to avoid ambiguities.

Hint

If you’re stuck, or in the unlikely event Emacs
has seized up, or if you have typed in a partial
command that you want to cancel — press C-g.
That’s the universal “bail me out” command in
Emacs.

Caps Lock as Control

One of the most important modifications you should make
to your environment is rebinding your caps lock key to con-
trol. You’re going to use the control key a lot and to avoid the
Emacs pinky I suggest you unbind your right control entirely
and instead use caps lock.

Yes, it’ll be an annoying transition but a worthwhile one
(that will, incidentally, serve you well outside of Emacs.)

First Steps

This change is necessary because on older keyboards10 the
control key occupied the space now used by the caps lock
key so reaching the left control key could be done without
straining your left pinky.

On Windows, I recommend you use SharpKeys.11 On
Ubuntu and Mac , it’s built-in; go to the Keyboard
settings and change it. If you’re using another Linux
distribution you may have to fiddle with xmodmap.

M-x: Execute Extended Command

Only a small portion of available commands in Emacs are
bound to actual keys. Most are not: they are rarely used, and
do not warrant a key binding; or maybe you have explicitly
overridden the key it was bound to, leaving it unbound; or
perhaps you forgot its key binding.

In essence, it’s common that you want to run seldom-used
commands. To do this press M-x (pronounced mex, M x, or
meta x.) In your minibuffer, a prompt will appear and you
are free to input the name of a command you wish to run.

When Emacs users say something like “run M-x lunar-phases
to see the lunar phases of the moon” what they’re saying is:
hold down meta and press x and the M-x prompt will appear in
your minibuffer (that’s the line at the very bottom of Emacs.)

At this point you can type in the name of the command. Try
it, enter lunar-phases and press RET. The lunar-phases com-
mand will open a new window on your screen displaying

http://home.comcast.net/~mmcm/kbd/SpaceCadet.html
http://sharpkeys.codeplex.com/

http://home.comcast.net/~mmcm/kbd/SpaceCadet.html
http://sharpkeys.codeplex.com/

First Steps

the lunar phases from today onward. You can type C-x 1 to
hide the buffer.

Hint

If you enter M-x by mistake, remember you can
type C-g to exit out again.

Emacs has built-in auto completion support so pressing TAB
will open a new window and list all the potential candidates.
As you type and press TAB, Emacs will automatically narrow
the list of candidates. If your partially-typed match only has
one candidate left when you press TAB, Emacs will complete
the whole name for you. You can also just press RET — it
completes like TAB but with the added benefit of running the
command if it’s the only candidate left.

You may think M-x is a special Emacs command but it’s actu-
ally not. It, too, is written in elisp and bound to a key just
like everything else.

Commands and functions

When I talk about commands, I’m talking about
a type of function that is accessible to the user.

For a function to be accessible to a user (notwith-
standing the ability to evaluate any expression
in elisp) it must be interactive, which is an Emacs
term for a function that has additional properties
associated with it, rendering it usable through
the execute extended command (M-x) interface and
key bindings.

First Steps

So if you’re a package author, you have to choose
if a particular function is accessible to the end-
user through the M-x interface. Marking it as in-
teractive will make it accessible to end users.

In other words, if it’s not interactive, you cannot
run it from M-x nor can you bind it to a key.

Universal Arguments

Some commands have alternate states, and to access them
you need to give them a universal argument (also called a pre-
fix argument.) The universal argument is also known by its
key binding C-u. When you prefix another key binding (this
includes M-x by the way), you’re telling Emacs to modify the
functionality of that command. What happens next will de-
pend on the command you’re invoking: some have zero, one
or even more universal argument states. If a command has
N states, you simply type C-u up to N times.

The universal argument is shorthand for the number . If
you type C-u a, Emacs will print aaaa on your screen. If you
type C-u C-u a, Emacs will display characters (because
times equals). Keep in mind that universal arguments on
their own are totally inactive. When you type them, Emacs
will, much like a prefix key, wait until you give it a follow-
up command — and only then will Emacs apply the univer-
sal arguments.

Understanding that Emacs’s command states are merely
numbers is a handy thing to know because you can also pass
arbitrary numbers to commands. A lot of Emacs hackers

First Steps

would write C-u 10 a to print characters, but there’s a
much easier way.

By the way

When you press a key – say the a button on your
keyboard – how does Emacs write it on your
screen? The truth is there’s a special command
called self-insert-command that, when invoked,
will insert the last typed key. Having this com-
mand adds symmetry to keys and commands: it
makes your regular keyboard characters behave
in exactly the same way as all other commands
in Emacs.

And that also means keyboard characters, and
hence self-insert-command, are subject to the ex-
act same rules as all other commands. They can
be unbound, rebound, and otherwise modified
by you.

Bound to key binding C-0 to C-9 are the digit arguments. But
they’re bound to more than just that row of keys to maintain
what I personally call the tempo of typing — but more on
tempo below.

Here are the various ways you can pass digit arguments to a
command.

Key Binding Notes

C-u Digit argument
C-u C-u Digit argument
C-u C-u … Digit argument ˆn

First Steps

Key Binding Notes

M-0 to M-9 Digit argument to
C-0 to C-9 Digit argument to
C-M-0 to C-M-9 Digit argument to
C-- Negative argument
M-- Negative argument
C-M-- Negative argument

Note

The negative argument commands are bound to
the minus key (-) even though it’s hard to make
out from the table above.

They’re written as C-- instead of C- - because the
latter is an invalid Emacs key: you cannot press a
modifier key, C-, release it, and then press -. That
would just print - on your screen. It’s the minus
itself that is bound to several modifiers. White
space matters.

So I mentioned the importance of tempo. Once you’re com-
fortable with Emacs, you’ll be flying across the screen, and
not having to take your fingers off the modifiers to apply a
negative or digit argument will help you do that. Ensuring
the digits and negative arguments are bound to the modifiers
C-, M-, and C-M-, three very common modifier combinations,
all but guarantees you won’t have to move your fingers from
the modifiers before you follow them up with your intended
command.

Here are a few examples of what I mean.

First Steps

M-- M-d kills the previous word before point. Without
M--, M-d would kill the word immediately following
point. The command has synergy with the negative
argument because you can keep your finger on the
meta key and press - d.

This combination maintains your tempo.

C-- M-d does exactly the same but it will take you about
thrice as long to type. You have to press C--, release
the control key, and then press M- followed by d.

This combination breaks your tempo.

A lot of people never bother working the digit and neg-
ative arguments into their workflow, but I find them
immensely useful. Things like changing the casing on a
word I just typed are easily done by reversing the direction
of a command by giving it a negative argument.

Maintain your tempo and avoid moving your fingers away
from the home row.12 Negative arguments add direc-
tionality to commands; digits add repetition or change
how a command works.

Discovering and Remembering Keys

If you can’t remember the exact command for something,
then Emacs can help. Let’s say you can’t remember how to
print the paragraph character ¶, but you do remember it’s
somewhere in the C-x 8 key map, then all you have to do is

If you touch type, a skill worth learning above all else.

First Steps

append C-h to any prefix key to get a list of all bindings that
belong to that key map.

Typing C-x 8 C-h will display a computer-generated list of
keys and their commands. This interface is hyperlinked and
part of Emacs’s self-documenting help system.

Key Binding

C-x 8 " Prefix Command
C-x 8 < «
C-x 8 > »
C-x 8 ? ¿
C-x 8 C ©
C-x 8 L £
C-x 8 P ¶
C-x 8 R ®
C-x 8 S §
C-x 8 Y ¥

Above is a subset of the commands you see when you request
the help page for C-x 8. If you see just a character in the Bind-
ing column, that means it’ll print the character when you
type that key.

However, Emacs will also tell you if there are more prefix
keys with further sub-levels; in this case, C-x 8 " has addi-
tional keys bound to it.

All these keys, hidden away in the dusty depths of Emacs, all
haphazardly bound to all conceivable permutations of key-
board characters, may seem like a strange thing particularly
if you come from modal editors like Vim.

First Steps

The legacy of a particular keyboard used in the early ’s is
evident in the names Super, Hyper, and Meta.

Back then, most Emacs keys were bound to a larger range of
physical keyboard modifiers but when the keyboard maker
(and the business that made the machines the keyboards were
plugged into) went bust, Emacs had to change with the times.
Instead of undoing the cornerstone of Emacs, the developers
shuffled the keys around and made them work on normal,
boring keyboards.

So you’re probably thinking it’s a daunting task indeed to
memorize all those keys — but you don’t have to. I memo-
rize what I use frequently (as we are wont to do with our
human brains) and leave the rest for Emacs to remember for
me.

Use Emacs’s help system if you forget a particular key
combination. You can always append C-h to a prefix
key.

Configuring Emacs
Tinkering with Emacs is every Emacs hacker’s favorite pas-
time. Go to Emacs meetups or talk to experienced Emacs
hackers and the conversation will inevitably drift towards
small changes and hacks they’ve made to make their lives
easier.

It’s fun (and rewarding) knowing that, if there’s an aspect
of your editor’s behavior that you don’t like that you can
simply change it — indeed, a whole book could be written
on the subject of changing Emacs.

First Steps

Throughout this book I will make suggestions of things to
change. Where possible I will use the Customize interface in-
stead of the typical approach of suggesting elisp snippets.

If you want to change Emacs, you have two choices:

Use the Customize interface as it’s built-in and designed
to be user friendly. I say that, but a lot of people find it
cumbersome and hard to use. I think that’s a bit unfair:
it’s utilitarian and has to support a lot of arbitrary ways
of configuring fairly complicated features.

Not everything is supported by Customize. Since you
need to write elisp to change variables, and because of
the data-as-code paradigm uses, you will find that
Customize can write elisp that it’s been shown how to
write, and then only for specific options. That makes
it a virtual impossibility to generalize an interface
across all of Emacs’s many, many settings. But most
of Emacs’s built-in packages support the Customize
interface and a lot of third-party packages do too.

I would strongly recommend you use the Customize in-
terface, where possible, until you’re comfortable writ-
ing elisp.

Write elisp to alter what you want to customize. This is the
most powerful option but also the most complicated.
You’ll have to learn elisp (it’s not too hard, and writing
it is usually a lot of fun) to do this, but I think, in the
long run, it’s worth doing.

I still use the Customize interface myself when I
change font faces. There are hundreds of font faces

First Steps

in Emacs; everything from font lock faces (syntax
highlighting) to the color of the modeline, the fonts
to use for the info manual, and more.

The Customize Interface

The Customize interface is divided into groups and sub groups.
Each group typically represents one package, mode, or piece
of functionality. The top-level group is called Emacs and con-
tains, as you would expect, all other groups.

To access the customize interface, type M-x customize. A
buffer called *Customize Group: Emacs* should appear with
a list of groups. This is one part of Emacs where using a
mouse can be beneficial; the interface has buttons, hyper-
links and edit boxes much like a browser would. Click
around — explore the interface, and marvel at just how
much stuff there is to configure! And that’s just the things
exposed to the Customize interface.

hint

If you’re using Emacs . or later, you can use the
Search bar at the top of the Customize interface
to search for things by name.

First Steps

The Customize interface is rather byzantine but once you
understand how it works, it’s quite easy to use. The figure
above shows one face: font-lock-string-face. That’s the
actual elisp variable name for the face; the pretty-printed
name is Font Lock String Face and what you’ll see in the
figure above. To the immediate left is an arrow — it’s tiny
but it’ll hide/show each face. On a Terminal, it’s replaced
with the arguably more legible texts Hide or Show.

As a quick aside, the Customize interface is made up of
two things: faces and options. Options are a catch-all term for
things you can Customize that aren’t faces.

The font-lock-string-face governs the face for strings —
and what a string is depends on the mode in which it is
used. For most programming major modes, it’ll be for actual
literal strings in the source code, but mode authors are free

First Steps

to use the font faces for whatever they please. Having said
that, most adhere to the naming standard for each face.

My personal foreground face color is OrangeRed. But there’s
nothing stopping me from adding additional attributes as
the figure above shows.

First Steps

Indeed, Emacs’s renderer is quite advanced. In the example
above, I’ve changed font-lock-string-face so it uses Hoefler
Text and swash small caps.

Supported colors

If you’re using Emacs in a , you are limited
only by the color depth of the display and
you are free to pick any color from the RGB
color space. I use named colors, and to see
a list of supported names you can type M-x
list-colors-display. If you’re on a Terminal,
you will be shown the colors supported by your
Terminal — usually only or .

Making the changes in the Customize isn’t enough. You
have to apply the changes and optionally save them also. If
you don’t save them, the changes will not persist between
Emacs sessions. Pressing the aptly named Apply and Apply
and Save do just that. The Revert… button is similar but has
a few more options. You only need Revert This Session’s Cus-
tomizations if you’re unhappy with the changes you have ap-
plied. Keep in mind it will only revert the options you have in
the current buffer — not all the customizations made globally.

First Steps

Always remember that you can revert your changes until
you save. After that, you have to manually go through and
undo or use the Revert… button’s Erase Customizations op-
tion.

All Customizations are stored in your init file by default (or
possibly a separate custom file) and like the rest of Emacs the
changes are stored as elisp code, making it possible for you
to go back and manually change the elisp.

Instead of navigating through the tree of groups, you can
use one of several shortcut commands:

M-x customize displays the Customize interface and all the
groups.

M-x customize-browse opens a tree group browser. Much
like the regular Customize interface but without the
group descriptions.

M-x customize-customized customizes options and faces that
you have changed but not saved. Useful if you want to
tweak things.

M-x customize-changed displays all options changed since a
particular Emacs version. Good way to discover new
features and options.

M-x customize-face prompts for the name of a face to
Customize. I recommend you put your point on
the face you want to change. It’ll fill in the name
automatically.

M-x customize-group prompts for a group name (e.g., python)
to Customize.

First Steps

M-x customize-mode customizes the major mode of your cur-
rent buffer. You should do this for every major mode
you use. It’s a quick way to change things and gain an
overview of what your major mode can do.

M-x customize-saved Displays all your saved options and
faces. Extremely handy if you want to track down
and disable errant changes.

M-x customize-themes Shows a list of installed themes you
can switch to.

I encourage you to use the Customize interface to configure
Emacs. It only has a subset of things you can (or want) to
change, but it’s enough to get you started on the road to
personalizing Emacs.

As you continue to use and personalize Emacs you may even-
tually reach a point where your init file is unmanageable.
When that happens it’s common to split up your changes
into groups of related changes. However, this is a low prior-
ity task until you’re comfortable (and your init file splitting
at the seams) with Emacs.

Evaluating Elisp Code

Frequently, you will find or write snippets of elisp code on
the Internet and you’ll want to evaluate it — closing and
restarting Emacs every time is a chore.

There are a number of different ways of doing this and I have
only shown a few of the different methods available to you.

First Steps

You can read Evaluating Elisp in Emacs13 for a thorough study
of the subject.

Restarting Emacs is the simplest way, which I recommend
if you have broken something in Emacs or if you want
to be sure things work in a fresh environment.

M-x eval-buffer will evaluate the entire buffer you’re in.
This is what I use to evaluate something.

M-x eval-region evaluates just the region that you have
marked.

important

You must remember that not all things will be re-
evaluated even if you tell Emacs to. This is one an-
noying implementation detail that confuses peo-
ple. Some things, like defvar and defcustom forms,
are only set once. So, if you evaluate the buffer,
change a defvar’s default value, then re-evaluate
it, it won’t apply the changes made to defvar. The
only way to force the change is to press C-M-x
with your point in each defvar or defcustom form.

If you don’t know exactly what I mean by all of
this, — don’t worry, you can just restart Emacs if
you see any of those two forms in your snippet.

Naturally, this is just scratching the surface in using Emacs to
evaluate your elisp code. You shouldn’t need to know much

http://www.masteringemacs.org/article/evaluating-elisp-emacs

http://www.masteringemacs.org/article/evaluating-elisp-emacs

First Steps

more than this to deal with the odd bits of code you see and
want to try out. Don’t be afraid to explore Emacs’s capabil-
ities this way; read Emacs’s own Introduction to Elisp man-
ual.

The Package Manager

Since version , Emacs has shipped with a package man-
ager that seamlessly displays and installs packages from cen-
tralized repositories. I credit this change, alongside sites like
Github, with rejuvenating Emacs’s rd-party ecosystem and,
in turn, Emacs itself.

It’s not all roses though: there is no one repository you can
use for all your needs. There’s the official Emacs pack-
age repository, 14, but its content is rather sparse, as you
have to physically sign over your copyrights to the to sub-
mit to it, and most people can’t or won’t do that. Therefore,
almost all packages appear on Melpa and Marmalade. Thank-
fully, the package manager will merge all the different list-
ings into one.

As the repositories are privately owned by volunteers, they
may go down – temporarily or permanently – so I would
check the Emacs Wiki15 for a current list of repositories.

For now though, you can add this to your init file. It in-
cludes the official repository and two unofficial, community-
maintained repositories.

(setq package-archives

The Emacs Lisp Package Archive
http://www.emacswiki.org/emacs-en/ELPA

http://www.emacswiki.org/emacs-en/ELPA

First Steps

'(("gnu" . "http://elpa.gnu.org/packages/")
("marmalade" . "http://marmalade-repo.org/packages/")
("melpa" . "http://melpa.milkbox.net/packages/")))

Now is a good time to make Emacs evaluate it. Execute the
command M-x eval-buffer with your init file as the current
buffer.

Next, type M-x package-list-packages and Emacs should re-
trieve the package listings from all three repositories above.
When it’s done, a new buffer will appear listing all the pack-
ages. Like a lot of ancillary buffers in Emacs, this one is also
hyperlinked. Have a browse — you can one-click install the
packages you care about from the detail page of a package.

Hint

If you know the name of the package, you
can use the shortcut M-x package-install and
enter the name in the minibuffer. And like
most minibuffer prompts, this one also has TAB
completion.

Color Themes

If you dislike the default color scheme in Emacs —
then good news, you can use a color theme. Type M-x
customize-themes to see a list of your installed color themes.
There are more available for free from Emacs’s package
manager or sites like Github.

To install a theme with the package manager, open the
package manager (M-x package-list-packages) and go look

First Steps

for themes; most will have the suffix -theme, and they act
and install like normal packages. Once you’ve installed the
themes you need, use the M-x customize-themes interface to
try them out. You can override specific colors you don’t
like by using the regular Customize interface described in
The Customize Interface. Changes made in the Customize
interface take precedence over the themes.

I should mention that you can have multiple themes active
at the same time, so make sure you are aware of this.

Getting Help
As I mentioned earlier when I talked about keys, Emacs is a
sophisticated self-documenting editor. Every facet of Emacs
is searchable or describable. Learning how to do this is abso-
lutely essential to mastering Emacs. The utility of knowing how
to find the answers to questions is something I cannot over-
state enough. I use Emacs’s self-documenting functionality
all the time; to jog my memory, or to seek answers to ques-
tions I don’t know.

I still haven’t talked about the actual core of Emacs yet
(movement, editing, and so forth) because, although that’s
obviously critical to mastering Emacs, they are specific skills
that you could, with patience, acquire by using Emacs’s
self-documenting help systems.

Knowing how to get help is critical because:

Emacs knows best Your Emacs configuration will dif-
fer – sometimes just a little bit, other times a lot –

First Steps

from other people’s Emacs configurations. Asking a
question on the Internet will only give you general
answers. If you rebind keys, only your Emacs knows
what the keys are.

You will discover more of Emacs I have stumbled upon
more cool features than I can count simply by explor-
ing — maybe a time saving command hidden away in
a major mode, or a variable that changes the behavior
of a command I use frequently.

A lot of third-party packages may not have an adequate
user manual, forcing you to read the source or investi-
gate the commands and variables exposed by the pack-
age.

It will help you solve problems I help people with Emacs
questions all the time, but I don’t know everything —
what I do know is where to look and how to read the
documentation.

It gives you confidence Not knowing how to do some-
thing in Emacs is normal but also confusing. But
being able to say that “oh, I don’t know how to do
this but I do know where I can look for help” — your
confidence in Emacs will go up in step with your
knowledge.

Emacs’s help system is roughly divided into three parts and
knowing which one you need and when will save you time.

First Steps

The Info Manual

Emacs’s own manuals (and indeed, all manuals in the
ecosystem) are written in TeXinfo. If you have ever used the
command line tool info, you will have interacted with the
TeXinfo hypertext viewer. Emacs, obviously, has its own
info viewer. Emacs’s info manual contains more than just
topics relating to Emacs. By default, the info browser will
index all the other info manuals installed on your system —
things like the coreutils manuals will also be present.

A lot of people dislike info and I’m not sure why. It works in
much the same way as a web browser, though the key bind-
ings do differ.

To access Emacs’s info reader type M-x info or press C-h i.
info, the documentation browser, will appear and you are
free to use your mouse to click on the hyperlinks, or use
this table of keyboard shortcuts to navigate:

Key Purpose

[and] Previous / next node
l and r Go back / forward in history
n and p Previous / next sibling node
u Goes up one level to a parent node
SPC Scroll one screen at a time
TAB Cycles through cross-references and links
RET Opens the active link
m Prompts for a menu item name and opens it
q Closes the info browser

Because info manuals have hierarchies, in much the same

First Steps

way this and most other books do, you’ll want to use [and
] to navigate if you’re reading an info manual end-to-end.
That’s equivalent to reading a book starting from a chapter,
moving through all the sub-chapters, sub-sub-chapters, and
so forth, in the order they were laid out.

Everyday reading

For everyday reading, you want SPC for brows-
ing and reading as it “does what you want.” It
thumbs through a page until it reaches the end.
Then, it either picks the next sub node or the
next chapter. For browsing, use [and] to cycle
back and forth through nodes.

If, instead, you want to jump to the next or previous sibling
node you should use n and p. To go back or forward in his-
tory (much like a browser) use l and r.

The key u goes up one level to the parent; TAB cycles through
the hyperlinks, and RET opens them.

Most info manuals are also published in versions on-
line, so why use Emacs’s own reader? For one, you can use
Emacs’s universal bookmark system (and more on that later.)
You can bookmark almost everything in Emacs: info pages,
files, directories, and more. The other advantage is that it’s
in Emacs, so keeping the info manual in a split window next
to you is particularly useful if you’re reading Emacs’s excel-
lent An Introduction to Programming in Emacs Lisp and writing
code alongside it.

If you want to read up on a specific Emacs functionality, you
have to open the Emacs manual first. To do this, type C-h i

First Steps

followed by m. When prompted for a menu item, type Emacs
for the Emacs manual or Emacs Lisp Intro for the introduc-
tion to elisp. As always, there is TAB completion. You can also
browse the master list of manuals and find the one you want
to read.

You can look up the documentation for a command by typ-
ing C-h F and at the prompt enter the name of a command.
Emacs will jump to the correct place in the info manual
where the command is described.

Apropos

Emacs has an extensive apropos system that works in much
the same way as apropos does on the command line. The
apropos system is especially useful if you’re not entirely
sure what you’re looking for. There is a variety of niche
commands that only search particular aspects of Emacs’s
self-documenting internals.

Apropos is a useful tool to have in your toolbox. It shines
because you can narrow what you’re looking for to a par-
ticular area. If you’re looking for a variable, you can use the
apropos system that searches variables; if you are looking for
commands, you can search by command. And all of apropos
supports regular expressions.

The most common one, bound to C-h a, is M-x apropos-command.
apropos-command shows all commands (and just the commands,
not functions) that match a given pattern.

For instance, you might be on the hunt for commands that
work on words (but more on what a “word” actually means
in What Constitutes a Word?) so entering C-h a followed by

First Steps

-word$, is a good place to start. That will list all commands
that end with -word.

Here’s a subset of the output you would see if you ran that
command:

Command Key Purpose

ispell-word M-$ Check spelling of word under
or before the cursor.

kill-word M-d Kill characters forward until
encountering the end of a word.

left-word C-<left> Move point N words to the left
(to the right if N is negative.)

mark-word M-@ Set mark words away
from point.

As you can see, you get the name of the command, the keys
bound to it (if any) and the purpose. Emacs has certain nam-
ing conventions and once you’re familiar with Emacs, you
will see certain patterns emerge. For instance, it’s common
to postfix a command with the syntactic unit or context it op-
erates on: -word for words, -window for windows, and so on.

Hint

Apropos can sort results by relevancy. To enable
this, add:

(setq apropos-sort-by-scores t)

to your init file.

First Steps

There’s a wide range of apropos commands you can use to
query Emacs. apropos-command is perhaps the most useful to a
beginner. And it’ll let you search by pattern, which is great
if you only remember part of a command’s name but not all
of it. It’s also a fantastic way to accidentally discover new
features in Emacs. Giving apropos-command the .+ pattern (to
match everything) yields approximately , commands
that Emacs knows about — this amount however will vary
greatly depending on the number of packages you have
loaded and the features in Emacs you have activated.

Emacs has a range of specialist apropos commands that you
might find more suitable.

M-x apropos The thermonuclear option. This command
will display all symbols that match a given pattern.
Useful if you’re trying to track down both variables,
commands and functions relating to a pattern.

M-x apropos-command or C-h a As I explained above, this com-
mand will list only the commands.

M-x apropos-documentation or C-h d Searches just the doc-
umentation. In Emacs parlance, that means the doc
string (documentation string) with which you can
supply symbols. Occasionally useful.

M-x apropos-library Lists all variables and functions defined
in a library. This command can be useful if you’re in-
vestigating a new mode or package as it lists the all the
functions and variables defined in it.

M-x apropos-user-option Shows user options available
through the Customize interface. This is one way to

First Steps

get the symbol names of Customize options, but
if you’re looking for ways to search the Customize
interface, you are better off using the Search box in
the Customize interface as it lets you customize the
matches as well. I never use it.

M-x apropos-value Searches all symbols with a particular
value. If you’re looking for a variable that holds a
particular value, this command may be of use to you.
A potential use is if I know the value of a variable but
not the name or where it’s defined.

If you’re unsure of what you are looking for – maybe you
only have part of a name, or you just remember a bit of the
documentation – then apropos is a tool that can help you.
I find apropos indispensable; it’s a great way to list all the
commands that match certain patterns and an even greater
way to discover new commands.

The Describe System

What captures the beauty of Emacs’s self-documenting na-
ture is the describe system of commands. If you know what
you’re looking for, then describe will explain what it is. Ev-
ery facet of Emacs – be it code written in elisp or the core
layer written is C – is accessible and indexed through the de-
scribe system. From keys, to commands, character sets, cod-
ing systems, fonts, faces, modes, syntax tables and more —
it’s all there, neatly categorized.

The describe system is not static. Every time you query a
particular part of Emacs, it will fetch the required details

First Steps

through an internal introspection layer which itself queries
Emacs’s own internal data structures. Both the introspec-
tion layer and internal data structures are queryable by
you through elisp. There are no “secrets” in Emacs —
sure, the documented layer is the recommended way
of accessing Emacs’s own internal state, but unlike other
editors and s you are not beholden to the package author
or Emacs maintainers. I think this embodiment of openness,
beautifully captured by the describe system, is one of the
best features of Emacs.

You can find the most important describe keys bound to the
C-h prefix key16; there’s more, a lot more actually, but I think
most of them are of limited utility to all but elisp writers.

I use the describe system constantly. In writing this book, I
have used both the info manual and apropos extensively, but
the describe system is what I use to double check that ev-
erything I have written is correct. If you ever find yourself
wondering what a symbol in Emacs does (be it a function, a
command, a variable or a mode) then describe will tell you.

The only slight downside to the doc string is that it assumes a
technical audience: the info manual generally does not. It’s
not all bad, you don’t have to be an elisp expert to make sense
of the description but it will take a bit of time to familiarize
yourself with the terminology used in the doc strings.

Remember, the describe system describes a living system —
your personalized Emacs.

As I mentioned in the Keys chapter, you can follow up a prefix key
with C-h to list all the known bindings.

First Steps

You need to memorize four describe keys as they are the
most important ones for day-to-day Emacs use.

M-x describe-mode or C-h m Displays the documentation for
the major mode (and any minor modes also enabled)
along with any keybindings introduced by said modes.
The describe command looks at your current buffer.

This command should be your first port of call when
you’re using a new major mode. You will discover a lot
of Emacs’s functionality this way and it is absolutely
imperative that you use this command.

What it doesn’t do is list mode-specific commands that
are not bound to any key: they are simply not shown.

M-x describe-function or C-h f Describes a function. An-
other command on the critical path to mastering
Emacs. Knowing what something does in Emacs (and
how to look it up) is useful but so is being able to
jump to the part of the code where it’s declared.

Describing a function will give you the elisp function
signature, the keys (if any) bound to it, a hyperlink to
where it’s declared, and a doc string.

If the function is a command, it will say it is interactive.

M-x describe-variable or C-h v Describes a variable. Like
describe-function, this command is also important,
but perhaps less so as changing variables is not always
easy to do for a beginner. Nevertheless, being able to
read up on what a variable does is.

First Steps

M-x describe-key or C-h k Describes what a key binding
does. Of all the commands, this is one of the most use-
ful ones to memorize, and like M-x describe-function
it’s a command you will use frequently. If you’re
unsure what a key binding does, simply enter the
describe-key interface and re-type the key — and
Emacs will tell you what it does.

