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Summary. Our understanding of amino acid biosynthesis in plants has grown 
by leaps and bounds in the last decade. It appears that most of the amino acid 
biosynthesis takes place in the chloroplast. Recent demonstration of glutamine 
synthetase and DAHP synthase in the vascular tisuue has added a new dimen- 
sion in the complexity of the nitrogen cycle in plants. Isolation of various genes 
and transformation of plants with the modified forms of the genes are providing 
tools for understanding the regulation of various pathways. Plant transforma- 
tion approaches are also going to provide the food of the future with an improved 
amino acid composition. 
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Introduction 

The first crystals of amino acids were obtained from asparagus juice in 1806. 
These crystals were later identified as asparagine and aspartate (see review by 
Meister, 1992). Despite this discovery made 188 years ago, most of the progress 
in understanding amino acid biosynthesis in plants has been made in the last 
two decades. Approximately 60 enzymes are involved in the biosynthesis of the 
20 protein amino acids. Many of these enzymes are present as multiple isoforms. 
There appear to be alternate routes of synthesis of certain amino acids and the 
isoforms may be used either in different compartments, different developmental 
stages or under different environmental conditions. There is a large number of 
secondary metabolites which are derived from amino acids. Evidence is now 
emerging that the requirements of plants for these metabolites also regulate the 
flow of carbon through these pathways. In the 1980's, it was discovered that 
several classes of highly successful commercial herbicides with excellent environ- 
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mental and toxicological properties inhibit essential amino acid biosynthesis in 
plants. These discoveries, combined with the continued interest in improving the 
nutritional quality of food, increasing the nitrogen use efficiency of crops, etc., 
have led to an explosion in the literature on amino acid biosynthesis in plants. 
In this review, we attempt to highlight the most recent progress made on various 
aspects of amino acid biosynthesis in plants. 

Glutamine 

Glutamine synthetase (GS) is a key enzyme involved in nitrogen assimilation 
and distribution. Multiple forms of GS appear to be differently expressed in 
plants due to their distinctive roles in plant metabolism. An ammonia-regulated 
soybean gene encoding the cytosolic form of glutamine synthetase (GS) was 
cloned via complementation in an Escherichia coli 91n A-  mutant and expressed 
in transgenic Lotus corniculatus. A 3.5 kb promoter fragment of a genomic 
clone of GS was fused with the uidA gene encoding the reporter enzyme, 
/%glucuronidase (GUS). The gene fusion was expressed in the root apices and 
vascular bundles. Ammonia increased expression of the gene (Maio et al., 1991). 

A full length cDNA encoding the plastidic form of glutamine synthetase was 
cloned from tobacco leaf RNA by Becker et al. (1992). The cDNA encodes a 
polypeptide of 432 amino acids, which would have a molecular mass of 47.2 
KDa. The protein resembles the GS-2 isoform. Phytochrome mediated light 
stimulation of expression of the GS-2 gene was noted (Becker et al., 1992). 

Glutamine synthetase from Phaseolus vulgaris root nodules consists of/~ and 
7 subunit polypeptides which are very similar. Antibodies made to small, dissimi- 
lar regions within the sequences reacted specifically with each subunit (Cai et 
al., 1992). These antibodies should be useful tools in further studies ofGS subunit 
expression. 

The gene encoding the plastid form of glutamine synthetase was cloned from 
P. vulgaris. A fusion of the upstream 2.3 kb region of the gene with the uidA gene 
encoding reporter enzyme,/%glucuronidase (GUS) allowed promoter regions 
encoding tissue-specific expression and light regulation to be identified (Cock et 
al., 1992). Tissue print immunoblots of rice indicate that GS1 is located in large 
and small vascular bundles of the leaf blade. GS-2 and Fd-GOGAT are located 
in mesophyll cells. (Kamachi et al., 1992). 

A novel glutamine synthetase has been cloned from developing maize kernels 
(Salazar et al., 1993) by screening a cDNA library made from developing kernels 
using monoclonal antibodies specific to GS forms expressed in developing 
kernels. 