It’s worth remembering that some keys come from
major and minor modes and are not global. Therefore,
you may get a different answer depending on the
buffer in which you type the command.

Emacs does have a lot more describe commands but they’re
nowhere near as practical or useful for day-to-day use.
Knowing what you know now about the naming of de-
scribe commands and how to find commands by patterns, it
should be a trivial17 exercise to list all of them.

Hint: apropos-command is a good place to start.

Chapter

The Theory of Movement

Escape Meta Alt Control Shift

– info.gnu.emacs

Getting around, and getting around efficiently, is as impor-
tant as knowing how to edit text quickly and efficiently.
But movement in Emacs is more than characters in a
buffer; there’s a host of supplementary skills that make up
navigation, like understanding Emacs’s rather complicated
windowing system.

I wouldn’t expect you to remember and apply everything
you learn here right away. I’ve laid things out so you can
start at the beginning and work your way through, picking
up bits and pieces as you read. The most important part, as
I’ve stressed many times, is to give it time and practice —
take a moment in your day-to-day life to ask yourself if
there’s a better way of solving a problem with which you
are faced.

The Theory of Movement

Movement in Emacs is local, regional or global. Local move-
ment is what you do when you edit and move around text
near to the point. A syntactic unit – a semi-formal term for
commands that operate on a group of characters – is a char-
acter, word, line, sentence, paragraph, balanced expression,
and so forth. Regional and local movement are similar but
regional movement involves whole functions or class defi-
nitions, if you are writing code; or chapters and such con-
structs, if you are writing prose. Global movement is any-
thing that takes you from one buffer to another, or from
one window to the next.

The first thing a beginner sees is Emacs’s penchant for creat-
ing windows: when you view a help file, when you compile
a file, or when you open a shell. If you have never used a
tiling window manager (for that is exactly what Emacs is),
the idea of splitting and deleting windows may seem strange

— in other editors you may use split panes but you almost
never change it to suit the task at hand.

In Emacs, windows are transient; they come and go as you
need them. You can save your window configuration (and
there are several ways of doing this) but they were never
meant to be immutable, like so many editors — set once and
then never changed again. You have to get used to this. Now,
there are many variables you can use to fine-tune Emacs’s
windowing behavior, but you can’t really tweak your way
out of using Emacs’s windows. Some packages try to replace
windows with frames, with some success, but they are essen-
tially hacks and I would recommend you avoid using them
at least until you’re comfortable with Emacs’s system.

Buffers are rarely killed (that is, closed) when they are no

The Theory of Movement

longer needed; most Emacs hackers will simply switch away
to something else, only to return to it when needed. That
may seem wasteful, but each buffer (aside from assorted
metadata and the buffer’s particular coding system) is only
slightly bigger than the byte size of the characters in it. A
typical Emacs session lasts weeks between restarts and most
Emacs hackers have many hundreds of buffers running
without issue.

No matter the task you’re doing in Emacs, you will need to
contend with the notion of buffers and windows and how to
handle them. Thankfully, that can be as easy or as complex,
depending on your expectations or how you want things set
up.

The Basics
By the way

Have you re-mapped Caps Lock to Control yet?
Read Caps Lock as Control to understand why
this is so important.

Learning the basic key bindings to find and save files, change
buffers, and the bare essentials of day-to-day use is the first
step on the path to mastering Emacs. However, you’re free
to use the menu bar to do this until you have committed
the keys to memory. One important thing to note about the
menu bar is that it won’t be clickable in a terminal (unless
you’re using Emacs . or later). Instead, you must press F10
to activate and navigate the menu bar with the keyboard.

The Theory of Movement

Note

Like I explained in Getting Help, If you don’t
see a menu bar (it should appear in both GUI and
Terminal Emacs) and you have made changes to
Emacs’s configuration – for instance, a starter kit
or a colleague’s init file – you can show it by typ-
ing M-x menu-bar-mode but you still need to track
down the part of your configuration where it’s
hidden.

Once you’re a legendary Emacs hacker, you will naturally
want to hide it as it takes up valuable screen real estate, but
until then I encourage you to use it. Most major modes have
their own menu bar entry as well, improving the discover-
ability of the major mode. I used the menu bar for a long
time when I was starting out, and it really helped me as I
could focus on remembering important commands like nav-
igation and editing.

Key Binding Purpose

C-x C-f Find (open) a file
C-x C-s Save the buffer
C-x b Switch buffer
C-x k Kill (close) a buffer
C-x C-b Display all open buffers
C-x C-c Exits Emacs
ESC ESC ESC Exits out of prompts,

regions, prefix arguments and
returns to just one window

C-/ Undo changes

The Theory of Movement

Key Binding Purpose

F10 Activates the menu bar 1

The key bindings above are all you need to get started. Emacs
will guess the right major mode when you open files based
on its extension (and if that fails, by the content of the file)
and more or less work out of the box. Aside from the key
bindings above, you can start editing and moving around
with just the arrow keys like other editors.

Let’s talk about each command in turn as their simple actions
belie their complexity.

C-x C-f: Find file

Opening a file in Emacs is called finding a file or even visit-
ing a file. Having said that, it’s perfectly fine to say open also.
The reason is that Emacs really doesn’t distinguish between
opening an existing file and creating a new file. I use the terms
interchangeably.

So, if you type C-x C-f and enter /tmp/hello-world.txt,
Emacs will visit it, whether it’s there or not; if it isn’t, an
empty buffer is shown instead.

Major mode load order

When you visit a file, Emacs will pick a major mode. Most
editors make a lot of assumptions about file extensions that

Required in Terminal Emacs

The Theory of Movement

you cannot easily change. Emacs supports an array of detec-
tion mechanisms that can all be changed to suit your needs.
They are listed here in the order they are applied.

File-local variables are variables that Emacs can enable per-
file if they present in the file. They can appear as head-
ers:

-*- mode: mode-name-here; my-variable: value -*-

or footers:

Local Variables:
mode: mode-name-here
my-variable: value
End:

Emacs will also look at commented lines using that ma-
jor mode’s comment syntax.

It is worth knowing that file variables read into Emacs
are local to that file’s buffer (meaning other buffers are
unaffected by it.) That means if you have particular set-
tings that apply only to that file, you can add them
to the header or footer and Emacs will load them au-
tomatically. In practical terms, that means everything
from indentation settings to more complex variables
are controllable from file variables.

Because Emacs is in effect running code straight from a
file, all Emacs variables are divided into safe and unsafe

The Theory of Movement

file variables: variables that are declared as safe – typ-
ically by Emacs maintainers – are evaluated automat-
ically. For unsafe variables, you must first tell Emacs
what to do: you can ignore the variable; or evaluate
it once, temporarily, for that file only; or declare it as
safe.

Program loader directives or shebangs are also supported.
If your file begins with #! – for instance #!/usr/bin/env
python or #!/bin/bash – then Emacs will figure out
the major mode and run it, if it is available in Emacs.
The variable interpreter-mode-alist lists the program
loaders Emacs can detect.

Magic mode detection uses the magic-mode-alist variable
to see if the beginning of the file matches a pattern
stored in the magic mode variable. This detection
mode is particularly useful if you have no way of
annotating the file or predicting the filename or
extension ahead of time.

Automatic mode detection is how most major modes are
applied. Emacs has a very large registry of patterns that
match a file extension, file name or all or parts of a file’s
path, stored in the variable auto-mode-alist.

For instance, if you open /etc/passwd, Emacs will de-
tect this and open the file with etc-passwd-generic-mode
major mode. If the filename ends with .zip, Emacs will
instead open the file in archive-mode.

Although the different heuristics may look complicated, the
good news is the work is done for you. Emacs’s major mode

The Theory of Movement

detection is rather sophisticated and it will almost always
pick the right thing for you.

Coding Systems and Line Endings

Emacs applies two other important heuristics you should
know about: coding systems and line endings.

Coding systems Emacs has excellent Unicode support
(type C-h h to see it demonstrated), including transpar-
ently reading and writing between different coding
systems, bidirectional right-to-left script support,
keyboard input method switching, and more.

To see the coding system in use for the current buffer,
you can type C-h C <RET>. Emacs will display a lot of in-
formation, including all the coding systems associated
with the buffer — but for files, they are almost always
set to the same coding system.

The modeline will also give you a rough idea:

U:**- helloworld.c 92% of 5k ...

The first character, U, means the buffer helloworld.c
has a multi-byte coding system. If it said 1, it would
typically be part of any number of character en-
codings. The exact mnemonic will depend on which
of the hundreds of supported coding systems you are
using — hence why C-h C <RET> is a sure-fire way to
see what it is.

The Theory of Movement

Line endings When you open a file, Emacs will determine
the line endings used. If the file uses line endings,
then they are preserved when you open the file and
when you save it. Likewise for and pre- Mac-
intosh encodings.

The modeline will tell you what line ending you are
using:

U:**- helloworld.c 92% of 5k ...

The first character U, as explained above, indicates the
coding system. The : means it’s -style line endings.
For it would say (DOS), and (Mac) for Macintoshes.

C-x C-s: Save Buffer

In The Buffer, I explained that in Emacs a buffer need not
be a file on your file system, but it could be a transient buffer
used for things like network / or even just a scratch file for
processing text. So, what that means in practice is that you
can save any buffer in Emacs — even internal ones like a help
or a network / buffer.

When you ask Emacs to save a buffer, it will save it to the file
associated with the buffer – if, and only if, the buffer has a
filename associated – or ask you for a name if there isn’t one.
The latter instance will typically happen if you’re saving a
buffer that does not yet have a file assigned to it; maybe it’s a
temporary buffer or even the output from a help command.

The Theory of Movement

Writing a buffer to a file If you want to save a buffer to a
different file – akin to SaveAs… in other editors – you
can use the command C-x C-w to write to a new file.

Saving all files You can type C-x s and are asked, in turn,
to save each unsaved file.

C-x C-c: Exits Emacs

You can exit Emacs – or just terminate your connection to
it, if you are using Emacs in client-server mode – but Emacs
will only exit after asking you if you want to save unsaved
files.

You have several options when Emacs asks you to save a file:

Key Binding Purpose

Y or yes Saves the file
N or DEL Skips current buffer
q or RET Aborts the save, continues with exit
C-g Aborts save and the exit
! Save all remaining buffers
d Diff the file on the file system

with the one in the buffer

Most of the commands above are self-explanatory. Emacs
will traverse the entire list of unsaved files but not all unsaved
buffers. As you may recall from earlier, it is possible to have
buffers that are not attached to any one file.

And if you try to exit without saving, Emacs will always ask
you one last time if you want to proceed.

The Theory of Movement

C-x b: Switch Buffer

If you edit more than one file at a time – or switch between
documentation buffers or mode-specific buffers, such as
Python’s shell – knowing how to switch buffers quickly
and efficiently is very important.

Like Alt+TAB in most window managers, Emacs will remem-
ber the last buffer you visited so that, when you type C-x b,
the name of the former buffer is the default action — meaning
pressing RET will take you to it.

Switching buffers is second nature to Emacs hackers. Once
you’re comfortable with it, you won’t even think about;
you’ll switch through buffers quickly and instantaneously
without so much as a second thought.

Buffer naming conventions

Some buffers in Emacs interact with external
programs – perhaps a shell like bash – or they
hold transient information generated by Emacs
itself. To distinguish them from user-created
buffers, they have * characters in their names,
like so: *buffername*.

The fact that files and buffers are two distinct (but related)
concepts makes sense when you consider the nature of scratch
buffers — buffers that you create and use but don’t intend
to permanently save. For instance, if you want to run a key-
board macro or do extensive text editing on a region of code,
an Emacs hacker would copy it to a made-up scratch buffer
(created simply by switching to a buffer name that does not

The Theory of Movement

exist), do the requisite editing, and switch back to the origi-
nal buffer.

Writing buffers to files If you later decide you want to
save the buffer to the file system, you can press C-x C-s
to save it.

Listing buffers One more useful command is C-x C-b. It dis-
plays a list of all buffers running on your system.

Buffer Switching Alternatives

The built-in interface for buffer switching is rather poor; it
offers basic TAB-completion and some fuzzy matching, but
little else. I recommend you try mode, a built-in feature
that gives you fuzzy file completion. I use it and couldn’t live
without it — indeed, most Emacs users employ it or some
other form of fast completion.

To enable it, type M-x ido-mode and then try C-x b or C-x C-f
again.

You can enable it permanently by customizing the option
ido-mode:

M-x customize-option RET ido-mode RET

You can also improve ’s fuzzy matching by enabling flex
matching:

M-x customize-option RET ido-enable-flex-matching RET

The Theory of Movement

And you can customize many more features by running M-x
customize-group ido. For further reading on this subject, I
recommend you read Introduction to IDO mode.2

C-x k: Kill Buffer

Killing a buffer in Emacs means closing it. You don’t have to
kill buffers you don’t use. It’s perfectly normal to let them sit
in the background until you need them again. Normally, se-
rious Emacs users have hundreds or even thousands of open
buffers at a time.

ESC ESC ESC: Keyboard Escape

The click your heels three times key. If you’re stuck somewhere
or want to “go back to normal” — then pressing ESC ESC ESC
will (probably) solve your problems.

All windows are deleted (meaning they’re hidden from
view), prompts are exited out of, special buffers are hidden,
prefix arguments are cancelled, and recursive editing levels
are unwound.

C-/: Undo

Undoing is a common activity and it is bound to several keys:
C-/, C-_, C-x u, Edit -> Undo, or even a physical undo button
if your keyboard has it.

Which command you prefer is up to you: I think C-/ is the
easiest to type, but if your character set is not US or UK,

http://www.masteringemacs.org/article/
introduction-to-ido-mode

http://www.masteringemacs.org/article/introduction-to-ido-mode
http://www.masteringemacs.org/article/introduction-to-ido-mode

The Theory of Movement

then you may prefer another. Most beginner’s guides will
recommend you use C-x u or even C-_ but I find them harder
to type than C-/.

Unlike other editors, Emacs does not have a dedicated redo
command, and that has to do with Emacs’s unique undo sys-
tem known as the undo ring.

Most editors feature a linear undo list: you can undo and
redo, but if you undo and then change the text, you will
lose the undone steps; they will be unrecoverable and lost
forever.

In Emacs, this is not the case. Every action you take is
recorded in the undo ring, and this includes the act of
undoing something. Emacs will group certain commands
together into one cohesive undo unit — like typing charac-
ters or repeating the same command many times in a row.
Some events will always “seal” the undo record and start
a new one. Pressing RET, backspace, or moving the point
around are three such examples.

Repeated undo commands will undo more and more things
but if you break the cycle – for instance by moving around
or editing text – Emacs will not resume from where you left
off. Instead, the items you just undidwere added to the undo ring
as redo records. That means when you undo again, you will
actually undo (redo) the actions you just did until you get to
the state you were at when you last stopped — then Emacs
will undo the rest of the changes in your buffer.

This means it’s next to impossible to lose undo history as
the act of undoing is itself an undo-able action. That means you
can undo a few things – say rewriting a paragraph in a docu-

The Theory of Movement

ment you’re writing – only to realize later on that, actually,
you liked the old text better. In other editors your undone
changes would be gone forever as they have linear undo lists;
in Emacs you simply undo your newly-written paragraphs
until Emacs returns your buffer to the state it was in before
you did your last undo.

Confused? That’s okay. It took me a long time to under-
stand how this would work out in practice. As it’s impossible
to really lose any data with the undo ring, it’s easier to just
experiment; but remember that Emacs will keep undoing
things from the ring as long as you keep undoing commands
one after another. Only by breaking this “undo cycle” will
you be able to redo the undone changes. And the easiest way
to break the cycle is by simplifying moving your point.

Here’s a simple example. It’s not how Emacs’s undo ring ac-
tually retains undo information – it’s rather more complex
than that – but I think that level of detail is unnecessary.

As a writer, I have written and then rewritten some text and
my undo ring now looks like the one below. The ring is to be
read top to bottom, with each undo record separated by the
arrow, going from newest to oldest. When the marker
is reached, the undo ring is empty and no more undo actions
are possible.

▷ “ is the Roman numeral for ”
→ “ is the number of the beast”
→

This undo ring has two undo records in it, each one a line
of text. The head of the ring is the triangle, ▷, indicating the

The Theory of Movement

latest undo record. If I undo once with C-/, my undo ring
now looks like this:

“ is the Roman numeral for ”

▷ “ is the number of the beast”

→

The original quote is still in the undo ring; in fact, it hasn’t
really gone anywhere at all (though the text in the buffer has
changed to what ▷ points at.) Instead, we’ve shifted the head
(the triangle) to the other quote. If I did another undo step,
I would end up at , and now my buffer is empty. I’m
not going to do that though as I will instead write another
quote:

“ is a text editor”

And now my undo ring looks like this:

▷ “ is a text editor”

→ “ is the Roman numeral for ”

→ “ is the number of the beast”

→

The head of the undo ring has changed to point at the latest
quote I just entered, but the old quote I undid is still there.
If I type C-/, I will undo my latest quote and the one I undid
before would reappear.

The Theory of Movement

Still confused? That’s normal. It’s a difficult concept to
“get” (and much harder to explain) but most Emacs
beginners will pick it up over time. The main point
to take away is that it’s almost impossible to break the
undo ring and lose information — so go ahead and
experiment. Chances are, to begin with, you only
care about undoing the most recent changes anyway.

By the way

You can download alternative undo implementa-
tions for Emacs. A popular one is Undo Tree.3

Window Management
Managing windows is another core skill you have to mas-
ter. Honestly, despite the chapter introduction saying it was
rather complex, the truth of the matter is it isn’t: there are
only a few key bindings you need to learn. What makes it
complex – or to some people, downright infuriating – is the
reliance on windows in the first place, and how to get used
to the windowing concept.

Let’s take a look at the key bindings you need to know about.

Key Binding Purpose

C-x 0 Deletes the active window
C-x 1 Deletes other windows
C-x 2 Split window below
C-x 3 Split window right

http://www.emacswiki.org/UndoTree

http://www.emacswiki.org/UndoTree

The Theory of Movement

Key Binding Purpose

C-x o Switch active window

These five keys are all you need to use, split and delete win-
dows. There are more commands, as you’ll see below, but
to start with, you can get by with these five commands.

Undoing window changes

Sometimes you want to return to a past window
configuration. The mode, M-x winner-mode,
remembers your window settings and lets you
undo and redo with C-c <left> and C-c <right>,
respectively.

To enable Winner mode permanently:

M-x customize-option RET winner-mode RET

Emacs will tile windows and generally ensure each new win-
dow is given roughly half the screen estate of the splitting
window. If you have just one window and you split to the
right, you now have two windows, each with a % share.

Deleting windows If you use C-x 0, then Emacs will delete
the active window – which is always the one where
the point is active – and if you type C-x 1, Emacs will
delete all other windows.

Splitting windows A window is split either horizontally
or vertically (or “below” and “right”) with C-x 2 and

The Theory of Movement

C-x 3, respectively. If you have a large monitor, you
may want to split vertically so you can have more than
one buffer visible at a time; you may even prefer addi-
tional subdivisions. I always split into two or even four
windows, arranged in a x grid.

Finally, to move between windows use the command C-x o.
I find it useful to rebind it to M-o as it’s such a common thing
to do. Add this to your init file:

(global-set-key (kbd "M-o") 'other-window)

Directional window selection

Some people prefer the windmove package that
ships with Emacs, as it lets you move in cardi-
nal directions instead of cycling through all win-
dows.

You can enable it by adding this to your init file:

(windmove-default-keybindings)

You can now switch windows with your shift
key by pressing S-<left>, S-<right>, S-<up>,
S-<down>.

Working with Other Windows

Once you’re comfortable splitting and deleting windows,
you can build on that by acting on other windows. That
is, if you want to switch another window’s buffer, you

The Theory of Movement

have to C-x o to the window, then use C-x b to change the
buffer. It’s a bit tedious and it breaks your tempo. The other
window in this case is the one immediately after the current
one when you run C-x o.

Key Binding Purpose

C-x 4 C-f Finds a file in the other window
C-x 4 d Opens M-x dired in the other window
C-x 4 C-o Displays a buffer in the other window
C-x 4 b Switches the buffer in the other window

and makes it the active window
C-x 4 0 Kills the buffer and window

These commands are the most useful ones for operating on
other windows. There are a few more – you can use C-x 4 C-h
to list them – but you won’t use them as often.

If you look closely at the key bindings in the table above,
you will see a symmetry between C-x 4 and C-x — indeed,
they are almost identical in binding and purpose. This is no
coincidence, and the symmetry will help you remember the
commands.

Frame Management
You can create frames – what are called windows in other pro-
grams and window managers – and you may prefer to do
this if you use a tiling window manager or to take advan-
tage of multi-monitor setups. Note that frames also work
in terminal Emacs.

The Theory of Movement

The prefix key used for frames is C-x 5. Like the prefix key
for windows, (C-x 4) the commands are mostly the same.

Key Binding Purpose

C-x 5 2 Create a new frame
C-x 5 b Switch buffer in other frame
C-x 5 0 Delete active frame
C-x 5 1 Delete other frames
C-x 5 C-f Finds a file in the other window
C-x 5 d Opens M-x dired in the other window
C-x 5 C-o Displays a buffer in the other window

Switching buffers with multiple frames is seamless, if a
buffer is visible (it is displayed in a frame in a window)
Emacs will switch to the right frame where the buffer is
already visible.

Whether you choose to use frames or not is up to you. The
mechanics of dealing with multiple frames is slightly awk-
ward in Emacs as all frames share the same Emacs session —
which is sometimes a blessing or a curse. I find frames use-
ful with multi-monitor setups, but not so much elsewhere.
The usefulness of frames, I find, is limited by the already ex-
cellent tiling window management system present in Emacs.
My only recommendation is to try it out and see if frames
fit your workflow.

The Theory of Movement

Elemental Movement

Navigation Keys

The most elemental movement commands available to you
– and indeed, to every editor – are the humble arrow keys.
They work as you would expect, and if you’re new to
Emacs, I recommend you use them until you learn the more
advanced movement commands. As with other editors, you
can combine the arrow keys – written as <left>, <right>,
<up>, and <down> – with the control key to move by word.
Simultaneously, the other navigation keys, like page up and
page down, also work in Emacs.

Key Binding Purpose

<left>, … Arrow keys move by character in all
four directions

C-<left>, … Arrow keys move by word in all
four directions

<insert> Insert key. Activates overwrite-mode
<delete> Delete key. Deletes the character after

point
<prior>, Page up and Page down move up and down
<next> nearly one full page
<home>, Moves to the beginning or end of line
<end>

Once you’re comfortable with the basics of Emacs – han-
dling buffers, splitting and deleting windows, saving and
opening files – you should move away from using the navi-
gation keys. Though they serve their purpose well, they are

The Theory of Movement

too far away from the home row, and moving your right hand
away from the home row just to move the point around on the
screen is time consuming.

By the way

The page up/down buttons will scroll up or
down a screenful of text, retaining lines of
text for context. You can change the amount of
overlap when you page through text by altering
the variable next-screen-context-lines directly
in your init file or by using Emacs’s customize
interface, like so: M-x customize-option, then
enter next-screen-context-lines.

If you regularly use shells like bash or other readline-
enabled terminal applications, then good news for you: by
default they use Emacs-style keys. Try it, M-f moves forward
by word. In fact, dozens of Emacs’s most commonly-used
commands4 exist in readline, meaning the mental con-
text switch is minimal and every terminal program that uses read-
line supports them.

Moving by Character

The arrow key equivalents in Emacs will seem positively
strange when you first encounter them. A lot of people won-
der why Emacs would bind an action as common as moving

The man page on readline has a complete list. But why not read the
man page in Emacs? M-x man RET readline RET

The Theory of Movement

forward a character to C-f. The fact is if you know Emacs,
you’ll almost never move around by character.

Moving by character – and also by line, as that is technically
the smallest unit you can move up or down – is the small-
est atomic movement you can make in a buffer. Character
movement is for finesse; made for precision movement, if
you like. Moving around a buffer by character is inefficient
and tedious; limited by the speed of your keyboard’s repeat
speed or how fast you can type it. That’s slow, and that slow-
ness adds up as we often spend as much time moving around as
we do editing text. You should only use character movement
when it’s the most efficient command available. Moving by
word is great, but that won’t help you if you want to move
 characters into a word.

The four basic movement commands are:

Key Binding Purpose

C-f Move forward by character
C-b Move backward by character
C-p Move to previous line
C-n Move to next line

As you can see, mnemonically, the assignments make sense
– p for previous, b for backwards – and all are bound under
the C- modifier.

You can apply universal arguments to the character keys
and they will work as you expect. Type C-8 C-f and you
will move the point forward eight characters. You can even
combine the negative argument to reverse the direction

The Theory of Movement

of the command — that may not make much sense with
movement keys, but some commands come with a forward
and backward command. Most act in just in one direction
– forward, that is – and the negative argument is the only
way to change this direction.

Learning Emacs’s own movement commands (as opposed
to using the navigation keys to the right on your keyboard)
makes sense when you look at how Emacs’s other move-
ment commands work. I see experienced Emacs users
execute choreographed sequences of commands to do
interesting and complex actions only to stop dead in their
tracks to move their right hand away from the home row
and move the point around by character. At some point
you will realize how jarring (and how much it affects your
speed) it is and switch to Emacs’s own commands.

Moving by Line

The <home> and <end> keys move your point to the beginning
and end of a line, respectively, and the Emacs equivalents are
C-a and C-e.

Key Binding Purpose

C-a Moves point to the beginning of the line
C-e Moves point to the end of the line
M-m Moves point to the first non-whitespace

character on this line

Both C-a and C-e behave exactly the same as <home> and <end>
(indeed, both sets of keys are bound to the same command)

The Theory of Movement

but I cover the definition of a line in the next chapter.

The last command, M-m, is pure gold dust. When you type
M-m, the point will move to the beginning of the line and
move forward until it encounters a non-whitespace charac-
ter; ergo, if you’re on an indented line of code and you want
to change the identifier bar:

def foo(self):
bar = 42█

After you type M-m:

def foo(self):
█bar = 42

If you’re on a line without indentation, the command will
simply go to the beginning of the line.

Screen, Logical and Visual Lines

Emacs will, by default, wrap long lines to the right edge of
the window, but that raises an important question: where
does a line begin and end when it wraps?

The answer, unfortunately, requires a bit of explaining, and
the terminology? Well, it’s jumbled:

Visual lines A visual line is defined as What You See. If you
open a file and a long line spans three wrapped lines in
your buffer, then you have three visual lines, each of
which is treated as a separate and distinct line by Emacs,
even if the underlying file has just one.

The Theory of Movement

Logical lines A logical line is the opposite of a visual line.
Logical lines are governed by the content of the buffer
and nothing else; word wrapped or not, one long line
in a file is treated as one long line in Emacs.

Screen lines In some parts of Emacs’s documentation, you
may see the term screen lines used in conjunction with
logical lines. A screen line is identical to a visual line and
the terms are used interchangeably.

Historically, when Emacs wrapped a long line the C-p and
C-n commands for moving up or down a line didn’t change.
A long line (called a logical line) wrapped into three lines
(called visual lines) would still count as a single (logical)
line for moving up or down by line; the end result is that
you couldn’t use the line commands to move by visual lines.
Whether it was The Right Thing was a polarizing thing,
indeed. You either loved it… or you altered Emacs.

And most people altered Emacs. The end result is today,
in the latest versions of Emacs, the previous/next line
commands move by visual lines. You can switch to the old be-
havior by typing M-x customize-option RET line-move-visual.

Adding to the complexity is the addition of Visual LineMode,
a minor mode that builds on the concept of visual lines with
additional functionality.

Visual Line Mode wraps by word boundary resulting in
“cleaner” word wrapping like what you’d see in a traditional
word processor. The minor mode will also disable the fringe
indicators.

The Theory of Movement

Additionally, Visual Line Mode replaces a number of move-
ment and editing commands with visual equivalents. C-p
and C-n will behave as they do in default Emacs installations
with the line-move-visual option enabled. Furthermore,
commands like moving to the beginning and end of a line
(with C-a and C-e) now work on visual lines instead of logical
lines. The kill command (bound to C-k, but we haven’t
covered that command yet!) will also work on visual lines.
If you want this behavior – and I encourage you to try it out
and see if it fits your workflow – you can enable it globally
with M-x customize-option RET global-visual-line-mode or in
a buffer at a time by typing M-x visual-line-mode.

What if you don’t want word wrapping? You can toggle
word wrapping – called truncation in Emacs – with
M-x toggle-truncate-lines.

Moving by Word

Like character movement, moving by words is almost identi-
cal; the mnemonics are the same for backward and forward
character, replacing only the C- modifier with M-.

Key Binding Purpose

M-f Move forward by word
M-b Move backward by word

If you’ve used other editors, the equivalent arrow keys are
C-<left> and C-<right>, and as I mentioned earlier they are
also available to you in Emacs. In Emacs, word movement is

The Theory of Movement

rather complex behind the scenes, and the exact behavior of
word movement is dictated by the major mode you’re using.

What Constitutes a Word?

What is a word? Simply thinking of it as a series of charac-
ters separated by whitespace is what most people think – and
therefore expect – but in Emacs the truth is a lot more com-
plicated.

Mode writers in Emacs make assumptions about the nature
of the text in the buffer. What you would write in M-x
text-mode is different – and treated differently – from what
you’d write in M-x python-mode. So, mode authors need a
way of saying that in text-mode the period ‘.’ is a sentence
separator and an attribute separator in Python.

Indeed, every character – printable characters, including
Unicode code points – are given a meaning by the mode
author, directly or indirectly, in a registry that maps the
characters to a particular syntactic meaning. This registry is
called a syntax table, a concept that I will refer back to several
times to help you understand how it affects movement and
editing, but is otherwise only of interest to elisp hackers
and mode writers.

The syntax table keeps track of things like What characters
are used for comments? or What characters make up a word? and,
although obscured from view, affects every part of Emacs.

The syntax table alone decides the makeup of a word (or
symbol, punctuation, comment, etc.) as a syntactic unit. So
when you move the point around on the screen, it moves

The Theory of Movement

according to the syntax table and the general rules governing
forward-word and backward-word.

The syntax table

Every editor has an equivalent of Emacs’s syntax
table, but what sets Emacs apart from other edi-
tors is that you can inspect and change the syntax
table, which in turn will affect how your point
moves across the screen when you invoke certain
commands.

You can view your current buffer’s syntax table
by typing C-h s — it may take a while to load.
In it you will see a human readable version of
the characters and their assigned syntax class.

Movement Asymmetry

One more thing you should know about word movement
is that it’s not symmetric: typing M-f followed by M-b – in
theory it should take you back to your old position – is not
guaranteed. Emacs will cleverly skip symbols and punctuation
it encounters in the direction (forward or backward) you’re
moving.

Consider what happens when you type M-f to move forward
one word:

Before: Hello, █World.

After: Hello, World█.

The Theory of Movement

Because the characters succeeding the point, █, are all alpha-
betical characters, the word command behaves as you would
expect. Now look at what happens if we move the point to
the end of the line and type M-b to move backward one word:

Before: Hello, World.█

After: Hello, █World.

The word command is smart enough to realize that, al-
though a period is not a word character, it should simply
ignore it as there is a word immediately before the punctuation.
Typing M-f after we type M-b will not take us back to our
original example:

Before: Hello, █World.

After: Hello, World█.

This reinforces my point that word commands are not sym-
metric. That will take a bit of getting used to. Emacs will
generally ignore non-word characters immediately following
the point in the direction you are travelling. For instance,
we skipped over the period, ., because it was a non-word char-
acter and it was the first character the point would encounter
going backwards. The reason for this behavior is simple: if
Emacs didn’t do this, then every non-word character the word
commands would encounter, in both text and code, would
count as a word of its own and end the movement command.

Here is a more extreme example — but one you may well
encounter in source code:

The Theory of Movement

print(add_two(num_table[10]))█

The point above is at the end of the line and if you type M-b
and move backward one word, you end up right before 10:

print(add_two(num_table[█10]))

This is because, as before, Emacs ignores symbols and punctu-
ation if, and only if, it encounters them before it has encoun-
tered a word character. Moving forward again does not take
us back to the end of the line as we are already at a word:

print(add_two(num_table[10█]))

So, you might be wondering why this is a good thing. For
starters, you can follow up the original M-b with M-d to kill
the number 10 and because of the asymmetry you don’t
kill the])) symbols (but much more on the kill commands
later.) Another reason is that it just does not make sense to
think of a word as separated by just white spaces — it raises
too many questions. What if there are many whitespaces
in a row and what about punctuation and symbols? When
you have to navigate a mix of symbols and text, like most
source code is, Emacs’s behavior is perfectly sensible; keep
tapping M-b and you move back consecutive words of text but
you conveniently skip any symbols you encounter in the
direction of travel. The one thing people find confusing is
the asymmetry; the rules seem insensible — but now that
you know how Emacs moves, its behavior should make a
lot more sense.

The Theory of Movement

Sub- and Superword Movement

If you edit a lot of code with CamelCase, you may want
your movement and edit commands to treat each sub-
word – delineated by a capitalized letter – as its own
word. Simultaneously, you may want the opposite: that
text written_like_this which Emacs’s word movement
commands usually – but again this is all down to the syntax
table and vagaries of the major mode – treat as three distinct
words (written, like, and this) instead of just one.

Command Purpose

M-x subword-mode Minor mode that treats CamelCase
as distinct words

M-x superword-mode Minor mode that treats snake_case
as one word

Global minor modes

There are global modes available for both and
you can enable them by typing:

M-x customize-option global-subword-mode
M-x customize-option global-superword-mode

When you enable M-x subword-mode, you enable special move-
ment, transpose and kill commands that operate on each in-
dividual, capitalized word in CamelCase. If you write a lot
of code in languages that use CamelCase, you’ll find subword
mode useful.

The Theory of Movement

Glasses mode

There is a whimsical minor mode, M-x
glasses-mode, that visually (it does not alter
your buffer text) separates CamelCase words into
Camel_Case.

The superword command, M-x superword-mode, is similar but
does the opposite: it rewires symbols (which usually, but not
always, include the underscore) so they’re considered part
of a word. Note that this command is not perfect. Major
mode authors decide what syntax class a character like _ or
. should fall under, and if they don’t set a character like _ to
be a symbol, the command will not work.

Moving by S-Expressions

Perhaps the most useful – but underused – feature in Emacs
is the ability to move by s-expression (or just sexp.) The cryp-
tic name deserves an explanation: it’s a term that, today,
covers a wide range of commands that operate on balanced
expressions.
Balanced expressions typically include:

Strings Programming languages being the primary exam-
ple of strings, which are balanced expressions because
they begin and end with " or '.

Brackets In most major modes brackets are considered bal-
anced as they have defined open and close characters:
[and], (and), { and }, < and >.

The Theory of Movement

Balanced expressions can span multiple lines – multi-line
strings for instance – and Emacs knows this.

Whether a particular set of characters defines a balanced ex-
pression will depend on your major mode, and the major
mode in turn will define these characteristics in the syntax
table I talked about earlier.

Like the word and character commands, these follow the
same mnemonic as before but with a different modifier. This
time it’s C-M-.

Key Binding Purpose

C-M-f Move forward by s-expression
C-M-b Move backward by s-expression

The usefulness of these commands cannot be overstated.
Consider this Python example; look where the point moves
when you press C-M-f

d = █{
'Hello': 'World',
'Foo': 'Bar',

}

After

d = {
'Hello': 'World',
'Foo': 'Bar',

}█

The Theory of Movement

Emacs knows that { and } in python-mode is a balanced expres-
sion – because of the syntax table – and thus treats { and }
as a balanced expression, and immediately moves to the end
brace when you type C-M-f.

Once you start thinking about code in terms of balanced ex-
pressions, you’ll see them everywhere. It’s not just in
that you’ll find them useful; almost all major modes are full
of balanced expressions — and as an added bonus, the s-expr
movement commands act like the word commands when
you invoke them on “unbalanced” expressions such as reg-
ular text.

It’s absolutely vital that you learn how to use these com-
mands.

Four more movement commands exist that work on
balanced expressions — but only brackets, and not strings.

Down and Up List

Key Binding Purpose

C-M-d Move down into a list
C-M-u Move up out of a list

Like the s-expression movement commands, the list com-
mands were meant for but have found a life outside that
language. When you press C-M-d, the point will jump into the
nearest balanced expression of parentheses ahead of where
the point currently is:

Before:

The Theory of Movement

█result = foo(bar())

After:

result = foo(█bar())

The point moves inside the nearest balanced expression. To
do this, the point will jump an arbitrary distance, and re-
peated calls will go deeper into nested structures and con-
versely C-M-u will go back up. Like the word commands, the
list commands are not symmetric; going up will take you up
one level but leave your point at the opening character:

Before:

result = foo(bar(█))

After:

result = foo(bar█())

Moving out of strings

In newer versions of Emacs, you can use C-M-u
inside a string to jump to the opening quote.

On their own, the commands do little more than jump in
and out of “list” expressions, but realize that combining this
behavior with another command, kill-sexp5, will kill the

I will talk about killing text later on in the editing chapter.

The Theory of Movement

balanced expression in front of the point — so typing C-M-u
and C-M-k for kill-sexp will move up and kill the balanced
expression you were just in:

; Before:

(+ (* █5 2) (- 10 10))

; After going up one level with C-M-u:

(+ █(* 5 2) (- 10 10))

; After killing the s-expression with C-M-k:

(+ █ (- 10 10))

I use this functionality all the time; it’s one of Emacs’s hid-
den gems that will make you very productive, even if you
don’t program in . For instance, languages like Python
use parentheses all over the place: for dictionaries, for tuples,
and for lists. Combine the list commands with C-M-k and you
can refactor large swathes of code easily and maintain your
tempo because most commands that work on balanced ex-
pressions are bound to the C-M- modifier.

Because C-M-d jumps into the next “list” expression follow-
ing point – regardless of where it is in the buffer – it’s a
powerful tool for moving around as well. Like everything
in Emacs, realizing the potential of a command and commit-
ting it to working memory so you use it is hard, but the
reward is well worth it.

The Theory of Movement

Forward and Backward List

Two more useful navigational aids are the sibling-
commands of C-M-d and C-M-p — because they move
to the next or the previous list expression in the same nested
level.

Key Binding Purpose

C-M-n Move forward to the next list
C-M-p Move backward to the previous list

For instance, here’s what happens when you type C-M-n re-
peatedly:

(+ █(* 5 2) (- 10 10))

(+ (* 5 2)█ (- 10 10))

(+ (* 5 2) █(- 10 10))

(+ (* 5 2) (- 10 10)█)

As you can see, it moves from one expression to the next,
and this includes the beginning and end of the balanced
expression. Typing C-M-n again yields an error: we have
reached the end of balanced expressions at this nested level. If
we type C-M-u to move up the list:

█(+ (* 5 2) (- 10 10))

The Theory of Movement

Now, we move out of the nested expression and into its par-
ent. A subsequent call to C-M-n takes us to the end of the
balanced expression:

(+ (* 5 2) (- 10 10))█

For , the commands are invaluable. Nested parentheses
indicate hierarchy so hackers require an efficient set of
tools to move up, down and around balanced expressions.
For all other programming languages, the utility depends
entirely on how frequently you encounter balanced expres-
sions. In most languages – like C, Java, Python, or JavaScript
– they are very useful; it’s an elegant way of moving between
some balanced expressions like curly or square braces.

Other Movement Commands

I consider moving by character, line, word and s-expression
to be the most important movement commands. They have
the greatest utility across a wide range of editing tasks –
specifically programming and text editing – but there are
some movement commands that are best suited for specific
tasks — and whether or not they are useful to you depends
entirely on what you do.

Moving by Paragraph

Key Binding Purpose

M-} Move forward to end of paragraph
M-{ Move backward to start of paragraph

The Theory of Movement

The definition of a paragraph depends on who you ask and
your personal style, and Emacs tries to cater to most of them.
The paragraph commands themselves rely on a set of vari-
ables that define the beginning and end of a paragraph:

Variable Name Purpose

paragraph-start Defines the beginning of a paragraph
using a large regular expression

paragraph-separate Defines the paragraph separator as a
regular expression

use-hard-newlines Set by the command
M-x use-hard-newlines and defines
whether a hard newline defines a
paragraph

I recommend you describe the variables (using C-h v) to get a
better picture of how Emacs’s paragraph system works. The
paragraph-start variable in particular is a jumble of regular
expressions that tries to do everything for everyone. By de-
fault, when you use M-} and M-{, Emacs will treat newline-
delimited blocks of text as a paragraph.

You can alter the behavior of the paragraph commands so
leading spaces mark the beginning of a new paragraph by
running M-x paragraph-indent-minor-mode.

The paragraph commands are useful in programming modes
also. A lot of developers group lines of code together and sep-
arate them from each other with blank lines making them an
ideal candidate for the paragraph commands.

The Theory of Movement

Moving by Sentence

The sentence commands share symmetry with the line com-
mands, replacing the C- modifier with M-:

Key Binding Purpose

M-a Move to beginning of sentence
M-e Move to end of sentence

Like a paragraph, the definition of a sentence is a house style
that varies, but Emacs assumes you begin your sentences
with two whitespaces after a period:

This is one sentence. This is another.

You can alter this behavior by customizing (with M-x
customize-option) the following variables:

Variable Name Purpose

sentence-end-double-space Non-nil means a single space
does not end a sentence.

sentence-end-without-period Non-nil means a sentence will
end without a period.

sentence-end-without-space A string of characters that
end a sentence without
requiring spaces after.

The one you are most likely to customize is sentence-end-double-space.

The Theory of Movement

Moving by Defun

The word defun is another piece of arcana that stands for
define function — and in Emacs you will see it in places where
commands act on functions.
Like the sentence and line commands, the defun commands
use C-M- as their modifier:

Key Binding Purpose

C-M-a Move to beginning of defun
C-M-e Move to end of defun

The defun commands move to the logical beginning or end
of the function point is in. I must point out that function is re-
ally a rather loose term. It doesn’t have to be a function but in
programming modes it’s usually functions, classes, or both;
for other modes, it might do other things — in reStructured-
Text, for instance, it will jump to the beginning and end of
a section or chapter.

Moving to the beginning of defun is really useful if you want
to, say, quickly change the name or signature of a function
in a programming language.

Consider the location of point:

int addtwo(int x)
{

return x + 2█;
}

Pressing C-M-a will take us to the beginning of defun, addtwo:

The Theory of Movement

█int addtwo(int x)
{

return x + 2;
}

Subsequent calls to C-M-a will take you further and further
“up the chain” to a parent block, perhaps, or the top of the
file if you are at the root.

Moving by Pages

A page in Emacs is only tangentially related to the real-life
concept of a page. In Emacs, a page is anything delimited by
the character defined in the variable page-delimiter, which
by default is the control code ˆL — better known as the
control code form feed. It is unlikely that you will ever use
these commands, so I would not worry about memorizing
them.

In some circles, it is common to group things by pages
and as Emacs has close ties to the community it comes
with a battery of commands to interact with pages.

Key Binding Purpose

C-x] Moves forward one page
C-x [Moves backward one page

Discovering the page commands
Here’s one way to find page commands: C-h a
(for M-x apropos-command), then search for page$ to
find all commands ending with the word “page.”

The Theory of Movement

Knowing how to ask Emacs the right questions –
using apropos or the describe system – is the cor-
nerstone of Emacs mastery.

Scrolling

Like the arrow keys, the <prior> and <next> commands
(Pg. Up and Pg. Down respectively) have their own Emacs
equivalents, but Emacs’s scrolling mechanism is different
enough that some people find it frustrating. That’s because
Emacs will scroll by nearly full screens, where a full screen is
the number of lines visible in that window. To help with
continuity when you scroll, Emacs will retain two or three
lines (as governed by the variable next-screen-context-lines)
so you don’t lose track of where you are.

Key Binding Purpose

C-v Scroll down one page
M-v Scroll up one page
C-M-v Scroll down the other window
C-M-S-v Scroll up the other window

C-v and M-v work the same way as the navigational keys
<prior> and <next>.

The odd ones out are the two commands that scroll the other
window. It’s a surprisingly useful command. I almost always
work with multiple windows and being able to scroll an-
other window – containing a help buffer, or a log file, or
even another source code file – is a common thing for me to
do.

The Theory of Movement

Most editors lack this functionality; instead you have to:

Use the mouse With your mouse, move over the window,
and finally use the scroll wheel to scroll up and down,
or click and press <prior> and <next>.

Use the keyboard Switch to the other split window or tab,
use <prior> or <next> to scroll up and down.

In Emacs, you can use the other window scroll commands.

I don’t use C-M-S-v often. I find it easier to type C-M-- C-M-v to
reverse the direction of the scroll with a negative argument
than typing C-M-S-v. The latter command requires a partic-
ularly dexterous finger maneuver and if you scroll too far,
you have to swap finger positions so you can type C-M-v. It’s
far easier to use C-M-- and C-M-v.

Maintaining tempo

Notice that the negative argument command,
C-M--, is conveniently bound to the same modi-
fier keys as C-M-v. Like I explained in the chapter
on universal arguments, this is no coincidence.
By binding the argument commands to all
major modifier combinations, you don’t have
to contort your fingers between commands to
prefix a command with an argument.

You can also scroll horizontally — or just left and right in
Emacs parlance:

The Theory of Movement

Key Binding Purpose

C-x < Scroll left
C-<next> Scroll left
C-<prior> Scroll right
C-x > Scroll right

If you edit a lot of text files with very long lines – files,
perhaps – you may find it useful to first disable word wrap-
ping (or line truncation as it’s known in Emacs) with M-x
toggle-truncate-lines. I would not bother memorizing the
horizontal scrolling commands unless you really need them.

You can, of course, still use the mouse wheel to scroll,
though whether it works in the terminal or not will depend
on your system.

Two more commands are useful for moving around, namely
the ability to go to the beginning and end of the buffer:

Key Binding Purpose

M-< Move to the beginning of the buffer
M-> Move to the end of the buffer

When you move to the beginning or end of the buffer,
Emacs will place the mark – an invisible location marker –
where you came from, so you can return to your old posi-
tion. For instance, if you type M-< to jump to the beginning
of the buffer, you can type C-u C-<SPC> to go back. C-u, as
you remember, is the universal argument; in this case, it sets a
flag so that when you type C-<SPC> Emacs will interpret that

The Theory of Movement

to mean jump to the last mark. The mark, and its utility in
Emacs, is a topic I will discuss a little bit later.

Bookmarks and Registers
Bookmarks in Emacs work identically to the ones in your
web browser but with the notable exception of supporting
a wider variety of sources. That makes Emacs’s bookmark-
ing system flexible enough for you to bookmark info pages,
files, M-x dired directories and info manual pages. Because of
Emacs’s system, it is therefore also possible to book-
mark remote files for speedy access.

Bookmarks in Emacs are permanent, meaning they are au-
tomatically saved to a bookmark file in ~/.emacs.d/ called
bookmarks.

Bookmark file

The variable bookmark-default-file determines
where Emacs stores your bookmarks. The file is
plain text (elisp s-expressions, actually) meaning
it is possible edit it manually (if you absolutely
must) or merge the files if you regularly add or
remove bookmarks from multiple machines.

Key Binding Purpose

C-x r m Set a bookmark
C-x r l List bookmarks
C-x r b Jump to bookmark

The Theory of Movement

Bookmarks are a very efficient way of jumping to frequently-
used files or directories; it is also useful if there are sections of
Emacs’s manual that you want to return to frequently. And
because of the unified nature of Emacs – buffers – the three
are seamlessly stored and recalled from the same list of book-
marks.

Registers, however, are different; they are the flip side of the
coin — where bookmarks are permanent, registers are tran-
sient. A register is a single-character store-and-recall mecha-
nism for several types of data, including:

Window configurations and framesets You can store
and recall the layout of your window configuration,
though I would argue there are much better tools
(such as M-x winner-mode I talked about in Window
Management) for the job.

Framesets are identical to window configurations but
hold information about Emacs’s frames instead.

Points The location of point is another thing you can store
in a register. If you are used to line-based bookmarks
from other s or editors, these are the closest equiv-
alents in Emacs. Unfortunately, the key bindings (as
you will see below) diminish their usefulness.

Numbers and text Plain text is also storable; that is partic-
ularly useful if you want to insert more than one piece
of text, making the kill ring a less ideal candidate. You
can also store numbers, though the only distinction be-
tween text and number is the ability to use simple arith-
metic (addition) on a register containing a number.

The Theory of Movement

Key Binding Purpose

C-x r n Store number in register
C-x r s Store region in register
C-x r SPC Store point in register
C-x r + Increment number in register
C-x r j Jump to register
C-x r i Insert content of register
C-x r w Store window configuration in register
C-x r f Store frameset in register

A register is a single character only. When you want to store
or recall something, you are asked for a single character to
query. Before Emacs ., you had no real way of knowing
what the registers contained (unless you had a good mem-
ory, that is) but now Emacs pops up a preview window after
register-preview-delay seconds (default second).

C-x r s is the one I use most frequently. It stores the region in
a register – simple and useful – and C-x r i which inserts the
content of a register at point. One important note about C-x
r i is that, prior to Emacs ., it would put your point at
the beginning of the inserted text and not after, like C-y (yank)
would. That is now changed in Emacs . but for earlier
versions of Emacs you must give it a prefix argument (C-u
C-x r i) to place the point after.
You can store the point location with C-x r SPC, but to jump
to it you must use C-x r j; arguably C-x r i should Do The
Right Thing here and jump to the point if the register stores
a point. Instead, Emacs inserts the internal point location
which is not useful at all to anyone.

The Theory of Movement

Both framesets and window configurations are storable but
I never use them myself. There are better packages out there
like M-x winner-mode as I talked about earlier.

To store a number, place the point before it and type C-x r
n. To increment it by prefix-numeric-value (default 1), type
C-x r + and to increment it by an arbitrary amount, give it a
numeric argument (and a negative one to decrement.) You
can recall a number register with C-x r i.

Both registers and bookmarks are useful and they serve two
different purposes. I would focus on memorizing the book-
mark commands as they are more likely something you use
daily.

Selections and Regions
Selecting text is a common action, but in Emacs’s info docu-
mentation and describe system it’s referred to as the region. As
I mentioned in The Point and Mark, a region boundary is
made up of the point and the mark.

Other editors make little or no distinction between the be-
ginning and end of the region but in Emacs that distinction
is rather important. The region is always defined as the con-
tiguous block of text between the point and the mark.

For a visual demonstration, try this in Emacs: press C-<SPC>
In the echo area, a message will appear saying “Mark Set.”
Now, move your point around the buffer – with the arrow
keys or the other movement commands I introduced earlier
– and watch as the region changes because it is now activated.
Press C-<SPC> again – or the universal get-out-of-trouble

The Theory of Movement

command C-g – to deactivate the region. Note that the region
is always defined as the mark to the point, whether the
point comes before the mark or not. This functionality is
thus similar to what you see in other editors when you hold
down shift and move around with the arrow keys.

Therefore, when you make visual selections, you are using
Emacs’s TransientMarkMode, also known as . came
about much later in Emacs’s history than you might think;
in fact, it was only recently switched on by default.

So what came before ? Well, for starters, you didn’t
have visual highlighting at all — so you had to remember
where you left the mark. And a lot of the commands didn’t
know about things like regions at all. Simple commands like
M-x replace-string that does a simple string replacement in
a buffer worked from the point to the end of the buffer, no
exceptions. So if you wanted to modify particular parts of
a buffer, you had to use Emacs’s cryptic narrowing commands
that shrink the visible content of a buffer to what you
wanted the command to act on. As you can imagine, that
didn’t help beginners learn Emacs.

So, today you don’t have to worry about region narrowing
(for anything except specialized editing), nor do you have
to memorize the location of the mark as will show you
the region.

However, the union of and Emacs’s region system is
not perfect. The mark in Emacs is not just for the region.
It’s an important tool for jumping around in a buffer as some
commands that whisk you away from your current location
will leave a mark (a breadcrumb trail, effectively) on the mark
ring that you can return to later. One example would be M-<

The Theory of Movement

and M-> – the commands for jumping to the beginning and
end of the buffer – they both mark your old position before
they jump so you can later return to your old position by
typing C-u C-<SPC>.

The mark ring

Like the undo ring, the mark ring contains all
the marks you have placed in a buffer — both
directly, using mark commands like C-<SPC>;
and indirectly, from commands like M-< and M->.
There is also the global mark ring for commands
that work across buffer boundaries.
You can tell when the mark ring has changed be-
cause the text Mark set (or a variation thereof) ap-
pears in your echo area.

And because of this, the command C-<SPC> will set the mark
and with enabled it also activates the region highlight-
ing when you move the point around. That means if you just
want to set the mark just so you can return to it later (with
C-u C-<SPC>), you have to press C-<SPC> C-<SPC> — once to set
the mark, and once more to deactivate the region. Another
gotcha is that things in Emacs that operate on regions – text
replace, changing text to uppercase in a region, and so on –
work just fine even if the region isn’t activated as Emacs will not
check if the region is active (just that you are using .)

Here are the keys needed to activate selection and jump to
the mark. If you are new to Emacs, feel free to use the shift
selection keys until you are comfortable with Emacs’s own
selection mechanism.

The Theory of Movement

Key Binding Purpose

C-<SPC> Sets the mark, and toggles the region
C-u C-<SPC> Jumps to the mark, and repeated calls

go further back the mark ring
S+<left>, … Shift selection similar to other editors
C-x C-x Exchanges the point and mark, and reactivates

your last region

The C-x C-x command (called exchange-point-and-mark) is in-
teresting. It reactivates the region from point – which is
your current location in the buffer – and wherever the mark
is; then, it swaps the point and mark positions. This com-
mand is especially useful if you want to reactivate the last
region or if you simply want to swap the position of mark
and point. Exchanging the point and mark is useful if you
want to edit text near the mark or point or if you simply
want to reactivate the region between your last mark and
point.

Let’s finish with a list of simple rules to remember:

. A region is a contiguous block bounded by the point and
mark.

. You activate a region with C-<SPC>, which sets the
mark then activates the region (if you use , and
you should!). Pressing C-<SPC> again deactivates the
region.

. An active region follows the point as you move around
but breaks when you use a non-movement command.

. The mark serves a dual purpose as a beacon you can re-
turn to with C-u C-<SPC>, even one you set with C-<SPC>

The Theory of Movement

Repeat calls to C-u C-<SPC> go further and further back
the mark ring.

. Exchanging the point and mark with C-x C-x re-
activates the region and switches your point and mark
around.

. Some Emacs commands don’t care if the region isn’t
actually active and work anyway (so be careful).

As always, I encourage you to learn Emacs’s own commands
in time but if you are overwhelmed, you can use the mouse
to click-drag selections or use the arrow key selection with
S+<arrow key>.

Selection Compatibility Modes

To ease the transition to Emacs, there are several helper
modes you can enable to mimic the behavior of other
editors. Emacs enables one or two of them by default now
as part of their drive to modernize Emacs. My personal
recommendation is to start off with what you know and
slowly wean yourself off the compatibility modes as you
improve your Emacs skills.

M-x delete-selection-mode When the region is active and
you type text into the buffer, Emacs will delete the
selected text first. This behavior mimics most other
editors.

To enable (or disable) it, use the customize interface:

M-x customize-option RET delete-selection-mode

The Theory of Movement

shift-select-mode (variable, enabled by default) Shifted
motion keys – both traditional navigation keys like
the arrow keys and Emacs’s own commands – activate
the region and extend it in the direction you are
moving.

The shift selection works differently from setting the
mark with C-<SPC>. When you shift select a region, any
non-shifted movement command will deactivate the
region. Like delete-selection-mode, this functionality
mimics the behavior in other editors.

For instance, S-<left>, S-<right>, etc. will region select
one character at a time, and C-S-f will do the same but
with Emacs’s own movement commands.

To disable (or enable) it, use the customize
interface:

M-x customize-option RET shift-select-mode

M-x cua-mode Probably, the most radical departure from
Emacs’s selection and clipboard system is mode.
Named after ’s Common User Access, cua-mode lets
you use C-z, C-x, C-c, and C-v to undo, cut, copy and
paste like you would in other programs.

Because mode and Emacs’s own prefix key bind-
ings C-x and C-c conflict, mode is disabled by de-
fault. If you enable it, the prefix keys C-x and C-c con-
tinue to work but with minor side effects and addi-
tional constraints:

The Theory of Movement

. To type the prefixes C-x or C-c with an active re-
gion, you must double tap the prefix key in rapid
succession (e.g., C-x C-x).

. To type the prefix key C-x or C-c followed by an-
other key, you must type them in rapid succes-
sion or you will trigger a clipboard command.

. Alternatively, to points and , you can type the
prefix key with the S- modifier: C-S-x replacing
C-x and C-S-c replacing C-c.

 mode is one of those quality of life features that
will make or break Emacs adoption for some people.
If you’re one of them, by all means enable it! You can
always wean yourself off the keys over time or sim-
ply live with the side effects I mentioned.

To enable (or disable) it, use the customize interface:

M-x customize-option RET cua-mode

My personal recommendation is to learn Emacs’s own re-
gion commands (and more on that shortly) as Emacs was
never designed around the idea of mode.6 Having said
that, eliminating barriers to entry – and this is something
the Emacs maintainers are working on – is more important
in the shorter term for a new Emacs user.

There was one reason to use mode and that was for its rectangle
mode functionality. In Emacs ., that functionality is now built in and
does not require mode any more.

The Theory of Movement

Setting the Mark

I have shown you how to activate the mark interactively
with the arrow keys (S+<arrow key>) and C-<SPC> but Emacs
has a host of mark commands that work on syntactic units
which, as you may recall from earlier, are things like words,
s-expressions and paragraphs.

Setting the mark with C-<SPC> is useful but it is cumbersome
to use. You have to set the mark, move to your desired lo-
cation, and then run your command. Worse, it breaks your
tempo.