Aromatic amino acids 

Genes encoding 3-deoxyarabinoheptulosonate-7-phosphate (DAHP) synthase 
(Dyer et al., 1990; Keith et al., 1991), shikimate kinase (Schmid et al., 1992), 
5-enolpyruvylshikimate-3phosphate (EPSP) synthase (Barry et al., 1992), 
chorismate synthase (Schaller et al., 1991), anthranilate synthase (Niyogi and 
Fink, 1992; Niyogi et al., 1993), phosphoribosyl anthranilate transferase (Rose 
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et al., 1992), and the/~-subunit of tryptophan synthase (Berlyn et al., 1989; Last 
et al., 1991) have been cloned. All of the isolated genes contain a chloroplast 
transit peptide sequence which is consistent with the chloroplastic localization 
of this pathway. Complete and separate pathways of aromatic amino acid 
biosynthesis in chloroplasts and cytosol have been proposed by Jensen (1986) 
based on detection of activities of DAHP synthase and chorismate mutase in 
the two compartments. Since all of the genes isolated thus far contain a putative 
chloroplast transit peptide sequence, the whole aromatic amino acid pathway 
should be present exclusively in the chloroplasts. Interestingly, histological 
studies using antibodies against DAHP synthase did not reveal a significant 
amount of immunogold label in the chloroplasts. Surprisingly, secondary cell 
walls of the vascular tissue were intensely labeled (Herrmann et al., 1992). This 
intriguing observation is similar to the demonstration of glutamine synthetase 
activities in the vascular tissues (Kamachi et al., 1992). These results may be 
important in understanding nitrogen metabolism in plants. 

Of all the enzymes involved in the aromatic amino acid biosynthetic path- 
way, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is by far the most 
studied enzyme because it is the target site of glyphosate. Several crop species 
have been transformed with a bacterial EPSP synthase gene which produces an 
enzyme with reduced sensitivity to glyphosate or with a gene that produces an 
enzyme that can metabolize glyphosate (Barry et al., 1992). These transformants 
are claimed to have commercial levels of tolerance to glyphosate. 

Identification of tryptophan synthase mutants have questioned the age- 
old belief that tryptophan is the sole precursor for indole acetic acid (IAA) 
(Bandurski and Nonhebel, 1989). Examination of tryptophan and IAA levels in 
normal and orp (orange pericarp) mutant seedlings of maize revealed 50-fold 
higher levels of IAA in the orp mutant despite a 75~ reduction in tryptophan 
content compared to the control (Wright et al., 1991). Additionally, stable 
isotopes of tryptophan were not incorporated into IAA by the mutant or normal 
seedlings. Further studies will demonstrate the true biosynthetic pathway for 
IAA. 

Until recently, it was believed that regulation of chorismate mutase and 
anthranilate synthase at the branch point were the only means of controlling 
the flux of carbon through this pathway (see the references in Singh et al., 1991). 
However, it is now clear that carbon flux through this pathway is not only 
regulated by feedback inhibition of these enzymes but also by controlling the 
level of expression of pathway enzymes. Recent studies on DAHP synthase (Dyer 
et al., 1989; McCue and Corm, 1989), chorismate mutase (Kuroki and Corm, 
1988), and anthranilate synthase (Niyogi and Fink, 1992; Poulsen et al., 1993) 
have clearly demonstrated increased expression of these enzymes due to wound- 
ing, exposure to fungal elicitors, or high light intensity. Therefore, in order to 
meet the transient needs for the intermediates or end products of this pathway, 
plants upregulate the carbon flux by increasing the expression of key enzymes 
of this pathway. However, feedback inhibition of key enzymes of this pathway 
may be the means to down regulate the flow of carbon through this pathway. 
Future studies will reveal the co-ordination of regulation by the mechanisms 
described above. 
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Aspartate family 

Aspartate is synthesized by aspartate aminotransferase (AAT), which is found 
in multiple forms located in different compartments of the plant cell. In carrot, 
several isoforms of AAT are present. A major form present in carrot cell 
suspension cultures was isolated and examined (Turano et al., 1991). It has the 
characteristics of a cytosolic AAT. Amino acid sequences obtained from this 
AAT allowed the cloning of a cDNA encoding AAT (Turano et al., 1992). The 
clone has high identity to sequences encoding cytoplasmic forms of AAT from 
other plants and does not appear to have a transit polypeptide, which is consis- 
tent with its cytoplasmic localization. It is highly expressed in roots but not in 
leaves. 