If you want to make precise selections, you are better off
using Emacs’s dedicated mark commands:

Key Binding Purpose

M-h Marks the next paragraph
C-x h Marks the whole buffer
C-M-h Marks the next defun
C-x C-p Marks the next page
M-@ Marks the next word
C-M-<SPC> and
C-M-@ Marks the next s-expression
C-<SPC>, C-g Deactivates the region

All mark commands append to the existing selection if you
already have a region active. So if you want to mark two
words in a row, all you have to do is press M-@ twice or com-
bine it with a numeric argument: M-2 M-@. Likewise, you
can reverse the direction by using the negative argument
modifier.

The Theory of Movement

The append functionality is particularly useful since your
point remains static. Emacs simply moves the mark from one
position to the next. That makes it easy to do topical edits
like deleting the selection or executing a command against
it.

In the chapter What Constitutes a Word? I talked about
syntax tables and how a major mode’s syntax table affects
movement commands. A lot of mark commands are similar,
notably the M-x mark-word command M-@. However, some
mark commands are overridden in some major modes so
they work correctly for that particular mode. For instance,
in reStructuredText, the M-x mark-defun command bound
to C-M-h will select a whole chapter; this is sensible, as
there are no defuns (a term for a function) in a text file.
Not all major modes support M-x mark-defun but most
modes supplied with Emacs do — ultimately it’s down to
the author of the major mode to tell Emacs how to mark
complex things like defuns.

Deactivating the region

Remember, you can deactivate the region with
C-<SPC> or C-g, Emacs’s universal quit command.

I recommend you ignore C-x C-p (marks the next page) and
focus on memorizing C-x h as that marks the entire buffer;
C-M-h as that will mark the defun; and C-M-<SPC> as that will
mark by s-expression and will, in most cases, act the same if
it encounters a word.

The Theory of Movement

I use C-M-<SPC> all the time. Combine it with a negative argu-
ment (C-M-- C-M-<SPC>) to reverse the direction and you can
mark s-expressions in reverse easily too.

Finally, a lot of manual marking is redundant if you follow
it up with a kill7 command, as Emacs has its own kill
commands that act on syntactic units directly. I will go into
much greater detail about the kill command later on in The
Theory of Editing.

Searching and Indexing
Elemental movement commands act mostly on syntactic
units. Their primary purpose is to serve as successively
more precise tools for getting you from A to B — from
navigating by entire paragraphs or defuns down to moving
by a single character.

Often, however, you want to search for text. Maybe you
know exactly what you are looking for and maybe you are
not, but, regardless, you need tools to do this effectively.

Isearch: Incremental Search

Emacs’s incremental search – or just Isearch – is a supremely
powerful search function bound to C-s and one you will use
a lot in your Emacs career. Beneath its simple exterior is a
sophisticated set of auxiliary commands:

As you may recall, the word kill means cut in Emacs.

The Theory of Movement

Key Binding Purpose

C-s Begins an incremental search
C-r Begins a backward incremental search
C-M-s Begins a regexp incremental search
C-M-r Begins a regexp backward incremental

search
RET Pick the selected match
C-g Exit Isearch

Using Isearch is easy:

Pick a direction of search You can begin a forward or
backward Isearch with C-s or C-r, as per the table
above. The minibuffer will show I-search: or I-search
backward:.

If you previously searched for something, you can re-
call the last search term by repeating the Isearch com-
mand. So, if you want to recall the last search term,
you can type C-s C-s to first open Isearch and then re-
call the last search string. Emacs will automatically do
an incremental search when you do.

Begin typing Every key you press will trigger the incre-
mental search engine to find the first match in the
direction of your search that matches your search string.
When it encounters the first match, the incremental
search engine will highlight all other matches of that
search string in your buffer; if there are no matches
to your search string, Emacs will stop when it has
matched as much as it can and tell you it has failed.

The Theory of Movement

Browse the matches If you have more than one match, or
if you simply want to walk through all the matches,
keep tapping the direction key (C-s or C-r) in which
you want to search. If you want to reverse the direction,
simply tap the other direction and Emacs will switch
directions.

If you reach the end of the matches – or if there are no
matches in your search direction – you can continue
the search from the beginning or end of the buffer (de-
pending on the directionality of your search) by tap-
ping the direction key again. The minibuffer will tell
you if it wrapped the search around to the other side.

Isearch will also tell you what part of your search
string failed to match and what parts didn’t, by
highlighting the failed match in red.8

Pick a match Once you are happy with a match, you can
terminate the search in two ways:

C-g exits Isearch Terminates Isearch and returns to
your original position. If you have a search string
with only a partial match, it will first return you
to the last known match.

RET picks the selected match This also terminates
Isearch but it leaves you at the match you are at
and it drops a mark at your original location so
you can return to your former location with C-u
C-<SPC>.

Although this will depend entirely on your color theme.

The Theory of Movement

Isearch is so useful that I strongly encourage you to use it for
movement as it is one of the quickest ways of moving around
text in Emacs. It is also one of my most used commands. I
use it hundreds of times a day, if not more. It takes a bit
of practice to commit the Isearch behavior to muscle mem-
ory but it is so worth it! It has two accessible keys – C-s and
C-r – and it is visual and instantaneous. There are no distrac-
tions and no ceremony, no modal dialog that pops up and
obscures your buffer, no fiddly radio buttons to change the
search direction, no mouse needed and no tabbing required
to operate it either.

Case folding

By default, Isearches are not case sensitive; low-
ercase searches will match uppercase and mixed
case. However, when you use one or more upper-
case letters in your search, Emacs will automati-
cally switch to a case-sensitive search. It’s called
case folding.

This is another one of those strange Emacs
features that nobody would think to implement
elsewhere. It’s also more useful than you would
think. You might be looking for an uppercase
string, but your search string doesn’t have to
be. And if you really need case-sensitivity, all
you have to do is spell out the uppercase or
mixed case name and Emacs will only look for
literal matches. Of course, if you are looking for
only lowercase matches but no upper- or mixed
case matches, then you have no choice but to

The Theory of Movement

disable case folding or use Isearch’s toggles to
temporarily enable case-sensitivity.

If you prefer, you can disable case folding
entirely:

M-x customize-option case-fold-search RET

Once you start using Isearch you’ll want to use its history
(formally called search ring) features more:

Isearch Key Binding Purpose

M-n Move to next item in search history
M-p Move to previous item in search history
C-M-i “TAB”-complete search string against

previous search ring
C-s C-s Begins Isearch against last search

string
C-r C-r Begins backward Isearch against last

search string

The first two should be self-explanatory by now – as they
are universally available in all Emacs completions – but the
third one warrants a closer look.

“TAB”-completion in Emacs

In Emacs, C-M-i is another “TAB”-completion
mechanism not unlike the one you see when you
press TAB in the M-x prompt. In modes that sup-
port it – and do not forget, when you run Isearch

The Theory of Movement

you are essentially interacting with a mode – the
command is typically bound to complete-symbol,
a generic completion mechanism that looks at
the text at point and tries to complete it against a
known set of completions. In Isearch’s case, press-
ing C-M-i will also trigger the completion engine
– but a different one built for Isearch given its spe-
cialized nature – but this time it’ll compare your
Isearch search string against your search history.
Try it out.

Searching for strings at point is such a common occurrence
that there are dedicated commands to help you do just that:

Isearch Key Binding Purpose

C-w Add word at point to search string
C-M-y Add character at point to search string
M-s C-e Add rest of line at point to search

string (Emacs . or later)
C-y Yank (“paste”) from clipboard

to search string (Emacs . or later)

It’s common that you will find yourself at a word you want
to search for and, to save the hassle of typing it in manually,
you can just type C-w. Repeated invocations will add subse-
quent words to the search string. I find C-M-y (which adds
one character at a time) to be of marginal use to most, but if
you edit a lot of text with foreign characters, you will find
it useful.

The Theory of Movement

NOTE: if you are using an Emacs version older than .,9

then you must replace C-y with M-y and M-s C-e with C-y. The
newer ordering makes a lot more sense as the default yank
command is C-y outside of Isearch.

Isearch is an inclusive search and it will generally err on the
side of caution and match things that a more traditional,
stricter search, would not. You can control how Isearch
behaves using its toggles:

Isearch Key Binding Purpose

M-s c Toggles case-sensitivity
M-s r Toggles regular-expression mode
M-s w Toggles word mode
M-s _ Toggles symbol mode
M-s <SPC> Toggles lax whitespace matching

Each toggle command only affects the current Isearch and
will not persist.

The case-sensitivity toggle (M-s c) simply turns on strict case-
sensitive matching — useful if you have case folding on by
default and you only occasionally need strict case search.

Toggling regular-expression mode with M-s r is akin to acti-
vating regexp Isearch with C-M-s or C-M-r, and vice versa.

The word and symbol toggles (M-s w and M-s _) alter Isearch
so word and symbol delimiters like . and - freely match
other delimiters.

For instance, consider a buffer with this text:

You can check by typing M-x emacs-version.

The Theory of Movement

this-is-a-hyphenated-string

Searching for hyphenated string with C-s alone will not
yield a match, but if you re-run the search with C-s and then
toggle word search mode with M-s w, it will. Word search
is especially useful in languages where you want to match
two successive words separated by (possibly unknown)
word-delimiting characters, like this C example:

mystruct->foo = 42;

Searching for mystruct foo will match the element access
above if you toggle word search with M-s w.

Some of the toggles and commands I have covered are so
frequent that they have their own global keybindings:

Key Binding Purpose

M-s w Isearch forward for word
M-s _ Isearch forward for symbol
M-s . Isearch forward for symbol at point

(Emacs . or later)

You should recognize the first two as they are the same key
bindings available to you inside Isearch itself. The last one,
M-s ., is only available as a global key binding. It begins a
forward Isearch for the symbol at point. This is useful if you
have the point on an identifier in your source code that you
want to search for elsewhere.

The Theory of Movement

Learn Isearch It is a powerful search tool in its own right,
but it also lets you move around the buffer quickly by
searching for words near where you want to go. Tra-
ditional text editors and s attach too much edifice
and complexity to the but in Emacs, Isearch nearly
eliminates the visual clutter and context switching and
hence you keep your tempo.

The Theory of Movement

Occur: Print lines matching an expression

Occur mode is a grep-like utility built into Emacs. Unlike
grep, it has far fewer functions and will by default only op-
erate on the current buffer. What makes M-x occur great is
its speed and that it comes with Emacs, so you don’t have to
call out to an external process. Occur will also preserve the

The Theory of Movement

syntax highlighting in its match results.

Whereas Isearch incrementally walks you through every
match in a buffer, occur will instead create a new buffer
called *Occur* with all the match results in it.

You can activate occur globally and from within Isearch it-
self:

Key Binding Purpose

M-s o Occur mode
M-s o Activate occur on current search string

inside Isearch

Unlike Isearch, you’re asked for a regular expression
for which to search. Occur mode searches for lines that
match the regular expression and shows you the results
in a separate buffer. Occasionally, you may want context
lines – lines before and after the matching line itself –
and you can enable them by customizing the variable
list-matching-lines-default-context-lines.

Occur mode uses hyperlinks that jump to the matching line
when you left-click it with the mouse or press RET on your
keyboard. The occur mode used in the *Occur* buffer has a
number of useful keys you can use:

Occur Key Binding Purpose

M-n, M-p Go to next and previous occurrence
<, > Go to beginning and end of buffer
g Revert the buffer, refreshing the

search results

The Theory of Movement

Occur Key Binding Purpose

q uits occur mode
e Switches to occur edit mode
C-c C-c Exits occur edit mode and applies changes

The keys are only available in the occur buffer itself.

In Emacs, the key g will revert the buffer. What happens
when you do that depends on the mode, but it’s a common
Emacs convention to refresh the contents from the original
source. In this case, it will re-run the search on the buffer
with the same regular expression. The g command is worth
remembering as it’s such a common convention in Emacs.

The e key will switch the occur buffer to an editable state. This
is an unbelievably powerful editing construct that lets you
edit the text in-line in the occur buffer and then commit the
changes to the original source lines by typing C-c C-c.

The main advantage of the occur mode is that you get a
second buffer with the results, usually in a second window
next to your original buffer, and an at-a-glance view of the
matches and the ability to jump between the matching lines.
However, that requires that you keep switching to the other
window to select new matches; that is not only tedious, but
it ruins your tempo. To maintain your tempo, I suggest you
learn these two commands:

Key Binding Purpose

M-g M-n Jump to next “error”
M-g M-p Jump to previous “error”

The Theory of Movement

The purpose column says “error,” but that’s because the com-
mand names are M-x next-error and M-x previous-error. In
reality, they are general-purpose commands. When you run
M-x occur (or other specialized commands in Emacs like M-x
compile or M-x grep), Emacs remembers that and makes M-g
M-n and M-g M-p go up and down that list of matches. The
great thing about these commands is you only have to re-
member those two and they will work with the last-known
occur, compile or grep search you did.

Multi-Occur

You can use the occur mode on multiple
buffers with multi-occur. The command M-x
multi-occur-in-matching-buffers takes a regular
expression of buffers to match – for instance
\.py$ to search all Python buffers – but other-
wise works the same as M-x occur. There is also
M-x multi-occur where you explicitly select the
buffers you want to search — also useful, but
slower to use as you have to manually select
each buffer on which to run occur.

Imenu: Jump to definitions

Imenu is a generic indexing framework for jumping to
points of interest in a buffer. A major mode author will
write a snippet of elisp that generates a list of points of
interest – their name and where in the buffer they occur –
so when you invoke imenu with M-x imenu, you can jump
to any one of them.

The Theory of Movement

Most, but not all, major modes support imenu. For program-
ming modes, the most obvious points of interest are things
like functions and class definitions; other modes may make
use of them as well, such as mail programs or structured text
modes like Markdown or reStructuredText.

Imenu is another tool in your toolbox for medium and
long-distance movement. I find that I use it most when I am
not sure of where something is in a buffer; for jumping to
things I see on the screen, Isearch or elemental movement
commands might be better (and faster).

Oddly, imenu is not bound to any key at all. To use it, you
must type M-x imenu. That is unfortunate as I think it has
historically hampered its adoption since it is not bound to
any known or accessible key. As you will see as you explore
Emacs yourself, that is a common occurrence — so common
in fact that -year veterans still find new things in Emacs
that they had never heard about before.

I bind imenu to M-i. That key is already in use, however. The
existing command, M-x tab-to-tab-stop, will insert spaces or
tabs to get to the next tab stop, a concept that dates back
to – and hasn’t been used since – the era of the typewriter.
Personally, I have no use for such a thing and certainly not
on such an accessible key.

To bind Imenu to M-i, add this to your init file:

(global-set-key (kbd "M-i") 'imenu)

Like most of Emacs’s completion prompts, Imenu only sup-
ports TAB-style completion out of the box. I recommend you
read the next chapter and use Helm’s Imenu support instead.

The Theory of Movement

Helm: Incremental Completion and Selection

Helm is an amazing package. It’s a generic framework for
filter-as-you-type completion; that is, you begin typing and
Helm will automatically filter and show you what matches

— not unlike Isearch’s real-time, incremental search.

What makes Helm so fantastic is that it comes with a lot of
completion commands out of the box. My personal recom-
mendation is that you follow the installation instructions be-
low and start using Helm right away. Helm is a radical depar-
ture from Emacs’s usual low-key completion mechanism –
particularly if you already have a workflow that works for
you – but Helm’s extensive selection of completion sources

The Theory of Movement

and its filter-as-you-type is clearly superior to Emacs’s own TAB-
based completion mechanism for many (but not all) tasks.

How to install

Helm is a third-party package and does not ship
with Emacs. To download it:

. Ensure you have followed the instructions
in The Package Manager.

. Run M-x package-install, then enter helm
and press RET.

. Add this line to your init file:

(require 'helm-config)

All Helm commands share the prefix key C-x c. I can’t say I
am a big fan of that prefix key as a lot of the keys that follow
it make it an exercise in finger contortion. It is also remark-
ably close to C-x C-c — the command that exits Emacs.

Prefix Key Binding Purpose

C-x c Prefix key for all Helm completion
commands.

Helm’s Deep

Helm is a deep and complex tool that rewards you if you
spend the time discovering what it can do.

The trick to discovering things in Emacs is to ask Emacs the

The Theory of Movement

right questions. The right questions in this case are: What
commands does Helm make available to me? and Does Helm have
any key bindings?

Use apropos As I talked about in Apropos, apropos will
list all elisp symbols – variables, commands, elisp
functions, and so on – that match the pattern you give
it. In this case, asking M-x apropos-command (using C-h a)
to show you all commands that match ˆhelm- would be
a good place to start. Likewise, M-x apropos-variable
will do the same but for variables.
Elisp does not have namespaces so package authors pre-
fix their commands with the name of the package. As
the package name is Helm, it makes sense to use apro-
pos to find commands beginning with helm- — or more
precisely as the regular expression ˆhelm-.
Coincidentally, Helm has its own apropos completion
engine: M-x helm-apropos. It will complete commands
and variables & functions — make sure you only look
in the Commands header as Functions are internal elisp
functions not meant for general use.

Describe the prefix key I mentioned earlier that Helm has
its own prefix key, C-x c. In The Describe System, you
can tell Emacs to list all key bindings in a prefix key by
finishing a prefix key with C-h: C-x c C-h.

The two methods yield slightly different answers – because
you are in fact asking two different questions – so you
should do both.

And finally:

The Theory of Movement

• M-x apropos-command (C-h a) is not limited
to commands bound to a prefix key and it
will happily show you commands that are
unbound (or even completely unrelated if
your search pattern is too generic) — but
this is still a great way of discovering hid-
den commands, bound or not.

• Describing a prefix key with C-h will only
show you the commands bound to that
prefix key. Occasionally, you will discover
commands that, although bound to that
prefix key, have nothing to do with the
other commands.

Helm Bindings

Because of the sheer number of Helm commands, I will list
the ones I think are the most important. I encourage you to
follow the suggestions in Helm’s Deep and explore Emacs
and Helm yourself.

Before I do that, I should talk about Helm actions. In Helm,
you can also carry out actions against the matches; the ac-
tions available depend entirely on the completion you are
doing.

Helm has its own set of keys that you need to learn:

Helm Key Binding Purpose

RET Primary action
C-e Secondary action
C-j Tertiary action

The Theory of Movement

Helm Key Binding Purpose

TAB Switch to action selector
C-n, C-p Next and previous candidate
M-<, M-> Beginning and end of completion list

RET is the primary (and most common) action you’d want to
carry out on the selected candidate. Usually, it will jump to,
open or display the candidate. The secondary action, if there
is one, is bound to C-e which you may remember is an ele-
mental movement command that jumps to end of the line; the
command will still do that in Helm but only if your point
is not at the end of the line — if it is, it acts as the secondary
action.

Exiting Helm

To quickly exit Helm, press C-g, the universal get-
out-of-anything key.

The TAB key will switch to the action selector and list all
available actions for the selected candidate. Like the Helm
completion interface, the action interface is also filter-as-you-
type.
Here are some of the more useful Helm completion engines:

Key Binding Purpose

C-x c b Resumes last Helm command
C-x c / Invokes the command line utility find

on the active buffer’s current directory

The Theory of Movement

Key Binding Purpose

C-x c a Completes M-x apropos results
C-x c m Completion engine for the man page

program
C-x c i Lists completions sourced from

M-x imenu or Semantic
C-x c r Interactive regular expression builder
C-x c h r Search Emacs topics in M-x info
C-x c M-x List completions sourced from M-x
C-x c M-s o Use Helm to match M-x occur patterns
C-x c C-c g Show matches from Google Suggest

Some of the Helm commands have positively byzantine key
bindings, like C-x c C-c g to show Google Suggest matches.
Even by Emacs standards, they’re obtuse.

Learning Helm will greatly improve your Emacs experience.
It comes with a powerful fuzzy search and a large range of
useful completion mechanisms. It also has its own burgeon-
ing ecosystem of third-party packages.

The interesting thing about Emacs is the unexpected
productivity improvements you’ll get from things like the
Google Suggest completion mechanism. Why switch to a
web browser and search in the browser when you can do it
in Emacs and get as-you-type suggestions from Google?

The Theory of Movement

IDO: Interactively DO Things

As I talked about in Buffer Switching Alternatives, mode
is a powerful minibuffer completion engine. Helm and
overlap in purpose and some prefer to use one to the exclu-
sion of the other; most use both but for different purposes:

 is a distraction-free, target-aware search Unlike
Helm, does not use a separate buffer (and window)
to show completion matches. Instead, it completes
in-line in your minibuffer itself. This is preferable, for
things like buffer switching and file finding, as you
roughly know where you’re going and for what you
are looking. That is how I use mode and I think
it’s a great way to start out; for almost everyone out
there, it is certainly a better choice than the default
TAB-based completion mechanism.

The Theory of Movement

However, fails when you’re not entirely sure what
you are looking for; stepping through the matches
in the minibuffer is tedious when all you want is an
overview of everything that matches your query.

Helm is for in-depth searching and completion Helm
will open a transient buffer and window to display
matches and that greatly increases visual clutter and
distraction — that is not in itself bad if you are unsure
what you are looking for. But if you know what you
are doing – for instance you are in buffer foobar.txt
and you want to open widgets.c – is a better
choice as you can seamlessly switch buffers and not
suffer the visual overhead.

Indeed, if you are a touch-typist you will quickly
reach a point where you jump from buffer to buffer
without so much as glancing at the minibuffer because
your primed intuition tells you that if you type C-x b
wc, will flex match to widgets.c.

Helm excels when you don’t know exactly what you’re
looking for or if you require additional, contextual
awareness of similar matches.

I recommend you enable mode for file and directory find-
ing, and buffer switching by adding the following lines to
your init file:

(ido-mode 1)
(setq ido-everywhere t)
(setq ido-enable-flex-matching t)

The Theory of Movement

Now, when you find files or directories (C-x C-f and C-x d)
or switch buffers (with C-x b), you will use ’s far superior
completion mechanism. Of course, you are free to use Helm
as well if you prefer.

I recommend you learn just a couple of ’s extensive key
bindings.

File & Directory Switching

These keys are only available when you run a command that
requires you to pick a file or directory. That includes C-x
C-f and C-x d, respectively, but it also includes things like
file saving with C-x C-s:

Key Binding Purpose

C-s and C-r Move to the next and previous match
TAB Traditional non- TAB-completion
RET Open selected match
C-d Open M-x dired buffer in current

directory
// Go to root directory /
~/ Go to home directory ~
Backspace Delete a character or go up one

directory

Buffer Switching

Buffer switching is usually only encountered when you type
C-x b:

The Theory of Movement

Key Binding Purpose

C-s and C-r Move to the next and previous match
TAB Traditional non- TAB-completion
RET Switch active buffer to selected match

Further reading

I recommend you read my article Introduction to
Ido Mode10 on my website for further, in-depth
information on how to use mode.

Grep: Searching the file system ——————————
Searching files already open in Emacs is useful but more
often than not you want to search files that aren’t open in
Emacs and the command line utility grep is a great way to
do just that.

grep in Microsoft Windows

There is no like-for-like grep program in Win-
dows – and the built-in one findstr, though
powerful, is not supported out of the box
by Emacs – so I recommend you install the
cross-compiled Windows versions of the
Coreutils.11 They work splendidly in Windows
and they give you a reasonable Linux command
line facsimile in Windows.

http://www.masteringemacs.org/article/
introduction-to-ido-mode

http://gnuwin.sourceforge.net/packages/coreutils.htm

http://www.masteringemacs.org/article/introduction-to-ido-mode
http://www.masteringemacs.org/article/introduction-to-ido-mode
http://gnuwin32.sourceforge.net/packages/coreutils.htm

The Theory of Movement

How you interact with grep – or more generally with any ex-
ternal tool – depends on your editor. Many Vim users would
exit Vim or use a tool like tmux or screen and switch to a
terminal and run the command(s) and then return to Vim.
Emacs users prefer tools they can assimilate into Emacs. Us-
ing grep from inside Emacs is a major productivity-booster
as you’ll soon see.

ack and ag

If you prefer ack or ag to grep, then head to the
Emacs package manager where you will find
Emacs-friendly packages for both.

Emacs supports a large array of grep and grep-derivative com-
mands. None are bound to a key by default so you will have
to call the commands directly with M-x and later bind the
ones you use frequently to keys:

Command Purpose

M-x grep Prompts for arguments to pass to grep
M-x grep-find Prompts for arguments to pass to grep

and find
M-x lgrep Prompts for query and glob pattern to

search for with grep
M-x rgrep Prompts for query and glob pattern

then recursively searches with grep
and find

M-x rzgrep Like M-x rgrep but searches
compressed gzip files

The Theory of Movement

The grep commands fall into two categories:

Low-level commands like M-x grep and M-x grep-find.
They supply you with a suggested grep command
string and all you have to do is add the search pattern
and any additional options you require.

I don’t use them frequently. I usually want to search
for a pattern in a group of files and these commands
are too low-level for that. Occasionally, I want to call
grep with specific options and in that case I have no
choice but to use M-x grep or M-x grep-find.

High-level commands like M-x lgrep, M-x rgrep and M-x
rzgrep. They hide the command string completely and
instead ask you for the files you want to search and the
search string you want to match.

Emacs will also cleverly suggest a file type based on
your current buffer’s file type and Emacs will also look
at the current symbol your point is on and ask if you
want to search for that. That is convenient because you
often find yourself on or near an identifier or word you
want to search for and in that case you can just type M-x
rgrep and type RET twice to accept the defaults.

Grep Guesswork

The high-level commands – particularly rgrep – do a lot of
clever behind-the-scenes guesswork when it calls out to find.
First of all, Emacs runs on any number of platforms and it
has to work consistently on all of them. Not all platforms
come with xargs, so Emacs will check for this and use find’s

The Theory of Movement

own -exec switch instead. uoting and escaping characters
in strings vary on platforms and shells — and Emacs needs
to work with all of them.

Windows note

On Windows, there is already a program called
find. To override the default choice in Emacs,
you should add this to your init file, making sure
to change C:\\gnuwin32\\bin\\ to the location of
 find and then restart Emacs:

(setenv "PATH" (concat "C:\\gnuwin32\\bin\\"
path-separator
(getenv "PATH")))

Another arrow in Emacs’s quiver is the ability to automati-
cally pass negative matches to find. For instance, you don’t
want to search source control directories like .git or trash
files that yield false positives.

A lot of people use tools like ack for the ease of which you
can include or exclude file patterns — but Emacs thankfully
automates that tedium.

I encourage you to browse the grep category with Customize
and configure it to your liking:

M-x customize-group RET grep RET

The Theory of Movement

Using the Grep Interface

Like I mentioned in M-x occur, you can re-use the jump com-
mands:

The Theory of Movement

Key Binding Purpose

M-g M-n Jump to next match
M-g M-p Jump to previous match

As before, they are global and work across buffer boundaries.
They are worth knowing as you can quickly and easily jump
between matches in a *grep* buffer. Emacs will open the files
and jump to the right line if they are not already open (and if
they are, Emacs will simply switch to the already-open file.)

Grepping in Emacs

Like everything in Emacs, it comes down to
modes and the major mode for grep is named –
you guessed it – grep-mode. What Emacs actually
does boils down to is piping the output from
grep to a buffer named *grep* followed by a call
to grep-mode. When activated, grep-mode will
highlight the matches and hyperlink them to
the line number and filename so you can jump
around.
If you look closely, the output in a *grep* buffer
looks identical to that of grep itself! You can test
this by opening a blank buffer (C-x b and then
pick a name not in use) and enter something like
this:

my_file.txt:10:This does not exist!

and then type M-x grep-mode and watch as Emacs
will highlight the match as though it were real

The Theory of Movement

output from grep. This is a common pattern
in Emacs: re-using the raw output from a
command is a low-tech but effective approach.

Other Movement Commands
These movement commands are of limited use day-to-day
for most Emacs users. They are useful to know about and
one or two of them worth incorporating into your work-
flow once you are comfortable using all the other commands
in this chapter.

Key Binding Purpose

M-r Re-positions the point to the top left,
middle left, or bottom left

C-l Re-centers the point to the middle, top, or
bottom in the buffer

C-M-l Re-positions the comment or definition
so it is in view in the buffer

C-x C-n Sets the goal column, the horizontal
position for the point

Cu C-x C-n Resets the goal column, the horizontal
position for the point

M-g M-g Go to line
M-g TAB Go to column
M-g c Go to character position

M-r and C-l are functionally similar. M-r will first move your
point to the beginning of the line and then alternate between
the top, the middle and the bottom of the buffer. All it does

The Theory of Movement

is toggle between those three locations. C-l is similar only it
will scroll your window so the line point is on is re-centered as
the top, middle, or bottom. C-M-l is similar only it will in-
telligently try and re-position the window so the definition
or comment point is visible in the buffer. In other words, it
will try and scroll things into view.

I use C-l all the time. I use it to recenter the line I’m on so I
can see more of the buffer above or below the line I am on.
I encourage you to try out M-r and C-l.

The goal column command C-x C-n is of limited interest to
most people. When you move up or down a line, Emacs will
try to maintain your horizontal position as you move from
one line to the next. If you have a goal column set, Emacs
will not do that and instead make your point’s horizontal po-
sition match the goal column. So if you set the goal column
to , C-1 C-0 C-x C-n, Emacs will try (if the line is long
enough!) to ensure your point is always placed at the tenth
character. To disable goal column, type C-u C-x C-n.

Jumping to a line is frequent enough but because of things
like Emacs’s interactive compilation mode and built-in
support for things like grep, you don’t have to jump to
explicit lines as often as you’d have to if you used a simpler
editor. The command, bound to M-g M-g, works exactly as
you would expect: it asks you for a line to which to jump.
You can also give it a prefix argument, for instance M-5 M-5
M-g M-g, to jump to the th line — and make sure you use
the M- digit argument to maintain your tempo.

The command M-g TAB does the same only it jumps to a partic-
ular column position instead. M-g c jumps to the absolute po-
sition in the buffer starting from the beginning of the buffer.

The Theory of Movement

If you want to jump to the nd character in a buffer, you’d
type M-g c or M-4 M-2 M-g c.

Conclusion
As the previous sub-chapters have shown, there are a multi-
tude of ways you can move around in Emacs. Emacs is often
lambasted for being an operating system but a terrible text
editor, but that could not be farther from the truth; Emacs
is a highly sophisticated text editor and it easily rivals Vim
in capability — even if the two editors are functionally dif-
ferent in their approach. Emacs’s modifier keys are a form
of transient modality. Emacs is distinctly modal as your com-
mands change with the modifier keys and remain so until
you release the modifier keys. The one thing that will make
the biggest difference is remapping Caps Lock to Control:
I could not live without this, even outside of Emacs. The
control keys are awkwardly placed if you’re a touch typist.

There is also a lot of symmetry to Emacs’s commands, par-
ticularly the elemental movement commands. Not all key
bindings make sense and there are silly oversights like not
binding M-x imenu to a key.

If you are new to Emacs, I suggest you keep using the arrow
keys. You can adopt Emacs’s movement commands one key
at a time. Eventually, you will slowly adopt certain Emacs-
isms and you’ll soon realize that moving your right hand off
the home row to use the arrow keys is slowing you down.

My next suggestion is to experiment. Keep referring back
to the book until it’s muscle memory; keep experimenting

The Theory of Movement

with different combinations and train your brain to recog-
nize patterns. It’s all about muscle memory and pattern
matching — knowing that if you do this command, you’ll
get that outcome. Nobody mastered Emacs overnight and
Emacs mastery is a red herring anyway; it means a hundred
things to a hundred people.

Over the course of the chapter, I showed you how to look
things up using Emacs’s internal documentation – particu-
larly apropos, C-h and the describe system – and that more than
anything will help you “master” Emacs. Forgetting the
name of a command or the key it is bound to is immaterial
if you know how to look up the answer in Emacs.

My final advice is about experimentation. Every time you
do something that you think you can do in a smarter or more
efficient way — have another read through the book or
search the Internet for advice. Most of my own techniques
and workflow grew organically as I realized that particular
problems I kept facing had solutions other than the naive,
manual way.

Chapter

The Theory of Editing

“An infinite number of monkeys typing into
Emacs would never make a good program.”

– Linus Torvalds, Linux Kernel Coding Style Docu-
mentation

Editing in Emacs is perhaps even easier than learning how
to move around effectively in Emacs. Most day-to-day edit-
ing is writing or deleting text punctuated by specialist com-
mands. Nevertheless, in Emacs, even mundane things like
deleting text or using the kill ring (the clipboard) are highly
optimized.

I think it’s more important that you master movement
first as that means you learn how to switch buffers and use
Emacs’s windowing system effectively. That is why I have
not talked about editing text at all, until now, two thirds of
the way through the book. Once you’re comfortable open-
ing and saving files and getting around in Emacs without

The Theory of Editing

losing track of what you were doing — then you’re ready
to tackle more advanced editing concepts.

If you are reading this chapter and are still using the naviga-
tion keys – the arrow keys, page up and down, and so on –
then that is fine too. You will find the experience a bit dis-
jointed as a lot of what makes Emacs’s movement keys so ef-
fective is the near-harmonious relationship they have with
their text-editing counterparts.

This chapter will cover how to edit text; that includes tradi-
tional staples like search and replace; how to use the kill ring,
or clipboard; how to use text macros; and how to use text
transformation tools.

Killing and Yanking Text
Where other text editors merely cut text, in Emacs you kill it.
The terminology, as I talked about in Killing, Yanking and
CUA, is bizarre and predates most graphical user interfaces
entirely.

Discovering the Kill Commands

Use Emacs’s apropos functionality to find addi-
tional kill commands not listed here.

Emacs’s kill commands use the same syntactic unit concept as
the movement commands do. Some of them also share mod-
ifier symmetry, making it easy to switch between kill com-
mands.

The Theory of Editing

Key Binding Purpose

C-d Delete character
<backspace> Delete previous character
M-d, C-<backspace> Kill word
C-k Kill rest of line
M-k Kill sentence
C-M-k Kill s-expression
C-S-<backspace> Kill current line

The ones that stand out in the table above are C-d, which
deletes the next character; and <backspace>, which does the
same but backwards. All other commands kill and don’t delete.
The distinction is important: deleted text is not retained in
your kill ring whereas killed text is.

Digit Arguments and Negative Arguments Like the
movement commands, you can use the digit ar-
guments to kill more than one unit at a time. To
maintain your tempo, ensure you use the same digit
modifier as the modifier of the kill command you
want to call. If you want to kill s-expressions with
C-M-k, type C-M-3 C-M-k.
The negative argument reverses direction, just like the
movement commands. Make no mistake: that is more
useful than it seems. I frequently finish writing some-
thing only to realize I want to move it elsewhere or,
perhaps, delete it entirely.
Consider this example:

s = make_upper_case("hello, world!"█)

The Theory of Editing

After C-M-- C-M-k:

s = make_upper_case(█)

The kill commands are useful, but there are generalist,
clipboard-equivalent commands in Emacs too:

Key Binding Kill Ring Purpose Clipboard

C-w Kill active region cut
M-w Copy to kill ring copy
C-M-w Append kill
C-y Yank last kill paste
M-y Cycle through kill ring,

replacing yanked text

Killing versus Deleting

This one crucial difference between killing and deleting trips
up a lot of new Emacs users. In most editors, there is a clear
delineation between clipboard commands – that act solely
and exclusively on the selected text – and commands that
delete text. In Emacs, all commands will, with few excep-
tions like the two I mentioned above, kill text straight to
your kill ring. If you are new to Emacs, it will confuse you
and maybe even infuriate you. No other editor fiddles with
your clipboard content unless you explicitly tell it to — but
Emacs does, and it’s a great feature once you get used to it.

Emacs’s kill commands are best summarized with five simple
rules:

The Theory of Editing

Consecutive kills append to the kill ring. All kill com-
mands append to the kill ring – that is to say they
append to the text in the kill ring – if, and only if,
the last command was also a kill command. If you
break the cycle, by moving or writing or running a
command, the next kill command will create a new
entry in the kill ring.

For instance, if you type M-d M-d M-d – killing three
words in a row – your kill ring will hold the three
words you killed when you next yank the text. If you
type M-d M-d M-d, then move to the next line with C-n
and kill another three words. Your last three words are
what you yank from the kill ring, not all six! The move-
ment command broke the cycle.

As I mentioned earlier, this is often confusing to begin-
ners but it’s a smart way of working as you don’t have
to select text first.

The kill ring can hold many items and like the undo ring
you cannot lose information in the kill ring; if you kill
something and then later on replace your first kill en-
try with another kill, you have not lost your first kill.
It’s easily recoverable and in fact the kill ring is often
used as a temporary and secondary “store” of snippets
if you are rewriting text.

The kill ring is global and between all the buffers in Emacs.
You can view the kill ring – though legible it’s meant
to be machine-readable – by running C-h v kill-ring.

Killing is also deleting when you don’t care about the
killed text. The kill ring is as much a dumping ground

The Theory of Editing

for unwanted text as it is a clipboard for useful text.
There are few outright commands that delete text
– Emacs will rarely put you in a position where
accidental data loss is likely – so that’s why all bounds
commands send text to the kill ring instead. But that’s
fine too: the kill ring is finite but larger than you
would ever likely care about. A near-infinite kill ring
that won’t forget your past kills is a powerful feature
if you choose to take advantage of it.

Forget the idea that your kill ring is precious — it’s
not.

Marking is unnecessary for most operations that involve
syntactic units. It’s far quicker to tap M-d three times
in a row to kill three words to the kill ring than mark
them with M-@ first and then kill with C-w.

There are two exceptions:

• If you want to copy (M-w) the region, it’s quicker
to mark first and then copy.

• If you want to kill or copy odd-shaped regions
that don’t conform to multiples of syntactic
units.

Kill appending is a versatile and unique feature in Emacs. I
often find myself re-factoring code or text and the ability to
kill text with the intent on moving it somewhere else – and
maybe rewriting or massaging some existing code or text
first – before yanking (with C-y) the text back.

Appending to the kill ring

The Theory of Editing

Occasionally, you want to append a new kill to
the existing one in the kill ring. This often hap-
pens if you want to kill different parts of a buffer
that are not one, contiguous region or series of
kill commands. To do this, first type C-M-w and
Emacs will tell you in the echo area that if the
next command is a kill command, it will append
to the kill ring.

Think back to how often you have found yourself wanting
to “collect” parts of text as you are re-factoring a function;
perhaps you want to collate several comments into one big
group. The kill ring lets you do that.

Killing Lines

If you want to kill the whole line, you should use
C-S-<backspace> — but that command won’t work in a
terminal as it is not possible owing to technical limitations
of the terminal emulator.

The other approach, and one favored by me, is to modify
the behavior of C-w – the command that kills the active re-
gion – so it kills the current line the point is on if there
are no active regions. I recommend you install the package
whole-line-or-region:

M-x package-install RET whole-line-or-region RET

Similarly, there is C-k, M-x kill-line, a command that kills
from point to the end of the line. The behavior is different from

The Theory of Editing

what most expect: C-k will not kill the newline character at
the end of the line; it is advantageous to keep this behavior
as the newline character is rarely desired when you want to
kill to the end of the line. Often C-k is, like the other syn-
tactic unit commands, used when you want to restructure
or rewrite text. If the point is at the end of the line, the new-
line symbol is killed — so tapping C-k twice will kill the text
and the newline.

If you prefer, you can force C-k to kill the newline also:

M-x customize-option RET kill-whole-line RET

Yanking Text

In Emacs, you yank from the kill ring if you want to paste.
It’s fine to refer to it as paste in daily conversation but you
should probably learn the real Emacs terminology to make
it easier to find things in Emacs itself.

The two yank commands you want to know about are:

Key Binding Purpose Clipboard

C-y Yank last kill paste
M-y Cycle through kill ring,

replacing yanked text

Yanking works as you would expect: it inserts the current
entry in the kill ring to the point in your active buffer. Re-
peat calls to yank will insert the same text.

As I mentioned before, the kill ring is a ring, like the undo

The Theory of Editing

ring, and it remembers former kills so you can cycle through
them.

Cycling through the kill ring is easy:

. Press C-y where you want the yanked text to appear.
. Without executing another command – this includes

moving around and editing text – type M-y to step back
through Emacs’s kill ring.

Transposing Text
Transposing text is the act of swapping two syntactic units
of text with one another. At first glance you may think they
are of limited utility; but actually they are useful, and if
you spend the effort and master them, you will not regret
it. When you edit text, you often mistakenly swap words
(in prose) or, for instance, arguments to a function (in code).
Dedicated commands that swap things around are therefore
very useful.

When you transpose text, you do so using syntactic units in
much the same way you move or kill text:

Key Binding Purpose

C-t Transpose characters
M-t Transpose words
C-M-t Transpose s-expressions
C-x C-t Transpose lines
M-x transpose-paragraphs Transpose paragraphs
M-x transpose-sentences Transpose sentences

The Theory of Editing

When you call a transpose command, Emacs will first look
at where the point is and, depending on the exact transpose
command you issued, swap two syntactic units surrounding
the point.

How Emacs defines a syntactic unit in this case is a bit compli-
cated as your major mode determines what a syntactic unit
is.

Negative arguments also work; so do digit arguments, but
not the way you would expect. When you give a digit argu-
ment to a transpose command it will get the Nth unit ahead
of the point (unless you also give it a negative argument, in
that case it is the other way around) and swap that unit with
the one immediately before the point. That is rarely useful.

C-t: Transpose Characters

Transposing a character takes the character to the left and
right of the point and swaps them:

A█BC

After C-t:

BA█C

Note that the point moved forward one character so you can
repeat calls to C-t to “pull” the character to the right:

BCA█

The Theory of Editing

One important exception to this rule is when you are at the
end of a line. C-t will swap the two characters to the left of the
point:

BCA█

After C-t:

BAC█

This asymmetry is a surprisingly useful way of fixing typos
as they occur. Fixing mistyped characters with C-t is a useful
time saver as it saves you the effort of deleting both charac-
ters and retyping them.

M-t: Transpose Words

Transposing two words with M-t works as you would expect
when the words are plain text, like this:

Hello █World

After M-t:

World Hello█

Like transposing a character with C-t. the point moves for-
ward as though you had typed M-f (M-x forward-word) and
that means you can “pull” a word to the right.

The Theory of Editing

Where M-t really shines is when you use it with source code.
In What Constitutes a Word? the M-f and M-bmovement com-
mands ignore symbols in the direction you are moving in
and M-t behaves the same way.

Consider this example Python code where we have a dictio-
nary (a key-value hash map):

names = {
'Jerry':█ 'Seinfeld',
'Cosmo': 'Kramer',

}

With the point between the key and value, a call to M-t is
pure magic:

names = {
'Seinfeld': 'Jerry',
'Cosmo': 'Kramer',

}

As you can see, the key and value swapped places but the
symbols remained in place. Repeat it again and Emacs will
continue and swap Jerry with Cosmo; repeat it once more and
you swap Jerry and Kramer.

How Transposing Actually Works

The M-t command is intrinsically linked to
the M-x forward-word (M-f) command. Greatly
simplified, Emacs will call M-f two times: once

The Theory of Editing

with a negative argument, to get the left-side
word to transpose; and once again without a
negative argument, to get the right-side word
to transpose. The reality is a little more compli-
cated but not by much. It’s also an easy theory
to test: call M-- M-f and M-f from your original
position – making sure to move the point back
to the original position between the calls – and
you will find the left and right edge of the words
M-t will transpose.

If Emacs’s word movement behavior made no sense before, I
hope it makes a bit more sense now. It’s not to everyone’s lik-
ing but it is consistent across movement, kill and transpose.

It also works on prose:

Hello,█ World!

After M-t:

World, Hello█!

C-M-t: Transpose S-expressions

You can transpose s-expressions – balanced expressions
– with C-M-t and, like word transposition with M-t, the
mechanics are identical; the same forward & backward
principles apply when the transposition function finds the
left and right edges.

Consider the following piece of code:

The Theory of Editing

(/ (+ 2 n)█ (* 4 n))

Calling C-M-t on it will swap the two forms’ positions:

(/ (* 4 n) (+ 2 n)█)

Like M-t from before, the concept is identical but the applica-
tion differs. But C-M-t, much like M-x forward-sexp (C-M-f), as-
sumes the role of M-x transpose-word if there are no balanced
expressions:

Hello,█ World!

And after C-M-t it becomes:

World, Hello█!

But consider what happens if we mix a balanced expression
with a word:

Hello,█ (insert name here)!

After C-M-t:

(insert name here), Hello█!

So, C-M-t still works as you would expect. The usefulness is
apparent in code as well:

The Theory of Editing

ages = {
'Seinfeld':█ 34,

}

As you would expect, Emacs transposes things correctly:

ages = {
34: 'Seinfeld'█,

}

The behavior is different compared with M-t. Consider the
same scenario as before but with M-t:

ages = {
'34': Seinfeld█,

}

The result is different indeed. Instead of transposing the en-
tire balanced expression we swapped the words instead but
left the symbols behind.

Other Transpose Commands

You can also transpose other syntactic units – lines, para-
graphs and sentences – and aside from transposing lines the
rest are harder, I think, to justify learning right away. The
paragraph and sentence commands are unbound, making
them harder to use — the only way to use them is to invoke
them through M-x.

The Theory of Editing

Transposing lines with C-x C-t is useful however. I use it fre-
quently to re-order newline-based lists and it’s also useful for
swapping around variable assignments; changing the order
functions are called, and so on.

Filling and Commenting

Filling

If you write a lot of text, you occasionally have to manually
break paragraphs so the lines won’t exceed a certain length.
You can use Emacs’s fill functionality to do this for you, ei-
ther manually or automatically as you write. The fill com-
mand is useful for more than just text. For instance, you can
fill comments or doc strings too so they fit in under char-
acters.

Key Binding Purpose

M-q Refills the paragraph
point is in

C-x f Sets the fill column width
C-x . Sets the fill prefix
M-x auto-fill-mode Toggles auto-filling

I use paragraph filling, using M-q, often as I write comments
in code and it is common for major modes to set a fill width
(C-x f) with the best practices used for that programming
language or file type.

Consider this quote by Sherlock Holmes in A Scandal in Bo-
hemia that overruns the page:

The Theory of Editing

'It is an old maxim of mine that when you have excluded the[…]

After placing the point in the paragraph and typing M-q:

'It is an old maxim of mine that when you
have excluded the impossible, whatever
remains, however improbable, must be the
truth.'

If you type M-q with the prefix C-u, Emacs will attempt to
justify the text also:

'It is an old maxim of mine that when you
have excluded the impossible, whatever
remains, however improbable, must be the
truth.'

Typing C-x f will prompt you for a fill width. As an example,
for the quotes above I put the point on the column I wanted
the paragraph broken and pressed C-x f — approximately
 characters. The fill width is the number of characters per
line, but Emacs will not hyphenate words, so don’t make the
fill width too small or it won’t fill properly.

The fill prefix is an interesting feature. When you type C-x .,
Emacs will take every character on the current line up to point
and make it the fill prefix. A fill prefix is, as the name implies,
inserted before the lines when you fill a paragraph with M-q.

To remove the fill prefix, place your point on an empty line
and type C-x ..

The Theory of Editing

You can tell Emacs to automatically fill text as you write by
enabling M-x auto-fill-mode. I wouldn’t use it in program-
ming modes (it doesn’t work well) and limit its use to text
modes.

Commenting

“If it was hard to write, it should be hard to understand.” If
you don’t agree with this controversial (yet remarkably com-
mon) trope about code commenting, you can use Emacs’s
comment commands to automate the tedium of comment-
ing and uncommenting.

Key Binding Purpose

M-; Comment or uncomment 1

C-x C-; Comment or uncomment line
M-x comment-box Comments the region but as a box
M-j, C-M-j Inserts new line and continues

with comment on a new line

The two you are most likely to use for in situ commenting are
M-; and C-x C-;. If you type M-;, Emacs will insert a comment
at the end of the line the point is on, and if you’re on an
empty line, Emacs will indent the comment according to
the major mode’s indentation rules.

M-;, given a region, will toggle between commenting and
uncommenting it. The command, C-x C-;, is new in Emacs

 stands for Do What I Mean — another way of saying Emacs
will try to guess what you want to do.

The Theory of Editing

. and toggles comments on the whole line the point is on.
C-x C-; also works with a negative and digit argument.

Typing M-j or C-M-j with your point in a comment makes
Emacs break the line and insert a new comment. In that sense,
it is identical to fill prefix. This command is particularly use-
ful if you write a lot of doc strings as Emacs is generally
smart enough to recognize comment prefixes that some doc
string formats require.

It bears mentioning that the Emacs fill commands I talked
about earlier understand and respect comment syntax so feel
free to use M-q in a comment.

If you are using the comment commands in a major mode
that does not have the requisite comment variables set up (see
table below), Emacs will ask you for a comment character to
use when you first run the command.

Variable Name Purpose

comment-style Style of comment to use
comment-styles Association list of available

comment styles
comment-start Character(s) to mark start

of comment
comment-end Character(s) to mark end of

comment
comment-padding Padding used (usually a space)

between comment character(s)
and the text

All the variables above are customizable with M-x

The Theory of Editing

customize-option. It is unlikely that you will ever have
to change comment-start or comment-end as they are almost
always set by the major mode authors. comment-style is
useful if your team – or personal preference – dictates one
comment style over another. To see a list of comment styles
available, you must interrogate the variable comment-styles
by reading its description in Customize or by using M-x
describe-variable (also bound to C-h v).

Search and Replace
When you search for text, you can do so either with regu-
lar expressions (see the next section Regular Expressions) or
without. Replacing text in Emacs is no different, but with
the added benefit of letting you leverage the power of elisp
in the replace portion of search and replace.

In that sense, Emacs is different from other editors: you can
use elisp and regexp capturing groups together — powerful,
if you know elisp. Emacs’s regular expression implementa-
tion is also different from ,2 as I will explain later. It
follows the standard for regular expressions with many
additions (and quite a few omissions) to make it suitable for
both package developers and Emacs users.

Emacs’s search and replace commands are:

Key Binding Purpose

C-M-% uery regexp search and replace

 stands for Perl-Compatible Regular Expressions — a style of
regexp invented by the Perl programming language.

The Theory of Editing

Key Binding Purpose

M-% uery search and replace
M-x replace-string Search and replace
M-x replace-regexp Regexp search and replace

You can also access Emacs’s search and replace from inside
Isearch:

Isearch Key Binding Purpose

C-M-% uery regexp search and replace
M-% uery search and replace

The query commands are interactive and will prompt you
for instruction at every match. Like Isearch, the interface
is rather spartan but utilitarian. It is also divided into two
parts: the prompts for search and replace, which work the
same way other prompts do and the interactive part where
you select each match.

When presented with a match, you can choose one of the
following options:

uery Key Binding Purpose

SPC, y Replaces one match, then continues
. Replaces one match, then exits
RET, q Exits without replacing match
! Replaces all matches in buffer
ˆ Moves point back to previous match

The Theory of Editing

Case Folding

In Isearch: Incremental Search, I talked about case folding, a
clever feature in Emacs that intelligently matches string case
insensitively unless you search for a mixed case or uppercase
string, at which point it activates case-sensitive search. It’s a
great feature, and Emacs’s replace mechanism also uses it.

Consider a buffer with the following pseudo-code:

HELLO_WORLD = "Hello, World!"

function hello() {
print(HELLO_WORLD)

}

If we do a query replace with C-M-% for hello -> goodbye, the
result of the buffer above is:

GOODBYE_WORLD = "Goodbye, World!"

function goodbye() {
print(GOODBYE_WORLD)

}

As you can see, Emacs preserved the case of each replacement
match because we searched for hello and not Hello or HELLO.
If you searched for Hello or HELLO, Emacs would only replace
those literal matches because they contain uppercase charac-
ters.

The Theory of Editing

Regular Expressions

Earlier, I alluded to the differences between and Emacs.
The long and the short of it is: Emacs’s regexp engine
is nowhere near as user-friendly as it could be. It’s old,
weathered and too entrenched – and heavily modified to
suit Emacs’s peculiar needs – to be easily replaced. For
instance, in -style engines the characters (and) are
meta-characters, meaning the engine will not treat them as
literal characters but as a capturing group. In Emacs, it is
the other way around. They are literal characters until you
escape them with a backslash (\) at which point they assume
the role as meta-characters.

In practical terms, that causes confusion in regexp building
for people unaccustomed to Emacs’s quirky regexp engine.
It’s even worse if you write elisp as you have to escape the
escape character as Emacs’s C-style string reader would oth-
erwise trigger on backslashes.

I will not cover regular expressions in great detail since
that is a whole book onto itself. Instead, I will tell you how
Emacs’s regexp engine differs from modern ones.

Backslashed Constructs

The following constructs require backslashes or Emacs will
treat them like literal characters:

Constructs Description

\| Alternative
\(, \) Capturing group
\{, \} Repetition

The Theory of Editing

Missing Features

Emacs does not support any kind of negative or positive look-
ahead or look-behind except specific, hard coded constructs.
More obscure regexp features like branch reset groups and
so forth are also missing. For most text editing, this is usually
not a huge problem.

One annoyance is the missing shorthand, \d, for the digit
class. You must use [0-9] in lieu of \d or the explicit class
[:digit:].

Emacs-only features

One area where Emacs’s regexp engine does shine is its sup-
port for match constructs and Unicode support:

Constructs Description

\<, \> Matches beginning and end of word
_<, _> Matches beginning and end of symbol
\scode Matches any character whose syntax

table code is code
\Scode Matches any character whose syntax

table code is not code

Matching symbols and words with \<, \> and _<, _> is espe-
cially useful in programming for ad hoc re-factoring. The
definition of a word and symbol is again down to Emacs’s
syntax table and thus major mode-dependant.

Both \s and \S are very useful as you can match characters
against a specific syntax class. The naming of each class is

The Theory of Editing

really just a guideline as there is nothing stopping you from
declaring that the number 9 belongs in the whitespace class if
you are a major mode author.

Here is an abridged list of interesting syntax classes:

Whitespace characters (-) Includes, as you would expect,
your humble space but also newlines and usually
Unicode-equivalents like non-breaking space.

Word constituents (w) This is typically all lower- and
upper-case characters, digits, and equivalent Unicode
characters from non-Latin character sets.

Symbol constituents (_) Includes all word constituents
and additional symbols, like ! or _, used most often
in programming languages. This class more than any
other is likely to change depending on your major
mode.

Punctuation characters (.) Includes the usual characters
like . and ;. Text modes and programming modes are
likely to differ greatly.

Open/close parenthesis ((and)) Any set of characters
that form a grouped pair. Most text and programming
modes include (), [] and {}.

String characters (") Includes any symbols that mark a con-
tiguous block as a string. Double and single quotes, '
and ", are usually among them. Unicode characters
such as left and right versions, guillemots and so on
may also exist in this class.

The Theory of Editing

Open/close comment characters (< and >) Any character,
or pair of characters, that define the boundary of a
comment. Some languages only support line-level
comments, in which case only < is used.

For instance, to match all whitespace characters you should
search for \s-. If you want to match all string quote char-
acters – for example in Python where you can have both
'strings' and "strings" – use \s" to match all quote symbols.
That makes it possible to transform (or merely find, as these
commands also work in regexp Isearch or Occur) text bol-
stered by Emacs’s understanding of the syntax of your major
mode.

Determining a character’s syntax class

Emacs’s Unicode support is fantastic and as part
of its extensive Unicode support you have the
option of inspecting any character of your lik-
ing using C-u M-x what-cursor-position. To use
it, place your point on a character you want to
inspect and either run the command or type C-u
C-x =. You will see an array of information in-
cluding syntax class, font lock, Unicode name
and much more.

There are several types of capturing groups available in
Emacs:

Constructs Description

\1 to \9 Inserts text from group \N

The Theory of Editing

Constructs Description

\#1 to \#9 Inserts text from group \N but
cast as an integer
(This is only useful in lisp forms)

\? Prompts for text input from user
\# Inserts a number incremented from
\& Inserts whole match string

The \#N capturing groups are of little use outside of an elisp
form. But \? is useful as it lets you replace matches with
strings that you enter manually. The \# group inserts a num-
ber starting from that increments by after every match.
Finally, \& simply inserts the entire match string.

Invoking Elisp

You can call out to elisp functions from within the replace
portion of the search and replace interface. Whether you
find it useful depends entirely on how well you know elisp
(or how willing you are to experiment) and how often you
find yourself doing complex search and replace.

To call an elisp form, you use this format:

\,(form ...)

Where form is the name of a function you want to call.

There are some rules you must follow if you want to call out
to elisp:

The Theory of Editing

Capturing groups are string types by default; passing a
string to an elisp function that expects another type,
like an integer, will result in an error.

You don’t need capturing groups if your function does
not require them. It is perfectly possible to replace a
match with the sole output from a function.

You can only call one form so if you want to call more
than one, you must wrap it in something like progn or
prog1 or use functions such as concat to concatenate
the results from multiple functions into one.

Do not quote the capturing groups as they are passed as
literal strings (if you use \N) or numbers (if you use \#N)
to Emacs’s interpreter.

Here are a few example replacement strings you can try out:

Replace String Description

\,(upcase \N) Uppercases capturing group \N
\,(format "%.2f" \#N) Casts \#N to a number and

formats it as a decimal with two
decimal points

Although it’s a powerful feature, it is situational. Most of
Emacs’s internal functions – just about anything that does
something interesting – operate on buffers and not strings as I
mentioned in The Buffer. That greatly lowers the usefulness
of this feature as you not only have to find a function that
does what you want, but you have to find one that works on

The Theory of Editing

strings.

When I have needed this feature, I have inevitably resorted
to writing my own specialized functions that transform the
text the way I want. But that assumes a certain level of flu-
ency in elisp. My advice would be to use Emacs’s keyboard
macros – a topic I will cover shortly – as they are far more
suited for complex editing tasks.

Changing Case
Case changing – capitalizing text or turning it into lower or
uppercase – is a common occurrence in both code and text.

There are two groups of commands that alter the casing: re-
gion commands and word commands.

Region Commands Description

C-x C-u Uppercases the region
C-x C-l Lowercases the region
M-x upcase-initials-region Capitalizes the region

There is not much to say about the first two. When your
region is active, you can uppercase or lowercase the region.
Capitalizing the region actually means capitalizing every word
in the region — not just the first word in a sentence, line or
paragraph.

The case commands that act on words are far more interest-
ing:

The Theory of Editing

Key Binding Description

M-c Capitalizes the next word
M-u Uppercases the next word
M-l Lowercases the next word

First of all, they are mnemonic and bound to what you could
call prime key real estate (easy to reach and type keys.)

They work exactly the same way other word commands in
Emacs work, and they respect the same syntax table rules as
the forward-word, mark-word, kill-word, and transpose-words
commands do.

Both digit arguments and negative arguments work as you
would expect. Like the other word-based commands, I rec-
ommend you commit these to memory. Forget memoriz-
ing the region commands. Unless you do a lot of region-
based casing, you are far more likely to change case word-
by-word.

Maintaining your tempo when you use them is important as
you will typically use them as you write. M-- M-u will upper-
case the last word you wrote, for instance, and M-b M-- M-u
will move back one word and uppercase the word before
that. And of course you should not release meta between
keystrokes. So, with your thumb on the left meta key, your
other fingers are free to type b - u.

Consider this sentence. I want to insert a full stop and capi-
talize the next word:

█Hey how are you?

The Theory of Editing

After typing M-f to move forward a word; . to insert a full
stop, and M-c to capitalize the next word:

Hey. How█ are you?

Likewise, here I finished typing an identifier — but it should
be uppercase because it points to a string constant:

print(greeting_string)█

In most major modes, _ is either punctuation or a symbol,
so it breaks the word; ergo, it would take two presses to
go backward with M-b to put the point at the beginning of
greeting_string. A simpler way instead of calling M-u twice
(to uppercase it) is to use the digit and negative arguments
M-- M-2 M-u:

print(GREETING_STRING)█

With a bit of practice, you will be able to do it so quickly,
and intuitively, that it will take less than a second or two to
do. The other benefit is that it does not move your point;
you are free to continue writing. It may not seem like much
time saved but these things add up.

The case commands also work with non-Latin characters
since Emacs maps most Unicode characters to their correct
Unicode categories. In practical terms, that means Emacs
knows when it encounters a lowercase or uppercase charac-
ter:

The Theory of Editing

Greek: αβψδεφγ -> ΑΒΨΔΕΦΓ
Danish: abcdæøå -> ABCDÆØÅ

Unicode categories

Try M-x describe-categories to see a full list of all
Unicode categories.

Learn these commands and learn how to use them with a
negative argument also. It’s a common typo to mess up
word casing as you’re writing text or code; deleting
the word and starting over or manually fixing your
mistake is time-consuming.

Counting Things
There’s no need to call out to wc when you want to count
things as Emacs is perfectly capable of doing that too.

Command Description

M-x count-lines-region Counts number of lines in
the region

M-x count-matches Counts number of patterns
that match in a region

M-x count-words Counts words, lines and chars
in the buffer

M-x count-words-region, M-= Counts words, lines and chars
in the region

Although there is more than one way of counting things, the

The Theory of Editing

two worth memorizing are:

M-x count-words as it, unlike its unfortunate name implies,
also counts lines and characters. You may occasionally
want to count things in a region, in which case you can
use M-=.

M-x count-matches is also useful as it counts matches against
a regexp pattern you specify.

Text Manipulation
Text manipulation is one aspect Emacs is especially good at,
and it has a variety of tools to help you. Massaging text files
for further processing or extracting pertinent information
from log files are both common things to do in Emacs. Al-
though Emacs will never fully replace dedicated tools like
awk and sed or languages like Python, it is a fine choice for
small and medium-sized tasks.

Editable Occur

I introduced M-x occur in Occur: Print lines matching an
expression as a way of collating all lines that match a certain
pattern. One feature in occur mode that I did not talk about
is the ability to edit the matches and, after you finish, commit
the changes to their original lines.
To do this, you must first enter the editable occur mode by
typing e. You can then commit the changes you make by
typing C-c C-c. The possibilities are limitless. The feature is
especially great for keyboard macros and search & replace.

The Theory of Editing

Deleting Duplicates

You can delete duplicate lines in Emacs and the best thing
about it is, unlike the command line utility uniq, the lines
don’t have to be adjacent for Emacs to detect duplicates. That
means you can delete duplicates without sorting the text.

Universal Argument Description

Without Deletes first duplicate line
C-u Deletes last duplicate line
C-u C-u Deletes only adjacent duplicates
C-u C-u C-u Does not delete adjacent blank

lines

By default, M-x delete-duplicate-lines deletes the first dupli-
cate line it encounters, starting from the top. With a single
universal argument, it starts from the bottom and therefore
deletes the last.

Flushing and Keeping Lines

Sometimes you want to filter lines in a region by a pattern;
whether that is to flush lines that match a pattern, or keep the
ones that do.

Both commands act on the active region so it is common –
if you want to do this on a whole buffer – to call C-x h to
select the entire buffer first.

Command Description

M-x flush-lines Flushes (deletes) all lines in a region

The Theory of Editing

Command Description

that match a pattern
M-x keep-lines Keeps all lines in a region that

match a pattern and removes all
non-matches

Both commands accept a regexp pattern, and any match ei-
ther flushes or keeps the line it is on — and not the pattern
itself (for that, use search & replace.)

I use the commands frequently when I process text. Keeping
lines that match a pattern is useful for large log files when
you want to, say, only show GET requests from a web server.

Joining and Splitting Lines

Unlike the kill commands that act on lines (C-M-<backspace>
and C-k), these commands won’t alter your kill ring. They
are also more specialized, as they insert or remove lines with-
out moving your point.

Key Binding Description

C-o Inserts a blank line after point
C-x C-o Deletes all blank lines after point
C-M-o Splits a line after point, keeping

the indentation
M-ˆ Joins the line the point is on with

the one above

C-o is useful when you want to insert a newline immediately

The Theory of Editing

after point. Unlike RET, your point will not follow onto the
next line. It will remain in its original position; sometimes
useful in text when you want to split a paragraph into two
and not move the point with RET.

Deleting blank lines is a common action. C-x C-o does just
that, but it obeys three rules:

Ignores your current line It will not remove the line the
point is on, even if it is empty. That means if you call
the command on a block of empty lines, it will always
leave exactly one empty line.
Remember this rule as it’s a great way to keep a con-
sistent number of spacing between, say, paragraphs in
text or class and function definitions in code.

Works ahead of the point So, when you call it on a non-
empty line, it will remove blank lines ahead of the point.
Unlike the previous rule, C-x C-o removes all blank
lines.

Lines with only whitespace and tabs are also removed
This is useful in languages where you often leave tabs
or whitespace characters alone on empty lines.

C-M-o is a niche command that you won’t use day-to-day. Un-
like C-o that inserts a newline after the point (called opening a
line), C-M-o does the same but it maintains the column offset
for the text.

Consider the difference between C-o and C-M-o:

All the world's a stage, █and all the …

The Theory of Editing

After C-o:

All the world's a stage, █
and all the …

Now consider the original example, but using C-M-o instead:

All the world's a stage, █
and all the …

Note that the point remains in its original position.

Finally, the M-ˆ command does the opposite of C-o and C-M-o:
it adjoins the current line the point is on with the one right
above. That is particularly useful if you want to collapse sen-
tences into one large paragraph or join multi-line function
arguments into one line.

M-ˆ is clever enough to trim whitespace when you join two
lines together. That is to say, Emacs will trim whitespace so
that at least zero or one remain, depending on whether the
line you are adjoining has text on it or not. For blank lines
all whitespace is trimmed, and for lines with text all but one
space is trimmed.

Fill prefix

Typing C-M-o with a fill prefix active will split
the current line and insert the fill prefix on the
new line. Contrarily, M-ˆ removes fill prefixes
from lines that you join.

The Theory of Editing

Whitespace Commands

Managing whitespace is an issue that recurs often when you
yank text from elsewhere or if you work with languages
where whitespace is significant.

Command Description

M-SPC Deletes all but space or tab
to the left and right of the point

M-x cycle-spacing As above but cycles through
all but one, all, and undo

M-\\ Deletes all spaces and tabs around
the point

M-SPC is useful as it trims all whitespace, to the left or right
of the point, to a single whitespace character. M-\\ does the
same, but removes all whitespace characters, leaving none.
M-x cycle-spacing cycles between leaving one, leaving none,
and restoring the original spacing.

You can tell Emacs to visibly show you whitespace charac-
ters and other typographic snafus, like trailing spaces or
overly long lines, using Emacs’s whitespace mode.

Whitespace Minor Mode

Command Description

M-x whitespace-mode Minor mode that highlights all
whitespace characters

M-x whitespace-newline-mode Minor mode that displays newline
characters with a $

The Theory of Editing

Command Description

M-x whitespace-toggle-options Displays a toggle menu of all
whitespace-mode options

Emacs’s whitespace minor mode overlays otherwise invisi-
ble whitespace characters with glyphs and colors so you can
tell them apart. It is especially useful if you want to find trail-
ing whitespace, errant tab characters or “empty” lines with
whitespace in them.

Whitespace mode tracks the following: trailing spaces, tabs,
spaces, lines that are longer than whitespace-line-column (typ-
ically characters), newline characters, empty lines, inden-
tation (both tabs and spaces), spaces after tabs and spaces be-
fore tabs. Basically, it tracks every conceivable combination
that may cause syntax or typography errors.

I suggest you customize whitespace mode – particularly the
colors, as they are a bit full-on – by customizing the group
whitespace with M-x customize-group.

You can also use M-x whitespace-toggle-options and toggle
the styles you want whitespace-mode to highlight.

Whitespace Reporting and Cleanup

Command Description

M-x whitespace-report Shows whitespace issues
M-x whitespace-report-region As above but for the region
M-x whitespace-clean-up Attempts automatic cleanup
M-x whitespace-clean-up-region As above but for the region

The Theory of Editing

You can generate a report with M-x whitespace-report (and
similarly for regions) and see a succinct list of “issues”
present in your buffer or region. Furthermore, you can ask
Emacs to attempt a cleanup of the buffer or region with the
equivalent cleanup commands.

Keyboard Macros
You can record keystrokes and commands in Emacs and
save them for later playback as a keyboard macro. A keyboard
macro in Emacs is very different from a macro and you
should not confuse the two.

Macro recording is not a new invention. Most s and text
editors have it, but few have one as advanced as the one in
Emacs. Emacs’s keyboard macros are especially powerful as
almost everything is recorded. There are few blind spots – none
of which you are likely to encounter – and that is what sets
it apart from s and their mostly anemic macro recording.
Emacs’s macro recorder is itself written in lisp. That alone
speaks to the power of extensibility that Emacs offers, but it
also reinforces the extent you can inspect and record changes
made at a microscopic and macroscopic level in Emacs.

Basic Commands

Key Binding Description

F3 Starts macro recording,
or inserts counter value

F4 Stops macro recording
or plays last macro

The Theory of Editing

Key Binding Description

C-x (and C-x) Starts and stops macro recording
C-x e Plays last macro

You can begin recording with F3 and stop it with F4. The
other two keys are not as accessible and are there for back-
wards compatibility with wizened veteran users of Emacs.

When you start recording, you can stop by typing F4 (or
C-x) or M-x kmacro-end-macro. You can also terminate the
macro with the universal quit command, C-g. Occasionally,
you may trigger an error in Emacs and that will also stop
recording. Examples include using M-g M-n (go to next error)
when there are no more errors.

When macro recording is in progress you will see, in your
modeline, the word Def. When you finish recording, you can
play it back immediately by typing C-x e or F4.

Recorded macros have their own macro ring, much like
the kill ring, undo ring, and history rings. That means
you won’t have to worry about accidentally overriding a
recorded macro if you start a new one. They are never truly
lost (unless you exit Emacs!) but you can explicitly save
them to disk.

You can also pass the universal argument and digit argu-
ments to the macro commands:

Key Binding Description

C-u F3 Starts recording but appends
to the last macro

The Theory of Editing

Key Binding Description

C-u F4 Plays the second macro in the ring
numeric F3 Starts recording but sets counter

to numeric
numeric F4 Plays last macro numeric times

So, C-u and the digit arguments do different things. Numeric,
in this case, means numbers such as C-u 10 or M-10.

Appending to the last macro (C-u F3) is occasionally useful,
but passing a numeric argument to F4 is very useful since re-
playing the macro a set number of times is a frequent thing
indeed; so much so that passing digit 0 (C-0 F4 or C-u 0 F4,
for instance) will run the macro over and over again until it
terminates with an error, such as reaching the end of a buffer
or when a command in the macro triggers an error.

Advanced Commands

There is an entire prefix key group, C-x C-k, dedicated to
Emacs’s macro functionality. There are many commands
and you are unlikely to ever use most of them.

Learn more

As always, you can append C-h to a prefix key and
Emacs will list all the keys bound to that prefix.
Another way is to list all the commands with apro-
pos (C-h a) — the commands are all named kmacro.

The Theory of Editing

Interactive Macro Playback

Let’s start out with the counters. When you start recording,
Emacs will automatically initialize an internal counter to
zero, and every time you press F3 during the recording,
Emacs will insert the counter and then increment the
internal counter by 1. There are, of course, many creative
uses for the counter: creating numbered lists is the most
obvious.

Key Binding Description

C-x C-k C-a Adds to counter
C-x C-k TAB, F3 Inserts counter
C-x C-k C-c Sets counter
C-x C-k C-f Sets format counter
C-x C-k q ueries for user input while

recording

The counter commands above do more than this. C-x C-k
C-a adds a number to the counter, and, conversely, giving it a
negative number subtracts from the counter. Both F3 and C-x
C-k TAB insert the counter value and increments it by 1 but if
you give it the universal argument C-u, it will insert the last
number and not increment the counter; very useful if you
need the same number used several times in one recording.

Counter reset

Counters are only reset when you explicitly set
them or when you record a new macro. The
counter persists between macro playbacks

The Theory of Editing

The command C-x C-k C-c explicitly sets the counter as op-
posed to merely adding to it like with C-x C-k C-a. Finally,
C-x C-k C-f is perhaps the most advanced of the counter com-
mands. It takes a format string and formats the counter accord-
ing to this string (type C-h f format for more information on
format strings). So, for instance, you can decimalize the num-
ber or print it with leading or trailing zeros — or anything
similar, like inserting a plain number and text. Make sure
you do not wrap the text you pass to C-x C-k C-c in quotes
as they are automatically escaped.

The standout command is C-x C-k q. When you call it, Emacs
will tag that step in the macro recording and ask the user for
advice – in effect stopping the macro temporarily to prompt
the user – before continuing.

uery Key Binding Description

Y Continues as normal
N Skips the rest of the macro
RET Stops the macro entirely
C-l Recenters the screen
C-r Enters recursive edit
C-M-c Exits recursive edit

Y and N continue or stop the current iteration of the macro. So
if you are executing more than one macro in a row, N would
skip the rest and restart at the beginning of the macro. Y
merely continues on as normal. RET stops the macro entirely
and halts further macro playback.

You can recenter the screen – which is not the same as the

The Theory of Editing

usual C-l command – and Emacs will center the point in the
middle of the buffer.

Recursive Editing Recursive editing is an advanced topic.
When you enter recursive editing (C-r), Emacs will suspend
any on-going command – such as Isearch, search & replace
or a macro – and hand control back to you, the user. You
are then free to continue editing and otherwise use Emacs as
you would normally, but at any time you can type C-M-c and
Emacs will snap back to the earlier recursive step that you
entered and resume from then on. You can nest recursive
edits as many times as you reasonably like, and if you are in
recursive editing, you can see it in your modeline because
square brackets ([]) appear. You can force Emacs to abandon
all recursive editing levels by typing ESC ESC ESC. Note that,
unlike most other things, C-g will not exit out of recursive
editing.

So, how do you use this in practice? One example is realizing
during Isearch or macro playback that you need to edit text,
send an e-mail or otherwise temporarily suspend what you are do-
ing. C-r lets you do that. When you are finished, type C-M-c
to resume where you left off before. An extremely powerful
feature, it is worth knowing once you have mastered every-
thing else in this book.

Saving and Recalling

Macros in Emacs are stored in a macro ring, a concept that you
should recognize from other parts of Emacs (like the kill ring
and undo ring.) Creating a new macro automatically stores
old macros in the macro ring without you having to do any-

The Theory of Editing

thing. The commands below let you save and recall from the
macro ring, edit and bind macros to keys, and more.

Key Binding Description

C-x C-k C-n Cycles macro ring to next
C-x C-k C-p Cycles macro ring to previous
C-x C-k n Names the last macro
C-x C-k b Binds the last macro to a key
C-x C-k e Edits last macro
C-x C-k l Edits the last keystrokes
M-x insert-kbd-macro Inserts macro as elisp

Both C-x C-k C-n and C-x C-k C-p cycle the macro ring. Emacs
will helpfully display a portion of the macro when you do
so you know which one is active.

You can name the macro with C-x C-k n, which is useful if
you want to save the macro to a file, as you can then open
your init file and call M-x insert-kbd-macro to save it. You
can also, temporarily, for the current session only, bind it to
a key with C-x C-k b.

Lossage

Emacs remembers the last characters and
commands, called lossage, you typed. You can see
this list of characters by typing C-h l. You can
even save every keystroke you make in Emacs
– including sensitive things like passwords, so
beware – by typing M-x open-dribble-file. I
have absolutely no idea why it is named dribble
file.

The Theory of Editing

Macro editing is useful if you made mistakes. The C-x C-k
e command prints a list of macro commands that you edit
as though it were text, and when you finish, type C-c C-c to
commit the changes. A similar command is Emacs’s lossage. If
you ever want to turn actions you have completed (but for-
got to record) into a macro, you can extract them from the
lossage buffer with C-x C-k l and transform it into a macro.

Text Expansion
There are several built-in tools – and just as many third-party
ones – in Emacs that expand text. All of them serve a slightly
different purpose, but the goal is to minimize typing and
maximize automation.

Here are some of the ones available to you in Emacs:

Abbrev Expands abbreviations – such as func into function –
on a per-mode or global level. A very simplistic expan-
sion mechanism, its main advantage is that it silently
whiles away as you type, fixing typos or expanding
abbreviations. There is, like a lot of Emacs’s other fea-
tures, little graphical ceremony: no whirligig graphics
or other visual clutter to distract you when it expands
a keyboard — in fact, it’s unlikely you’ll notice at all
unless you are looking for it.

You would typically use this for unambiguous correc-
tions such as correcting typos.

DAbbrev, or dynamic abbreviations Similar to Abbrev
but it expands the previous word by dynamically

The Theory of Editing

looking for things the word at point might expand
into. For instance, typing func in a buffer where
you have a lot of function definitions and DAbbrev
will expand it to function automatically when you
manually trigger the expansion mechanism.

Hippie expand A super-charged DAbbrev-replacement
that expands more than just words, but whole lines,
lisp symbols, Abbrev abbreviations, file names and file
paths and other useful things. This feature is excep-
tionally powerful and it’s a drop-in replacement for
Emacs’s default DAbbrev that also ships with Emacs.

Skeletons A complex templating tool that combines sim-
ple elisp primitives – prompts, region wrapping, inden-
tation and point positioning – with Abbrev-like expan-
sion.

Although it has been a core part of Emacs for more
than years, few use it. It’s a shame, really, as it’s very
powerful, but it requires patience or elisp knowledge
to use almost so no one does.

Tempo Yet another templating tool that ships with Emacs.
It is similar to Skeletons.

YASnippet A third-party package templating tool inspired
by the text editor TextMate’s template tool — and
TextMate itself borrowing heavily from other tools
before it. It uses a simple template language to create
snippets that you can trigger – with tab or space – and
expand into editable templates. It’s similar to Skeletons
but arguably much easier to use.

The Theory of Editing

Autoinsert Inserts templates – much like skeletons – when
you create a new file that matches a certain file type. It
is useful when you want to auto generate boilerplate
content in a file, such as tags like html, head, and
so on.

Of all the choices above, I would focus my attention on YAs-
nippet for templating, as it comes with a large array of snip-
pets for many major modes and Hippie Expand since it’s a
great productivity booster.

Both Tempo and Skeletons are not worth learning today un-
less you have a specific reason to. Abbrev is useful but only
suitable for word replacements as it lacks the facilities of the
more advanced text expansion tools I talked about above.
Autoinsert is also useful but it is again a package I would save
for later. When you have integrated YASnippet and Hippie
Expand into your workflow, you can add Abbrev and Autoin-
sert if you feel you need them. Most never bother with either,
even though they are useful.

Abbrev

Abbrev is the perfect tool for auto-correct-style features in
word processors. I use it to replace common misspellings and
to replace words like resume with résumé. However, it is un-
questionably the wrong tool for the job if you want to use it
for more advanced things, such as complex text expansions
you would use in software development. Part of what makes
abbrev effective is that it is simple: it expands words without
visual distractions — in fact, I rarely notice that it corrects
words.

The Theory of Editing

Key Binding Description

C-x a l Adds mode-specific abbrev
C-x a g Adds global abbrev
C-x a i g Adds mode-specific inverse abbrev
C-x a i l Adds global inverse abbrev

When you add an abbrev with C-x a g or C-x a l, Emacs
will look at the word before point and use that as the replace-
ment word — that is, and I get confused myself, the word
you want it expanded to and not the trigger word. So, to re-
place resume with résumé, you would type résumé and place
your point after the word and type, say, C-x a g and enter
resume. When you press SPC after typing resume, Emacs will
replace it with résumé.

The inverse commands do the opposite. You type the word
resume, enter C-x a i g, answer résumé and Emacs will expand
resume into résumé.

DAbbrev and Hippie Expand

Hippie Expand is great. It has an almost preternatural ability
to expand the text at point into what you mean; no mean
feat when you consider how many expansions from which
there possibly are to choose.

Before I talk about Hippie Expand, let’s talk about how you
use DAbbrev, its lesser cousin and the default dynamic ab-
breviation tool in Emacs:

The Theory of Editing

Key Binding Description

M-/ Expands word at the point using
M-x dabbrev-expand

C-M-/ Expands as much as possible, and
shows a list of possible completions

The key, M-/, is easy to type and repeated presses will cycle
through the list of choices. Repeat the command enough
times and it will revert back to the original word. And if
there are many choices to choose from, the C-M-/ command
will attempt to complete as much as it can and display a list
of completions if there is still more than one choice.

DAbbrev is not smart. It looks at other words in your buffer
and it attempts to complete the word at the point to one of
those. That does not make it useless – it is still useful – it’s
just that Hippie Expand is so much better.
To use Hippie Expand effectively, you should replace DAb-
brev as the two – though it’s possible to use both – really
don’t complement one another at all. Add this to your init
file to switch to Hippie Expand:

(global-set-key [remap dabbrev-expand] 'hippie-expand)

Hippie Expand expands more than just words. The variable
hippie-expand-try-functions-list is an ordered list of expan-
sion functions Hippie Expand will call with the text at the
point when you call M-/.

What I like most about Hippie Expand is the file name com-
pletion. It works exactly like your shell’s TAB-completion:

The Theory of Editing

you type M-/ and Hippie Expand will try to complete the
filename or directory at the point. If you ever find yourself
inserting absolute paths or relative file names in code, config-
uration files or documentation — Hippie Expand will make
your life much easier.

Another great feature is its ability to complete whole lines.
It will fall back to word completion if it runs out of ideas,
and if you regularly write elisp, then Hippie Expand will
guess if the text at the point is a potential elisp symbol and
automatically complete it for you also.

As with DAbbrev, repeated calls to M-/ cycles through all the
potential matches, but C-M-/ only shows completions found
by DAbbrev — there is no equivalent completion list for
Hippie Expand.

Actively using M-/ takes a bit of practice. You’ll have to de-
velop an affinity for the sort of expansion rules that apply
when you call it. Learning Hippie Expand is so worth it since
it is a great time saver.

Customizing Hippie Expand

You can alter how Hippie Expand expands text. To do this,
customize the variable hippie-expand-try-functions-list,
but you have to know the name of the try function if you
want to add a new one.

To find a list of try functions, you should:

• Read the commentary in the source (M-x find-library,
then enter hippie-exp and read the documentation).

The Theory of Editing

• UseApropos. Look at the names of the try functions and
search for likely functions using M-x apropos-function.

As always, both methods yield different answers so try both.

Indenting Text and Code
When new programming languages appear, a major mode
for Emacs that does basic syntax highlighting and indenta-
tion appears almost immediately. Part of what makes that
possible is the ability to not only inherit (or re-use) indenta-
tion engines from other major modes but also the generic
indentation engines present in Emacs.

Older versions of Emacs, for some inexplicable reason,
wouldn’t indent by default when you pressed RET. That
(correctly) infuriated a lot of beginners. But in Emacs .
a new minor mode called electric indent mode now handles
intelligent indentation when you press RET. (Before Emacs
., you had to rebind a key; not difficult, but not a good
first impression either).

Controlling indentation is a tricky subject as it is heavily
mode-dependent. Some modes, like python-mode, cycle be-
tween possible indentation stops as indentation is semanti-
cally important in Python. Other languages, like C, come
with a battery of styles to appease everyone.

Unfortunately, there is no silver bullet here. Indentation is
a messy business, even in prescriptive languages like Python.
Some languages – such as files – are so strict the
 readers won’t parse files if the indentation is slightly

The Theory of Editing

off. That makes customization hard or just impractical to
implement — and that means compromises for you, the
writer. If the general advice I give here doesn’t work, first
read the manual and, only if that fails, inspect the variables
and functions exposed by the major mode.

RET: Indenting New lines

When you press RET Emacs will, as I alluded to earlier, in-
sert a newline character and then invoke the major mode’s
indentation engine. For this to work, you have to enable the
minor mode M-x electric-indent-mode. Thankfully, it is auto-
matically enabled in Emacs . — for earlier versions you
have to rebind the RET key:

(global-set-key (kbd "<RET>") 'newline-and-indent)

With electric indent, Emacs now also checks if you type cer-
tain block characters – like Python’s : or { and } in C – and
automatically re-indents the current line. The intended ef-
fect, then, is that, in the course of normal editing, your code
is correctly indented.

TAB: Indenting the Current Line

When you press TAB, Emacs usually calls indent-for-tab-command,
a generic proxy command that either indents your code or
attempts to TAB-complete the word at the point.

Key and Command Description

TAB Indents line using major mode’s

The Theory of Editing

Key and Command Description

indentation command
M-i Inserts spaces or tabs to next

tab stop
M-x edit-tab-stops Edits tab stops

Some major modes override the TAB key and instead call
their own specialized indent command — one example
is the C major mode. However, pressing TAB (or M-x
indent-for-tab-command) will, if its heuristic determines that
it should indent, call the indentation function stored in the
variable indent-line-function. The advantage here is the
generic nature of indent-for-tab-command — it’s just there
to pass on the work to either a completion command or an
indentation command.

The variable tab-always-indent governs Emacs’s behavior
when you press TAB. Usually, it just indents but it also has a
completion mechanism, though seldomly used.

Disabling tab characters

If you dislike the use of tab characters and if
you prefer whitespace, customize the variable
indent-tabs-mode.

Finally, when Emacs indents it calls the aforementioned
function in indent-line-function. The default function is
indent-relative, a command that inserts an actual tab char-
acter. Modes such as text-mode and fundamental-mode (the
default mode for a new, empty buffer) uses indent-relative.
Most programming modes do not.

The Theory of Editing

Changing the amount of indentation

The variable tab-width controls how many char-
acters of spacing each tab uses. It also controls
the amount of whitespace to use if you disabled
indent-tabs-mode.

There is also the concept of tab stops in Emacs and you
can edit the tab stops by typing M-x edit-tab-stops and
inserting : characters where you want Emacs to set the tab
point. Subsequent calls to M-i (which calls the command
M-x tabs-to-tab-stop) then insert tab stops, by way of
whitespace and tab characters.

Indenting Regions

Regions are even more difficult to indent. How do you
safely indent a region Python code when block indentation
determines program flow? The answer is — you don’t.
There are two types of region indentation commands:
“intelligent” ones that ask your major mode’s indentation
engine for advice – something that works well with lan-
guages like or C – and plain, fixed-width indentation
for the rest.

Key and Command Description

TAB Indents a line or region as
per the major mode

C-M-\ Indents using major mode’s region
indent command

C-x TAB Rigidly indents

The Theory of Editing

In an ideal world, pressing TAB with an active region is
all you need to re-indent it. Unfortunately, Emacs might
not support that, or in some programming languages it is
not physically possible to determine the correct indenta-
tion. Pressing TAB follows most of the same rules as line
indentation: Emacs attempts to indent according to the
indent-line-function and it falls back on simply inserting TAB
characters (or whitespace, if you disabled indent-tabs-mode).

Typing C-M-\ explicitly indents the region; for some modes
it works identically to TAB and in others it doesn’t. If you give
the command a numeric argument, it will indent the region
to that column (i.e., the number of characters) and Emacs
will also use your fill prefix (if you have one) and fill the text
accordingly. C-M-\ is occasionally useful as it respects your
fill prefix. However, if you want to indent a fixed number
of columns, you should use C-x TAB.

C-x TAB explicitly indents the region a certain number of
columns. It also takes negative and numeric arguments.
However, if you don’t pass an argument, Emacs will en-
ter an arrow-key-driven indentation mode that lets you
interactively indent the region with S-<left> and S-<right>.

Sorting and Aligning
Both sorting and aligning text are common enough actions
that Emacs has its own set of commands that do both.

The Theory of Editing

Sorting

Sorting in Emacs works a lot like the command line utility
sort. All commands sort lines, except the lone paragraph com-
mand.

Command Description

M-x sort-lines Sorts alphabetically
M-x sort-fields Sorts field(s) lexicographically
M-x sort-numeric-fields Sorts field(s) numerically
M-x sort-columns Sorts column(s) alphabetically
M-x sort-paragraphs Sorts paragraphs alphabetically,
M-x sort-regexp-fields Sorts by regexp-defined fields

lexicographically

M-x sort-lines sorts in ascending order, but if you call it with
a universal argument it will reverse the sort order.

When you sort by line, Emacs will call out to sort (as it is
much quicker) unless you are on Windows, in which case
Emacs does it internally.

Lexicographic and numeric

Lexicographic sorting is how most sorting
algorithms typically work. They look at the
character code for each character and sort by
those. That works fine for most things, except
numbers. Lexicographically, the number 4
comes after the number 23 because the ordinal
of 4 is greater than the ordinal 2 in 23.

The Theory of Editing

To sort your numbers correctly, you must use
M-x sort-numeric-fields.

You can sort lexicographically or numerically using M-x
sort-fields and M-x sort-numeric-fields. You must pick
a column though. To do this, pass a numeric argument
(starting from) to sort by that column. Columns are
whitespace-separated; one or more whitespaces together
signify a column delimiter.

So to sort the third column, type M-3 M-x sort-fields. You
can only sort by one column, and as I mentioned earlier,
each column must be whitespace delimited (To alter the col-
umn delimiter, you must use M-x sort-regexp-fields).

Sorting by columns with M-x sort-columns is the only way
to sort by more than one column, and then only successive
columns. To use it, place the point and mark in the begin-
ning and end columns you want to sort and all lines from
point to mark are then sorted.

If you find yourself in need of sorting things not delimited
by whitespace, you have to use M-x sort-regexp-fields. This
command is rather complicated as it requires a good work-
ing knowledge of elisp; it is also easy to only partially sort a
region and that will mess up your text.

Consider this file of products:

Price,Product
$3.50,Cappuccino
$4.00,Caramel Latte
$2.00,Americano

The Theory of Editing

$2.30,Macchiato
...

You cannot sort this data with the other sort commands as
they won’t work at all; the data is not whitespace-delimited.
To sort this, we need M-x sort-regexp-fields.

Emacs’s internal sort routine needs a key – that is, what it
uses to sort, such as a field – and a record, which is typically
the whole line.

Here is how to sort the example above:

M-x sort-regexp-fields

Record: ^\([^,]+\),\([^,]+\)$
Key: \1

This first defines the record as two capturing groups, one for
each column, separated by a comma. The next step is to pick
the key – in this case, the first column containing the price
– to sort by.

The result looks like this:

Price,Product
$2.00,Americano
$2.30,Macchiato
$3.50,Cappuccino
$4.00,Caramel Latte

The Theory of Editing

Sorting by regular expression is not something you will
need to do often, but when you do, it is a powerful tool.
One important caveat is that it is possible to partially sort a
line; if your search term looks like this:

M-x sort-regexp-fields

Record: ^\([^,]+\)
Key: \1

And if you sort the original text, the output looks like this:

$2.00,Cappuccino
$2.30,Caramel Latte
$3.50,Americano
$4.00,Macchiato

Note that we have sorted the first column, yes, but the second
column remains unchanged! That is to say, we have sorted the
prices but not the associated products. Be careful.

Aligning

Text alignment in Emacs encompasses both justification and
columnated text. In fact, the alignment engine in Emacs is so
sophisticated that it is able to automatically align and justify
code based on regexp patterns.

Command Description

M-x align Aligns region based on align rules

The Theory of Editing

Command Description

M-x align-current Aligns section based on align rules
M-x align-regexp Aligns region based on regexp

The alignment commands work on regions, which by now
you are familiar with; or sections, a made-up concept unique
to some alignment commands like M-x align-current. A sec-
tion is a group of consecutive lines for which the first matching
alignment rule applies. So, if there is a rule that aligns string
constants – like = in HELLO_WORLD_CONST = "Hello World"; –
then its section would be all consecutive lines that match
that rule.

There are many built-in alignment rules in Emacs, and when
you call M-x align on a region of text, Emacs scans the align-
ment rule list and finds the first one that matches all the cri-
teria in the rule list: major mode, alignment regexp to try
and align, and so on. Unfortunately, the alignment rules
are hard to read and understand, and in practical terms that
means the feature is not as useful as it could be. Each align-
ment rule in Emacs – stored in align-rules-list – requires a
deep knowledge of regexp and a desire to peel apart the lay-
ers and figure out how the rule works. The Emacs maintain-
ers missed an opportunity here by not requiring doc strings
for every alignment rule that explain how they work.

The benefit of M-x align-current is that you don’t have to
mark a region first. It figures out from the line the point is
on what rule applies and applies it to neighboring lines too
(if they also match that rule).

The Theory of Editing

Here are some of the built-in rules in Emacs, organized by
major mode:

Python You can columnate assignments like so — notice
the alignment of =:

UNIVERSE_ANSWER_CONST = 42
UNIVERSE_QUESTION = "What is The Answer ..."

Lisp You can columnate alists in much the same way as the
Python example above:

((universe-answer . 42)
(universe-question . "What is The Answer..."))

In both cases, I had my point on either line and typed M-x
align-current and Emacs figured out which rule to apply.

Despite the usefulness of automatic alignment, it is unlikely
your scenario perfectly matches any of Emacs’s alignment
rules. For all other instances, you have to use Emacs’s flexible
M-x align-regexp and tell Emacs how you want your text
aligned.

There are two modes of operation when you use M-x
align-regexp: novice mode, which is what you see when you
run the command; and complex mode, when you call it with
C-u. The only situation wherein you are likely to truly use
the complex mode is when you want to do multi-column
alignment on the same line. Annoyingly, that feature is not
available in novice mode.

Consider the following text:

The Theory of Editing

Cappuccino $2.00
Caramel Latte $2.30
Americano $3.50
Macchiato $4.00

To columnate the text and align the prices on the $ with M-x
align-regexp:

Align regexp: \$

And the output:

Cappuccino $2.00
Caramel Latte $2.30
Americano $3.50
Macchiato $4.00

It gets harder if you want to align multiple columns. Con-
sider this text:

Price,Product,Qty Sold
$2.00,Cappuccino,289
$2.30,Caramel Latte,109
$3.50,Americano,530
$4.00,Macchiato,20

To columnate all three columns, you must use the complex
mode. So, type C-u M-x align-regexp. The first thing you
will notice is the prefilled suggestion:

The Theory of Editing

Complex align using regexp: \(\s-*\)

The regexp matches – in a capturing group – zero or more
whitespace characters. The reason it does this is because a
file you want to align may have plenty of whitespace already
(perhaps you aligned it a short while ago and because you
changed the text it is now misaligned) so Emacs has to
match and capture existing whitespace around the character
you want to align, and then re-align it correctly. When you
use novice mode, Emacs automatically inserts that regexp
before the character you want to align by; that means any
whitespace before your alignment character is removed —
so even in novice mode, the whitespace capturing group is
there.

So, to columnate on ‘,’ you must add ‘,’ to the beginning
or end of the existing regexp. Where you put it alters the
alignment outcome:

Put it before and Emacs will insert spacing to columnate
after the ‘,’.

You may want to do this with a symbol like ‘,’. If you
don’t, it will look like this:

Fooooo ,Bar
Bizz ,Buzz

Put it after and Emacs will insert spacing to columnate be-
fore the ‘,’.

You may want to do this with a symbol like $. If you
don’t, it will look like this:

The Theory of Editing

Foobar Widget $ 15.00
Fizz Buzz $ 10.00

So, for this, you want to answer the prompt like so:

Complex align using regexp: ,\(\s-*\)

Next, pick the default answer:

Parenthesis group to modify (justify if negative): 1

There is only one capturing group, though for complex
alignment operations you may well have more than one
group.

Finally, the spacing. Emacs will use align-default-spacing
which defaults to the tab stops Emacs uses internally. It is
usually safe to leave this to its default, but you can enter a
number of absolute spacing and Emacs will try to follow it:

Amount of spacing (or column if negative): 1

Next – and this is the one you are likely to actually care
about – is whether Emacs should repeat the command
throughout the line. Answer yes if you want Emacs to
columnate all the ‘,’ symbols:

Repeat throughout the line: yes

The output now looks like this:

The Theory of Editing

Price, Product, Qty Sold
$2.00, Cappuccino, 289
$2.30, Caramel Latte, 109
$3.50, Americano, 530
$4.00, Macchiato, 20

Emacs’s align commands are powerful and useful if you often
deal with unformatted text or code. The only downside is
that you have to wade through the complex mode to repeat
the alignment process more than once on a single line.

Other Editing Commands

Zapping Characters

Kill commands work well on structured text; they act on
syntactic units. But sometimes you want to kill to an arbi-
trary character. The zap command, M-z, does just that. When
you invoke it, you are asked for a single character, ahead of
the point. Zap then kills up to (and including) the character
you typed:

http://www.example.com/█articles/?id=10

After zapping to /:

http://www.example.com/█?id=10

And like the kill commands from earlier, it also appends to
the kill ring. This is particularly useful as you can combine

The Theory of Editing

it with both kill commands and negative & numeric argu-
ments to control the amount of sequential zaps to do, and
the direction to do it in.

Zap alternative

There is a third-party package called zop-to-char
that kills to the character but does not include it.
Look for it in the package manager.

Many feel the zap command should kill up to the character
you type and not include it — I’m fine with the default be-
havior but you may not be. For me, it is a quick way to kill
text in conjunction with other commands so I don’t mind
that it is inclusive.

Spell Checking

There are several ways of spell checking in Emacs, and
they all serve different use cases. Spell checking in Emacs is,
surprisingly, not performed by Emacs itself. For Linux, the
choices are aspell and ispell and Emacs will choose aspell
over ispell as it is faster and more modern.

Keys and Commands Description

M-$ Spell checks word at the point
M-x flyspell-mode Minor mode that highlights

spelling errors
M-x flyspell-prog-mode As above, but only highlights

strings and doc strings in code
M-x ispell-buffer Runs spell check on buffer
M-x ispell-region Runs spell check on region

The Theory of Editing

Regardless of which spell checker you use, both are referred
to as ispell in Emacs.

Spell checking on Windows

You need to install3 the aspell or ispell on Win-
dows yourself for this functionality to work.

I use M-$ frequently for oand corrections. When you use
it, Emacs will tell you if it thinks it is correct or not. If Emacs
thinks it is wrong, it will list suggestions to choose from and
Emacs will replace the original word.

Flyspell mode is useful and works identically to word pro-
cessors — misspelled words are highlighted with squiggly
lines, and all. However, that mode is designed for text and
not code; for code, use M-x flyspell-prog-mode as it limits
spell checking to just your comments, strings and doc strings.
Again, a very nifty feature.

Spell checking TeX

If you write LaTeX or TeX often, you should
add this to your init file as it tells Emacs how to
parse TeX:

(add-hook 'tex-mode-hook
#'(lambda () (setq ispell-parser 'tex)))

Unfortunately, there is no Customize equivalent.

ASpell can be found here http://aspell.net/win/.

http://aspell.net/win32/

The Theory of Editing

If you enable either Flyspell minor mode, it also enables a
secondary command bound to C-M-i (and C-.) that auto cor-
rects the word at point. It picks the first likely match and cor-
rects the word at the point; subsequent calls cycle through
the words — much quicker than M-$ as it insists on asking
you which correction you want.

Customize I recommend you customize this feature if you
use it a lot — particularly if you have specific dictio-
nary requirements other than the default one used by
customizing the group ispell.

uoted Insert

If you ever find yourself in need of inserting a literal TAB, RET
or control code character, then you need quoted insert,
bound to C-q.

Line feed vs carriage return

If you want to insert a literal newline symbol,
type C-q C-j as that is the newline – LINE FEED
– symbol and not your return key (which is a
CARRIAGE RETURN.)

uoted insert is clever enough to highlight control
codes using the face escape-glyph4 so you can spot them visu-
ally. uoted insert does a literal insert of any character you
feed it — for example, C-q ESC inserts the control code
ˆ[, also known as ESCAPE.

Which, as you may recall, you can customize with M-x customize-
face.

Chapter

The Practicals of Emacs

“[…] Emacs outshines all other editing soft-
ware in approximately the same way that the
noonday sun does the stars. It is not just bigger
and brighter; it simply makes everything else
vanish.”

– Neal Stephenson, In the Beginning… was the
Command Line.

In earlier chapters, I have almost exclusively talked about
the theoretical aspects of Emacs. Galvanizing your brain
and finding practical or novel applications is something else
though; for most, theory is not enough. In this final chapter,
I will show you what I call workflow — walkthroughs that
cover a specific area or problem in some depth.

Unlike the last two chapters, I won’t cover the commands
and features I introduce in this chapter in any great detail. I
leave that to you to discover on your own time. If you are

The Practicals of Emacs

still unsure how to do discover new features, then read on —
the first part of this chapter is Exploring Emacs.

Exploring Emacs
To truly master Emacs, you have to learn how to find things.
It is alpha and omega in Emacs. Manuals, books and blog
posts make assumptions about your editing environment —
about Emacs. Once you change variables, rebind keys or al-
ter Emacs to suit your own needs, you create a unique combi-
nation of changes that few other people, if any, have. There-
fore, to diagnose issues, or fix and change things you dislike,
you have to know how to find those things in the first place.

Let’s explore , Emacs’s Version Control interface. The
system is a powerful and underutilized facility in Emacs that
exposes a generic interface – for things like version history,
blaming, committing, pushing and pulling – that then talks
to your chosen version control system. is especially use-
ful if you work regularly with more than one versioning
system.

If you weren’t aware of before and your first introduction
to it is reading about it now, how would you learn about it?

Reading the Manual

Unsurprisingly, Emacs’s manual is well-written and exten-
sive. Looking for a manual about Emacs’s version control is
a good place to start.

. Open the M-x info manual by typing C-h i.

The Practicals of Emacs

. Navigate to the Emacs hyperlink and open it.

. Search with C-s for version or version control.

Lo and behold, if you tap C-s enough times eventually
you’ll come across the Version Control manual that
way.

So, reading the manual works well — but not every feature
has a manual. And perhaps the chapters are buried in a sub-
sub-sub-chapter out of easy reach. And third-party packages
almost never ship with info manuals.

Apropos for info manuals You can use the command M-x
info-apropos with a search pattern and Emacs will
crawl all known info manual pages looking for match-
ing patterns. If you are unsure of where something is,
this command is a powerful tool.

Using Apropos

In Apropos, I listed all the many ways of querying Emacs’s
documentation system using apropos. One of those apropos
commands will search the doc string – the documentation
string accompanying most variables and functions in Emacs
– and list the matching function or variable. Searching
Emacs’s documentation strings is the most scattered ap-
proach to finding things: you are literally searching plain
text documentation. To do this, use C-h d, which is the
apropos command that searches documentation.

Namespacing in Emacs Lisp

The Practicals of Emacs

Emacs Lisp, unlike other lisps, lacks namespacing.
There is no separation of concerns using mod-
ules or namespaces in Emacs. In practice, it’s not
a huge deal (there are bigger fish to fry) but it does
mean that, informally, packages in Emacs prefix
their symbols (functions, variables, etc.) so they
don’t clash.

Examples include python- for the Python major
mode; apropos- for apropos-related commands,
and so on.

Nevertheless, if you search for version control with C-h d,
the first result is this:

vc-mode

Function: Version Control minor mode. This
minor mode is automatically activated whenever
you visit a file under control of one of the
revision control systems in
`vc-handled-backends'.

VC commands are globally reachable under the
prefix `C-x v':

We now have a lead. The mode is vc-mode. However, we
want the prefix it uses and it is vc-.

Knowing that ’s prefix is vc-, we can use M-x apropos-command,
bound to C-h a, to find all the commands:

The Practicals of Emacs

M-x apropos-command RET

Then at the prompt, enter:

Search for a command (word list or regexp): ^vc-

Emacs returns the results of the Apropos search:

vc-annotate C-x v g
Display the edit history of the current
FILE using colors.

vc-check-headers M-x ... RET
Check if the current file has any headers in it.

vc-clear-context M-x ... RET
Clear all cached file properties.

[...]

You’ll see a list of commands along with a brief description
and the key binding, if any.

A quick browse through reveals a handful of interesting com-
mands.

Keys and Commands Description

C-x v Prefix key for vc-
M-x vc-dir, C-x v d Shows status for current dir
M-x vc-diff, C-x v = Displays diffs between file revs
M-x vc-annotate, C-x v g Blames/annotates current file
M-x vc-next-action, C-x v v Does next logical action
M-x vc-print-log, C-x v l Prints commit log

The Practicals of Emacs

With these, it’s easy to see a trend. A lot of the commands
are bound to the prefix key C-x v. The next step would be
to see what commands are bound to the prefix key itself by
appending C-h.

C-h: Exploring Prefix keys

In Discovering and Remembering Keys, I showed you that
appending C-h when you enter a partial (prefix) key lists all
the keys bound to that prefix key. C-x v is no exception: typ-
ing C-x v C-h lists all the keys bound to this prefix key.

Typing C-x v C-h yields this:

Global Bindings Starting With C-x v:
key binding

C-x v + vc-update
C-x v = vc-diff
C-x v D vc-root-diff
C-x v G vc-ignore
C-x v I vc-log-incoming
C-x v L vc-print-root-log
C-x v O vc-log-outgoing
C-x v a vc-update-change-log
C-x v b vc-switch-backend
[...]

The great thing about this command is that it is so easy to
type. If you forget that C-x v = diffs the current file with
the last file revision? No problem – C-x v C-h shows that
bound to C-x v = is M-x vc-diff. The other obvious benefit

The Practicals of Emacs

is it exposes you to commands you wouldn’t otherwise con-
template using, or even knew existed. Perhaps you have a
new need to, say, create a tag (C-x v s) and if you’re unsure
of what it’s called or what it is bound to – or indeed if such a
feature even exists in Emacs – then C-h may shed some light
on it.

C-h k: Describe what a key does

On the other end of the spectrum is having a key and not
knowing what it does. The command C-h k takes a key bind-
ing and shows you what is bound to that command in the
active buffer. For instance, C-h k followed by C-x v v shows
you not only the name of the command but the doc string for
that command. Usually, the text is descriptive and explains
what the command does:

C-x v v runs the command vc-next-action (found
in global-map), which is an interactive
autoloaded compiled Lisp function in `vc.el'.

It is bound to C-x v v, <menu-bar> <tools> <vc>
<vc-next-action>.

(vc-next-action VERBOSE)

Do the next logical version control operation on
the current fileset. This requires that all
files in the current VC fileset be in the same
state. If not, signal an error.

The Practicals of Emacs

...

Shown above is the key binding and the command it runs.
It also shows you where the command was found – in this
case in the global map, because it is a global key – and the
library file containing the command. Next, all the keys (it
may have multiple bindings) it occupies are listed, followed
by the function signature if you were to call the command
directly from lisp. And then, finally, is the documentation
string describing the command.

All this information is dynamically generated when you call
C-h k.

The slight downside of C-h k is that its intended audience are
elisp hackers and not end users; the doc string describes how
the command works from a technical perspective and that
usually means explaining how each argument, and other
technical minutia of little relevance to end users, works.
But that’s usually not a problem for a technically-minded
person, even if you are not a lisp developer.

Describing commands If you have the name of a com-
mand, such as vc-dir, you can use C-h f and Emacs
will describe what the command does.

C-h m: Finding mode commands

If you run the command C-x v d, a new buffer appears show-
ing you the version status of your current buffer’s repository;
things like untracked and modified files are shown here. But

The Practicals of Emacs

how do you interact with it? How do you discover how to
use ’s status buffer?

The answer is C-h m, a help command that describes a mode.
It displays the documentation strings for all major and minor
modes active in the buffer you called it, alongside any keys
unique to those major and minor modes. In other words,
use this command to figure out what each major and minor
mode does (and what keys, if any, they expose).

So, calling C-h m inside a status buffer yields a plethora of
keys and documentation:

key binding

C-c Prefix Command
TAB vc-dir-next-directory
C-k vc-dir-kill-line
RET vc-dir-find-file

...

From then on it’s a simple matter of clicking (with RET or the
mouse) on each hyperlink you are interested in.

Working with Log Files
Poring over log files is a common activity and there are tools
in Emacs that makes it a snap to stay on top of them.

The Practicals of Emacs

Keys Description

C-x C-f Finds a file
C-x C-r Finds a file in read only mode
C-x C-q Toggles read only mode

Opening a file is the first step, but you may want to open
it as read only (to avoid accidentally saving it.) Likewise, if
the file mode makes it read only when you open it (with
C-x C-f), Emacs will open it in M-x read-only-mode. You can
toggle it on and off with C-x C-q but if you lack write per-
missions, you obviously cannot save the file if you change it,
even if you disabled read only mode. The reason you may
want to disable read only mode is so you can apply destruc-
tive changes to the buffer; perhaps to flush or keep lines.

Keys Description

M-x flush-lines Flushes lines matching a pattern
M-x keep-lines Keeps only lines matching a pattern
M-s o List lines matching a pattern

Alternatively, a simple M-s o (Occur mode) search might suf-
fice.

It’s easy to suffer pattern blindness and miss things if you
scroll through row after row of nearly-identical log entries.
Emacs’s highlighters are especially useful here, as they high-
light patterns in your buffer in different colors so you can
tell them apart:

The Practicals of Emacs

Keys Description

M-s h p Highlights a phrase
M-s h r Highlights a regular expression
M-s h . Highlights symbol at the point
M-s h u Removes highlighting under the point

Highlighters are incredibly useful and, even if you don’t
commit the keys to memory, just know that they are all
named highlight- and are thus easy to execute, when you
need them, with M-x.

Log files are rarely static files: they are constantly changing
or appended to. You can enable a minor mode so Emacs re-
freshes a file if it changes on your file system. On newer ver-
sions of Emacs, it’ll use file change events (on Windows and
Linux) and polling on older systems that don’t support noti-
fications.

Keys Description

M-x auto-revert-mode Reverts buffer when
file changes

M-x auto-revert-tail-mode Appends changes when
file changes

Both modes are similar. M-x auto-revert-mode is useful if the
file content changes frequently. Emacs detects changes and
simply reloads the entire file. M-x auto-revert-tail-mode, on
the other hand, works the same way as tail -f: when the file
changes, the changes are appended to the end of the buffer and
Emacs will scroll accordingly.

The Practicals of Emacs

Browsing Other Files

There is, of course, nothing stopping you from applying
these concepts to other file types. For instance, Emacs ships
with auto compression mode – a passive mode enabled by de-
fault – that automatically de-compresses and re-compresses
files when you open and save them. Combine it with M-x
dired and you can browse compressed archives as though
they were directories. A very nifty feature indeed, and it’s
seamless.

You can also open images and even s in Emacs (if image
support is compiled into your build of Emacs) and, like
auto compression mode, this mode also works transparently
in the background. You can even combine image viewing
with M-x auto-revert-mode and automatically revert images
if they change — a huge time saver if you’re generating
images.

TRAMP: Remote File Editing
Remote file editing is usually awkward: you have to interact
with a remote environment, usually using a terminal emula-
tor, and almost always without the fidelity of a graphical
interface and your usual settings. Even though it’s trivial to
move your .emacs.d around with you, it is still awkward. For
all the improvements in technology, remote file editing usu-
ally involves trade-offs.

Emacs’s 1 system is a transparent proxy that aims to
solve most of the remote file interaction woes you are likely

Transparent Remote (file) Access, Multiple Protocol

The Practicals of Emacs

to encounter. is, without a doubt, the coolest feature in
Emacs.
 works by monitoring C-x C-f (and other commands)
and it detects when you try to access remote files using a spe-
cial syntax not unlike what command line tools such as scp
use. What makes great is its total transparency. If you
didn’t know Emacs had remote editing capabilities, you’d
never know. It is quick and seamless to reach out and edit
remote files.

All connections follow this syntax:

/protocol:[user@]hostname[#port]:

 supports many protocols – both old and new – but
nowadays the one you are most likely to use is ssh or maybe
scp. For a full list of protocols and how they work,
consult the variable tramp-methods or the info manual page
(tramp) Internal methods.

Microsoft Windows

On Windows, your protocol choices differ. If
you don’t use Cygwin or a cross-compiled
version of OpenSSH, you will need to install
PuTTY’s plink.exe tool and use plink as the
protocol.

Although the server landscape is a lot more homogeneous
today than it was years ago, does a lot of behind-
the-scenes work to ensure the remote shell delivers a consis-
tent (and dependable) experience. The variable I mentioned

The Practicals of Emacs

above, tramp-methods, controls how handles each pro-
tocol type. If you work with obscure systems, you may have
to customize this variable.

Another nifty feature of is that it parses your
~/.ssh/config file and suggests them when you have entered
ssh as your protocol. You can, of course, specify both a
hostname, username, and port; the latter two are optional.

 config

If you use ssh, I strongly suggest you use the
configuration file as you can store all the connec-
tion and credential details in an easy to remem-
ber name.
For more information, type M-x man RET
ssh_config to read the relevant manual page in
Emacs.

Finally, to actually invoke you must call it from the
root – typing // in mode will jump to the root – and
follow the format as above. If you use ido-mode, as I recom-
mend you do (see Buffer Switching Alternatives), will
auto suggest both protocols and configured hosts automati-
cally.

Note that Emacs will not initiate a remote connection until
you enter the second :, like so:

/ssh:homer@powerplant:/var/log/reactor.log

The command above connects to the server powerplant
using ssh as the protocol and homer as the user. It then opens

The Practicals of Emacs

the file /var/log/reactor.log. You can omit the protocol
and will use the method (protocol) described in
tramp-default-method. I suggest you customize it and change
it from scp to ssh (or plink if you’re on Windows.)

The default directory

Every buffer has a default-directory variable.
The variable, in elisp terms, is buffer local. Each
buffer has its own default-directory variable as
it is local to just that buffer and not global (like
variables are by default in Emacs).

When you type C-x C-f in a buffer, Emacs looks
to default-directory and picks that directory as
the default one for opening new files. That is
sensible as you may want to open other files that
share a directory with the current buffer. Typ-
ing C-x C-f while editing a file in /etc means you
may want to open another file in /etc, so Emacs
picks that as your default directory.

This feature works identically with and re-
mote files. Invoking C-x C-f in a remotely-edited
file and Emacs automatically queries the remote
system and not your local one, letting you easily
open other remote files.

When you have opened a file, does its magic behind-
the-scenes and you’ll end up with a file in Emacs that looks
and seems much like a local one. The only visible way of
telling that a file is remote is the modeline: a @ appears be-

The Practicals of Emacs

fore the file name and default-directory reflects the -
annotated file path; try it, inspect the variable with C-h v.

So, you can edit files remotely, but because of the tight
integration between and Emacs you can do so much
more. Invoking commands like M-x rgrep works seamlessly
with Emacs and . The command is run on the remote
machine and the results are fed back to Emacs as though
you’d called the command locally.

There is no end to the things you can call remotely. Here are
some of the commands that I use remotely:

C-x d: Dired All commands are tunnelled through the re-
mote session so you can manage your files and direc-
tories with dired as though they were local.
You can even copy files between remote and local
dired sessions and will transparently copy the
files across.

M-x compile: Compile You can enter a compile command,
such as make or python manage.py runserver, or indeed
anything you like. Emacs runs the command remotely
and the output is shown in the *compilation* buffer.
You can even run interactive servers remotely with
live feedback.

M-x rgrep: Grep Commands Both find and grep are called
remotely and, as with the other commands, the results
are displayed in Emacs. Hyperlinked files in the grep
output correctly open the remote file.

M-x shell: Emacs’s Shell Wrapper Starts a remote login
shell and hands you control of it. It works just like M-x

The Practicals of Emacs

shell on a local machine but the shell in this case is,
obviously, on the remote machine. TAB-completion –
which in M-x shell is done by Emacs and not the actual
shell – also works.

M-x eshell: EShell, Emacs’s elisp shell Eshell is a shell
written in Emacs lisp. It also transparently works with
remote connections. In fact, you can cd into
remote directories straight from a local shell.

Multi-Hops and User Switching

Another useful ability of is account elevation with su
or sudo. This is extremely useful even for local files if you
want to edit a file as another user or root.

The ability to do this also neatly ties in with the concept
of multi-hops: connecting to a remote host through interme-
diate hosts. An example is if you have to access an internal
server but first have to connect through a public server for
added security; another is if you have to log in as one user
but then have to call out to sudo to edit a file as root on a
remote server.

Let’s start out with the simpler case of requesting sudo access
to /etc/fstab:

/sudo:root@localhost:/etc/fstab

As you can see, the syntax is identical to a normal remote
 connection — only we’re using sudo and we are con-
necting locally. You can usually omit root@ as is clever

The Practicals of Emacs

enough to guess it’s root. Keep in mind that this file is tech-
nically remote (in the sense) so the usual rules about
default-directory apply. Opening files with C-x C-f in a re-
mote buffer will open other files as sudo.

Multi-hopping in is usually done by customizing
tramp-default-proxies-alist but I find it a bit fiddly; the ad
hoc syntax is much easier:

/ssh:homer@powerplant|sudo:powerplant:/root/salary.txt

The example above connects to powerplant as homer. Then, an-
other ‘connection’ invokes sudo and opens /root/salary.txt
as a sudo’d user. It is very important that you repeat the host-
name in the sudo string or it will not work. As before, remote
files obey the same rules as earlier. Commands like M-x shell
will give you a root shell on powerplant if invoked from the
salary file.

Bookmarks

You can bookmark (see Bookmarks and Regis-
ters) remote files with C-x r m and will
automatically reconnect if you re-open a book-
mark later with C-x r b or C-x r l. Bookmarks
are extremely useful and a great time saver, espe-
cially for complex multi-hops.

Finally, I recommend you add this snippet to your init file.
It is a custom command that, when invoked as M-x sudo, uses
 to edit the current file as root:

The Practicals of Emacs

(defun sudo ()
"Use TRAMP to `sudo' the current buffer"
(interactive)
(when buffer-file-name
(find-alternate-file
(concat "/sudo:root@localhost:"

buffer-file-name))))

From the above, it’s easy to tweak the string and build multi-
hopped commands — if you are new to elisp and you need
multi-hops, consider it a fun first place to start learning.

Conclusion , in conjunction with Emacs’s built-in
shell support, and its windows and buffers, make it a
fine replacement for tmux & screen-based work
flows. By keeping the remote file editing inside Emacs,
you unify your environment and you greatly lessen
the mental context switching of having disparate
Emacs sessions. is a really powerful feature in
Emacs and one that is worth using over other alterna-
tives — it’ll never completely replace the incumbent
methods of remote editing but it’s a good place to
start.

Dired: Files and Directories
Both browsing and interacting with files and directories on
your file system are another task for which Emacs is emi-
nently well-suited. Aside from editing local files the usual
way, and remote files using , you can manipulate di-
rectories and files using Emacs’s directory editor, dired.

The Practicals of Emacs

To access dired, you can do so in multiple ways:

From IDO mode You can type C-d when finding files with
C-x C-f to open a dired buffer in that file’s current di-
rectory.

As a command The command M-x dired opens a prompt
that asks you for the dired location to open. It defaults
to default-directory, the directory the current buffer
is in. As with , if the file is remote Emacs will ask
you if you want a remote dired session.

As a key bind The key binding C-x d works identically to
the command above. The command, C-x 4 d, does the
same but in the other window.

When you open a dired buffer in Emacs, you’re greeted with
a view that looks similar to this:

/usr/share/dict:
total used in directory 2328 available 187646744
drwxr-xr-x 2 root root 4096 Feb 16 09:57 .
drwxr-xr-x 326 root root 12288 Mar 27 11:43 ..

-rw-r--r-- 1 root root 938848 Oct 23 2011 american-english
-rw-r--r-- 1 root root 938969 Oct 23 2011 british-english
-rw-r--r-- 1 root root 199 Jan 14 2014 select-wordlist

If you use the Linux command line, its output should look
familiar. That is because Emacs, in keeping with the spirit
of other commands like M-x grep, simply augment the out-
put from existing command line utilities. In this case, it is

The Practicals of Emacs

usually ls -al, but you can change the switches used by cus-
tomizing dired-listing-switches.

Microsoft Windows

If you use Microsoft Windows, then don’t
worry. Emacs includes a ls emulation layer
written in elisp. Instead of calling out to ls,
Emacs will instead query the operating system
directly. The end result is a seamless interface
that works across platforms.

As I talked about earlier, the concept of The Buffer and
Emacs’s “augmentation” system is a powerful and pragmatic
way of talking to external programs. When Emacs calls out
to ls, the output is inserted into the buffer, the dired-mode
activated, and the text augmented with highlighting and
hyperlinks and other hidden properties to help Emacs
navigate the text mechanically. The major mode itself
supplies the key bindings so that pressing RET on a file opens
it. Indeed, as with any buffer, you can copy the output of
dired as it is basically plain text.

Most Emacs beginners – and even intermediate users – never
really get to grips with dired. Most never get beyond navi-
gating directories with it, which is a shame because behind
its simple exterior is a very complex and efficient system for
file and directory operations. Indeed, there are more than
 dired commands alone.

The Practicals of Emacs

Navigation

Navigating dired is fairly straightforward and since it’s a
buffer, all your usual navigational aids work: Isearch, arrow
keys.

Keys Description

RET Visits the file or directory
ˆ Goes up one directory
q uits dired
n, p, C-n, C-p Moves the point up/down a listing

However, ˆ is the key you need if you want to go up one
directory to the parent of your current directory. The com-
mands C-n and n & C-p and p go down or up a line but also
reorient your point so it is positioned right before the file-
name.

When you press RET, Emacs will visit the file or directory; if
it is a directory, a new dired buffer is opened. So pressing q
after visiting a sub-directory should take you back to your
last dired buffer.

Marking and Unmarking

Marking and unmarking things is something you’ll do fre-
quently if you want to carry out operations on multiple files
or directories.

Keys Description

m Marks active

The Practicals of Emacs

Keys Description

u Unmarks active
U Unmarks everything
d Flags for deletion

An important distinction must be made between marking
and flagging for deletion: d flags for deletion (and a D is placed
next to the flagged item) and m marks. Marks are never af-
fected by the delete command, and vice versa, except for one
command that deletes marked files. Marked files are high-
lighted with *.

Marking and flagging both advance the point to the next
item (as though you’d typed C-n) but you can reverse direc-
tion with a negative argument.

Discover more

There are so many commands in dired that
listing all of them is not possible. I recommend
you apply the usual exploratory approaches
(Apropos, describing the mode, listing keys
bound to prefixes) to discover the rest.

Alternatively, you can try out my package,
Discover, that adds descriptive popup menus to
Emacs.

There are also mark commands that mark specific things:

The Practicals of Emacs

Keys Description

* m Marks region
* u Unmarks region
* % Marks files by regexp
* . Marks files by extension
t, * t Toggles marking
* c Changes mark

The prefix key * is full of mark commands. Shown above are
the four most practical ones for day-to-day use. The region
keys mark or unmark every dired item touched by an active
region. The regexp and extension mark commands are simi-
larly useful, and you can use * t to toggle (invert) the marks.

* c is special. It changes the mark symbol from old to new. So,
you can change * (the default mark symbol) to D and turn
the marked files into files flagged for deletion. However, as
deleting is practically the only thing you’d want to do with
flagged files, there is a special command that deletes flagged
files and another that deletes marked ones too.

Operations

You can carry out actions – or operations – on either the ac-
tive item (if there are no marked files in dired) or the marked
ones, if there are.

When you operate on marked files, Emacs will usually ask
you to confirm the action, and lists the affected files. Like
the mark commands, there are many operations you can do.
Let’s take a look at the basic ones first:

The Practicals of Emacs

Keys Description

g Refreshes dired buffer
+ Creates a sub-directory
C Copy marked
R Renames/moves marked
O chown marked
G chgrp marked
M chmod marked
D Deletes marked
x Deletes flagged
F Visits marked (requires dired-x)

Most of the keys above are self-explanatory. Just remember
the difference between x and D if you want to delete files.

Copying or renaming between dired buffers

You can copy or rename (move) files between
two windows with dired buffers if you cus-
tomize the option dired-dwim-target. Be careful
you don’t accidentally move files to an errant
dired buffer you forgot you had open — I’ve
made that mistake myself quite a few times!

Refreshing the dired buffer is necessary if the underlying file
system changes. Emacs will not, by default, track changes.
In part because it’d be annoying if you were in the process
of marking or otherwise altering the buffer. Therefore, you
must forcibly refresh dired by typing g. This command, inci-
dentally, is the universal refresh, revert or rerun something key.

The Practicals of Emacs

Dired-X

Some commands require dired-x. It’s a package
that for no good reason is not enabled by default
that, unfortunately, you have to manually enable.
Add this to your init file for it to take effect:

(require 'dired-x)

With dired-x installed you can use F, which visits all marked
files. Importantly, it will attempt to open files and give each
file its own window — which you may not want. To avoid
this, and open them in the background, type C-u F.

Keys Description

M-s a C-s ISearches all marked files
Q uery replace regexp marked files
! Shell command on marked files
& Async shell command on marked files

Occasionally, you have to either search through or replace
text in files and you can multi-file Isearch with the rather
awkward key binding M-s a C-s. The command, Q, does calls
C-M-% – query replace regexp – on every marked file — but
don’t forget to save the changes (C-x s to query to save every
unsaved buffer).

Call ! with no marks and dired will attempt to guess the
next operation on that file. If it’s a .zip file, it will ask if
you want to unzip it. If it’s a .patch file, Emacs will call
patch on it. There are many patterns specified in the variable

The Practicals of Emacs

dired-guess-shell-alist-default. It is a very useful feature.

With marks, the shell keys, ! and &, call out to a shell com-
mand. They take every marked file as arguments: either one-
per-shell command, or all of them passed to one command,
separated by spaces. The commands are then run either syn-
chronously (with !) or asynchronously with &.

Consider this scenario: we have two files american-english
and british-english and depending on how you phrase the
shell command, the behavior changes. You can optionally
specify either * or ?. * works like a shell’s file glob pattern
and Emacs inserts all marked files as one long argument to a
single command:

echo *

Prints:

american-english british-english

Whereas:

echo ?

Prints:

american-english
british-english

The output, if there is any, is printed in the echo area if it
is only a few lines. Otherwise, it is redirected to a dedicated
buffer called *Shell Command Output*.

The Practicals of Emacs

Working Across Directories

A common thing indeed: how do you mark files in /foo/ but
also /foo/bar/? The answer is the i command. Typing i on
a directory in dired inserts it in the same dired buffer as a
sub-directory. That means you can use the same mark and flag
commands across dired directories provided they are in the
same dired buffer. You can collapse a sub-directory – mean-
ing commands won’t apply to it while it is collapsed – with
$.

By inserting multiple directories into a shared dired buffer,
you can not only glance at multiple directories at the same
time but you can also work on them as though they were one
large directory. This is another powerful but underutilized
feature in Emacs.

There is another approach. However, typing i is tedious and
won’t work well if you recursively want to apply a dired or
shell command.

To get around that problem, you can use Emacs’s find wrap-
per commands. I consider these commands, combined with
the power of dired, to almost completely replace all direct
use of find and xargs. With dired’s shell command support
and extensive file operations, I can do in Emacs what most
people struggle to do well with find. Its unique query lan-
guage makes it hard to find exactly what you want. In Emacs,
you can find with broader strokes and mark what you need.

All commands take the output of find and build a dired
buffer relative to a starting directory. Emacs is clever
enough to notice the relative paths in what was the filename
portion of the buffer. All commands in dired work as usual.

The Practicals of Emacs

Commands Description

find-dired Calls find with a pattern
find-name-dired Calls find with -name
find-grep-dired Calls find and grep
find-lisp-find-dired Uses Emacs and regexp to find files

The first three commands call out to find, the command line
utility. find-dired, like with the grep commands, is the most
basic one: you have to give it a find pattern and a starting di-
rectory. find-name-dired finds by shell glob patterns against
the filename only, starting in a particular directory of your
choosing. find-grep-dired matches all files but only displays
the ones that match a pattern passed to grep.

Microsoft Windows

Microsoft Windows has a choice of installing
cross-compiled binaries like GNUWin or
Cygwin or using find-lisp-find-dired.

The command find-lisp-find-dired is Emacs’s elisp imple-
mentation of find-dired. It works on any platform and re-
quire no external tools. In return, it is not as powerful. Also,
it uses Emacs’s regular expression engine, and not shell glob-
bing.

Shell Commands
As the chapter on dired demonstrated, there are powerful
commands in Emacs that interact with the shell. For all other

The Practicals of Emacs

buffers, there are the far more general, but equally powerful,
shell commands that work on generic buffers.

Keys Description

M-! Calls shell command and prints output
C-u M-! As above, but inserts into buffer
M-& Like M-! but asynchronous
C-u M-& Like C-u M-! but asynchronous
M-| Pipes region to shell command
C-u M-| Likes M-| but replaces region

You can invoke any shell command with M-! and Emacs will
print its output in the echo area, if the text is only a few lines
long; or a dedicated buffer called *Shell Command Output* if
you used M-!, and *Async Shell Command* if you used M-&. Call-
ing either command with a universal argument will instead
insert the output into your current buffer at the point.

The M-| command is far more practical. It takes the region as
input and sends it to the standard input of a shell command
of your choosing and returns the output in much the same
way as M-!: either in the echo area or a dedicated buffer. Call-
ing the command with a universal argument, the active re-
gion is replaced instead; that makes C-u M-| extremely useful
for oand calls to commands like uniq or other command
line tools that modify their input.

Although M-& is asynchronous – that is, it won’t block
Emacs until it terminates – it is a rather poor choice for
long-running tasks. It’s far better to use M-x compile.

The Practicals of Emacs

Compiling in Emacs

Calling out to shell commands is meant for quick, one-off
commands and usually not something you regularly do,
over and over. For that purpose, you should consider
Emacs’s M-x compile command that, despite its name, excels
at more than just compilation.

Commands Description

M-x compile Runs a command, and tracks errors
M-x recompile Re-runs last command
M-g M-n, M-g M-p Jumps to next/previous error (global)
g Re-runs last command

When you invoke M-x compile, you are asked for a command
and Emacs kindly assumes you’re using make. However, you
are free to replace it with any command of which you want
to track the output: unit tests, compiling, running a script

— you name it.

The main advantage of M-x compile is the M-x recompile, as
it re-runs your last command. Compile also tracks errors
thanks to its pattern matching engine. Like M-x grep and M-x
occur, the M-g M-n and M-g M-p commands will jump through
a call stack or compiler error log provided their formatting
matches one Emacs knows. Everything from Python to
most compilers are known to Emacs, so it will probably
work for yours too.

The Practicals of Emacs

Shells in Emacs
Instead of using an external terminal emulator – or running
Emacs in a terminal just so you can use it with tmux or screen
– why not use Emacs as the “multiplexer” and use Emacs to
run your shell instead? Combined with and Emacs’s
tiling window management and buffer support, you can re-
place almost all common use cases of dedicated terminal em-
ulators.

There are three ways of interacting with shells – like bash – in
Emacs. One is a simple wrapper around an external, existing
shell (like bash) called M-x shell; another is a complete shell
implementation written in elisp called M-x eshell; and the
third is a terminal emulator called M-x ansi-term.

All three are very powerful and each attempts to solve the
problem in their own special way. Whichever one you use
(and you may well end up using more than one) comes with
a number of trade-offs.

All three, however, use elisp to either communicate with an
external program, or to implement a shell in Emacs, or to in-
terpret the terminal control codes needed to render complex,
interactive programs like top. All three also use Emacs’s pow-
erful buffer paradigm – that by now you are quite familiar
with – to provide a unified interface for all three implemen-
tations.

The buffer paradigm is especially powerful here as the abil-
ity to communicate with external programs or directly with
the operating system is part of what makes Emacs such a pow-
erful editor. You gain all the editing and movement com-
mands, and the power of elisp, in a buffer that is simultane-

The Practicals of Emacs

ously used for more traditional things like text editing but
now also for far more advanced and specialized things like
interacting with bash. And because both extremes share a
common ground – the buffer – you don’t have to re-learn an
entirely new system; no more fretting with hand-selecting
text in a terminal emulator with a mouse just to copy it into
your text editor or web browser. In Emacs, it is all text and
all the movement and editing commands you are familiar
with work exactly the same here.

M-x shell: Shell Mode

Shell mode in Emacs calls out to an external program – such
as bash on Linux or cmd.exe on Windows – and either redi-
rects stdin, stdout and stderr on Windows, or through a
pseudo-terminal (on Linux) so you can interact with the un-
derlying shell through Emacs.

Because Emacs redirects /, you gain all the benefits and
downsides that go with that, however. For instance, you
cannot use your shell’s native TAB-completion mechanism. In-
stead, you have to use Emacs’s own (which is more powerful
in some respects). The flip side to the coin is that a shell mode
buffer is entirely text: you can edit and delete output from
commands and you can kill and yank text to and from the
buffer with ease. That makes shell mode flexible but polar-
izing. Programs like top and man don’t work at all, or if they
do, they don’t work well.2

I personally use shell mode for almost all my command line

Thankfully, you can use M-x proced and M-x man as replacements for
both.

The Practicals of Emacs

needs. I use very few interactive terminal programs and
when I need to I can use Emacs’s M-x ansi-term for proper
terminal emulation.

The upsides: free-form text editing and movement be-
cause shell mode is just a simple buffer outweighing the
downsides.

 readline and defaults

Most Linux distributions use readline – a li-
brary – to provide basic command prompt func-
tionality, like: command history, search and re-
place commands and other useful features. They
are, by default, Emacs key bindings. If you know
one, you can mostly apply the same ones here
and vice versa. And that goes for general editing
and movement commands too.

Here are some of the most useful commands. Unfortunately,
they are all over the place in terms of bindings.

Keys Description

M-p, M-n Cycles through command history
C-<up>, C-<down> Cycles through command history
M-r ISearches history backward
C-c C-p, C-c C-n Jumps to previous / next prompt
C-c C-s Saves command output to file
C-c C-o Kills command output to kill ring
C-c C-l Lists command history
C-d Deletes forward char or sends ˆD
C-c C-z Sends stop sub job

The Practicals of Emacs

Keys Description

TAB Completes at the point

Both M-p, M-n, C-<up> and C-<down> cycle through the com-
mand history in much the same way that using the up and
down arrow keys would in normal terminal emulators. In
Emacs, they literally move the point around in the buffer
though this always confuses people not used to shell mode.

M-r is triggers the history reverse Isearch. It’s a very power-
ful command that is worth learning. C-d deletes a character
ahead of the point, as it would anywhere else. However, if
there is no input (meaning you haven’t typed anything at a
prompt), Emacs will send the control code EOF to terminate
the running program. Similarly, C-c C-z does the same as C-z
in bash does for job control.

One nifty feature of shell mode is the ability to save the out-
put of the last command to a file with C-c C-s, and to send
it straight to your kill ring with C-c C-o.

TAB deserves its own special mention. Shells like bash feature
their own complex completion mechanisms, and not just for
files and paths. Emacs does too. You can complete things like
hostnames for commands like ssh or groups and owners for
chown.

M-x ansi-term: Terminal Emulator

Emacs has its own -capable terminal emulator. Invoking
M-x ansi-term and selecting a shell, you can run interactive
programs like top or even vim and emacs.

The Practicals of Emacs

Its main downside is its slowness and some obscure terminal
emulation features are not supported.

Keys Description

C-c C-j Switches to line mode
C-c C-k Switches to character mode

By default, ansi-term acts like a regular terminal emulator
and not like shell mode or a typical Emacs buffer. However,
you can switch between two different modes: line mode,
which is like a typical Emacs buffer; and character mode,
which is like a normal terminal emulator.

The default mode is character mode and that means most keys –
including keyboard characters, and not just Emacs key bind-
ings – are sent directly to the underlying shell program, by-
passing Emacs entirely. There is an escape character, C-c, that
Emacs intercepts so commands like C-c C-j and C-c C-k are
not sent to the sub-program. So if you want to send C-c to
the sub-program, you must type C-c C-c.

If you want the most faithful terminal experience in Emacs,
 term is your best bet. I find the hassle of switching be-
tween line and character mode rather cumbersome so I pre-
fer to use shell mode instead.

M-x eshell: Emacs’s Shell

It shouldn’t come as much of a surprise that someone has
written an entire shell in elisp. When you run M-x eshell, you
are using a shell that is written in elisp, that communicates,

The Practicals of Emacs

through Emacs, with the underlying host operating system
and provides an excellent facsimile to a typical Linux-style
bash shell, complete with elisp-emulated coreutils com-
mands like ls, cp, cd, and many more.

In practice, that means you get a consistent shell across all
platforms on which Emacs runs. Combined with native
 support and the ability to redirect the output of
commands straight into an Emacs buffer, you have a tool
that is versatile, powerful and very much in the spirit of
Emacs.

Eshell is more akin to shell mode than term. It does
not support interactive programs like top, preferring instead
to open a dedicated M-x ansi-term instance to run those pro-
grams when you call them from Eshell — a clever and prag-
matic solution to the problem.

Another important difference is that although Eshell is
inspired by shells like bash, it is, in fact, its own shell
implementation with all the quirks, features and limitations
that go with it. It must be said that Eshell is an elisp shell
first and foremost, as every command you type into Eshell
is first filtered through Eshell’s own emulation layer, then
through Emacs’s own interactive commands, and then
finally through programs in your $PATH or in the current
directory. For instance, you can type dired . to open a M-x
dired session in the current directory, or find-file todo.org
to open todo.org in your currently-running Emacs.

Chapter

Conclusion

“Emacs is the ground. We run around and act
silly on top of it, and when we die, may our rem-
nants grace its ongoing incrementation.”

– Thien-Thi Nguyen, comp.emacs.

How do you master a text editor as diverse as Emacs?

The answer, surprisingly, is simple: by knowing how to ask
it the right questions. As I talked about in Emacs as an Op-
erating System, the very fabric of Emacs is modifiable and
extensible through elisp. So, the only way to truly under-
stand what happens in Emacs is to ask it — simple, but true.
And asking Emacs is what all Emacs masters do. Whether
it is to check what a key is bound to or what exactly a com-
mand does, it is part and parcel of what defines Emacs mastery.
Yes, knowledge of elisp is a big help but it is not an absolute
requirement.

Conclusion

Throughout this book, I have written about features and
functions and my own personal views on what is worth fo-
cusing on and what isn’t. That is the truly practical, overar-
ching aspect to this book. The deeper lesson – and what was
ultimately the linchpin moment for me when I first started
learning Emacs – is understanding how to ask Emacs questions.
Not remembering a key or a command is perfectly natural,
especially when you’re still learning, but knowing that
Emacs can tell you what it does, even if you have heavily
modified or altered your key bindings, is what will ulti-
mately help you truly master Emacs. Forgetting what C-x
r l does is immaterial when you can use C-h k to find out;
and partially remembering what something does is also not
important when you can append C-h to any prefix key to
describe all the keys bound to it.

The long-term goal of any Emacs user is to reach a point
where they can seek answers to questions they have by ask-
ing Emacs. Eventually, you’ll commit to muscle memory
the commands and keys you use most frequently, and the
rest, well, you can always look them up.

Use Emacs long enough – and those of you who have
reached this point already will probably agree with me –
and one day it just clicks. And when it does, it’s not because
you have managed to memorize a thousand key bindings.
It’s because Emacs is no longer an opaque box but a very
open and transparent one that you can peer into, modify
and observe the results of those changes.

The reading order of this book is presented in the same way
that I would teach someone Emacs if they sat next to me. Un-
derstanding the terminology is important as it lays a founda-

Conclusion

tion; next is the most basic of keys and commands so you
can use Emacs; and then comes the movement and editing
commands, followed by some practical examples to help re-
inforce what you have learned and to give you some ideas
on where to go from there.

Finally, I want to touch on what you should do once you feel
you have nothing more to learn from this book. The natural
next step is learn elisp; it’s a fun language, even if the di-
alect lacks a lot of the bells and whistles of more modern
s. Learn and you’ll appreciate why curmudgeonly
old-timers decry “modern” programming languages as infe-
rior versions of — and they’re half-right, too. Once you
see ’s data-as-code concept in action – and you will as it
is used everywhere in Emacs – you’ll wonder why you never
learned it earlier.

Further Reading My own blog, Mastering Emacs, is full
of in depth articles that you should consider reading
next. A lot of the third-party packages like mode
or Emacs’s Eshell are described in far greater detail on
the website.

Other Resources
There are many community sites and blogs on the Internet.
Here is a non-exhaustive list of some of the ones I recom-
mend.

Reddit There is a lively community of Emacs users on the
subreddit /r/emacs. It is a small but friendly place and a

Conclusion

useful source of up-to-date information on Emacs and
new third-party packages.

StackExchange Emacs now has its own site on StackEx-
change:

http://emacs.stackexchange.com/

It is another great place to ask questions.

Freenode If you prefer live chat the #emacs channel on
Freenode is the go-to place for Emacs information. As
with all channels how busy it is waxes and wanes
with the time of day, but there are many knowledge-
able people who frequent it.

Blogs There are many excellent Emacs blogs nowadays. I
like the following:

• Sacha Chua
http://sachachua.com/blog/

• Irreal’s Emacs blog
http://irreal.org/blog/

• Artur Malabarba
http://endlessparentheses.com/

• Sebastian Wiesner
http://www.lunaryorn.com/

• Bozhidar Batzov
http://batsov.com/

• John Kitchin
http://kitchingroup.cheme.cmu.edu/blog/

http://emacs.stackexchange.com/
http://sachachua.com/blog/
http://irreal.org/blog/
http://endlessparentheses.com/
http://www.lunaryorn.com/
http://batsov.com/
http://kitchingroup.cheme.cmu.edu/blog/

Conclusion

However, almost all of the blogs above – and many
more – are found on the excellent Planet Emacs aggre-
gator:

http://planet.emacsen.org/

Emacs And then there’s Emacs. It is, and always will be, the
authoritative source of information for your Emacs.

http://planet.emacsen.org/

	Contents
	Introduction
	Thank You
	Intended Audience
	What You'll Learn

	The Way of Emacs
	Guiding Philosophy
	LISP?
	Extensibility

	Important Conventions
	The Buffer
	The Window and the Frame
	The Point and Mark
	Killing, Yanking and CUA
	.emacs.d, init.el, and .emacs
	Major Modes and Minor Modes

	First Steps
	Installing and Starting Emacs
	Starting Emacs

	The Emacs Interface
	Keys
	Caps Lock as Control
	M-x: Execute Extended Command
	Universal Arguments
	Discovering and Remembering Keys

	Configuring Emacs
	The Customize Interface
	Evaluating Elisp Code
	The Package Manager
	Color Themes

	Getting Help
	The Info Manual
	Apropos
	The Describe System

	The Theory of Movement
	The Basics
	C-x C-f: Find file
	C-x C-s: Save Buffer
	C-x C-c: Exits Emacs
	C-x b: Switch Buffer
	C-x k: Kill Buffer
	ESC ESC ESC: Keyboard Escape
	C-/: Undo

	Window Management
	Working with Other Windows

	Frame Management
	Elemental Movement
	Navigation Keys
	Moving by Character
	Moving by Line
	Moving by Word
	Moving by S-Expressions
	Other Movement Commands
	Scrolling

	Bookmarks and Registers
	Selections and Regions
	Selection Compatibility Modes
	Setting the Mark

	Searching and Indexing
	Isearch: Incremental Search
	Occur: Print lines matching an expression
	Imenu: Jump to definitions
	Helm: Incremental Completion and Selection
	IDO: Interactively DO Things

	Other Movement Commands
	Conclusion

	The Theory of Editing
	Killing and Yanking Text
	Killing versus Deleting
	Yanking Text

	Transposing Text
	C-t: Transpose Characters
	M-t: Transpose Words
	C-M-t: Transpose S-expressions
	Other Transpose Commands

	Filling and Commenting
	Filling
	Commenting

	Search and Replace
	Case Folding
	Regular Expressions

	Changing Case
	Counting Things
	Text Manipulation
	Editable Occur
	Deleting Duplicates
	Flushing and Keeping Lines
	Joining and Splitting Lines
	Whitespace Commands

	Keyboard Macros
	Basic Commands
	Advanced Commands

	Text Expansion
	Abbrev
	DAbbrev and Hippie Expand

	Indenting Text and Code
	RET: Indenting New lines
	TAB: Indenting the Current Line
	Indenting Regions

	Sorting and Aligning
	Sorting
	Aligning

	Other Editing Commands
	Zapping Characters
	Spell Checking
	Quoted Insert

	The Practicals of Emacs
	Exploring Emacs
	Reading the Manual
	Using Apropos
	C-h: Exploring Prefix keys
	C-h k: Describe what a key does
	C-h m: Finding mode commands

	Working with Log Files
	Browsing Other Files

	TRAMP: Remote File Editing
	Multi-Hops and User Switching

	Dired: Files and Directories
	Navigation
	Marking and Unmarking
	Operations
	Working Across Directories

	Shell Commands
	Compiling in Emacs

	Shells in Emacs
	M-x shell: Shell Mode
	M-x ansi-term: Terminal Emulator
	M-x eshell: Emacs's Shell

	Conclusion
	Other Resources