In soybean, at least five forms of AAT can be separated on electrophoretic 
gels (Wadsworth et al., 1993). Genes encoding three of these forms have been 
cloned, one plastidic (Wadsworth et al. 1993), one mitochondrial (Matthews et 
al., 1993) and one cytosolic (Matthews et al., 1993). Each has been functionally 
expressed in E. coli and antibody has been prepared to the plastidic and 
mitochondrial forms. 

Similar advances have occurred in elucidating alfalfa aspartate amino- 
transferase gene families and their location and regulation. Two genes have been 
cloned encoding alfalfa AAT-1 (Udvardi and Kahn, 1991) and AAT-2 (Gantt et 
al., 1992), respectively. AAT-1 appears to be the cytosolic form and is induced 
during nodule development, while AAT-2 is highly homologous to the soybean 
plastidic AAT and contains a putative plastid-targeting peptide. 

Aspartokinase (AK), the first enzyme in the pathway leading to lysine, 
threonine and methionine biosynthesis, exists as a bifunctional enzyme contain- 
ing homoserine dehydrogenase (HSDH) activity (Wilson et al., 1991; Weisemann 
and Matthews, 1993). This parallels the situation in E. coli, except that E. coli 
also contains a gene encoding only AK activity. No plant gene encoding only 
AK activity has been conclusively identified at this time. AK-HSDH genes 
have been cloned from carrot (Weisemann and Matthews, 1993), Arabidopsis 
(Ghislain et al., in press), maize (Muehlbauer et al., 1993) and soybean (Gebhardt 
et al., 1993). A small family of genes encoding AK-HSDH is present in soybean, 
one of which maps close to the Rhg4 locus encoding soybean cyst nematode 
resistance (Weisemann et al., 1992). Four maize cDNA clones have been isolated 
which encodedifferent AK-HSDH isoforms. One clone maps to maize chromo- 
some 2, another to chromosome 4 (Muehlbauer et al., 1993). 

DHDPS, the branch-point enzyme leading to lysine synthesis, has been 
cloned recently from wheat (Kaneko et al., 1990), maize (Frisch et al., 1991) and 
soybean (Silk and Matthews, 1993). The two different wheat clones encode 
dissimilar, putative chloroplast polypeptides and encode conserved mature por- 
tions (94% identical). Only one gene encoding DHDPS has been identified in 
soybean. It is similar to the genes from monocots in that it also encodes a 
putative chloroplast polypeptide. The soybean cDNA encoding DHDPS has 
been functionally expressed in E. coli and is more highly sensitive to inhibition 
by lysine than E. coli DHDPS. 

Animals obtain essential amino acids from plant sources. One interest in the 
biochemistry and molecular biology of amino acid production is to learn how 
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essential amino acids are synthesized and how these pathways are regulated, so 
the pathways may be engineered to increase the amounts of essential amino acids 
in edible portions of the plant. Advances in nutritional improvement of the 
aspartate family of amino acids in crops has been recently reviewed (Matthews 
and Hughes, 1993). Currently, some of the strategies to increase levels of essential 
amino acids are being tested. These include mutant selection, modifying seed 
storage proteins, synthesizing new seed storage proteins, altering genes encoding 
enzymes regulating the synthesis of essential amino acids and using bacterial 
genes corresponding to genes encoding key plant enzymes controlling produc- 
tion of essential amino acids. The bacterial genes encode enzymes with regula- 
tory properties different from those found in plants thus allowing over produc- 
tion of certain amino acids. 

Recently, the E. coli dapA gene encoding DHDPS has been expressed in the 
chloroplasts of tobacco leaves (Shaul and Galili, 1992; Perl et al., 1993). Free 
lysine was elevated but no increase in protein-bound lysine was noted. No 
increase in lysine occurred when DHDPS was targeted to the cytosol, indicating 
a requirement for DHDPS to be translocated into the chloroplast where the 
other lysine synthesizing enzymes are found. Similar studies using potato indi- 
cate that E. coli DHDPS expressed in potato plants can increase free lysine levels 
(Perl et al., 1992) 

A double mutant of Nicotiana sylvestris has been isolated which contains 
AK and DHDPS enzymes with altered feedback regulation. The mutant plant 
overproduced lysine (Frankard et al., 1992) and had altered morphology and 
development, probably due to increased free lysine levels. 

Branched chain amino acids 

The branched chain amino acid biosynthetic pathway is unique in the sense that 
a set of 4 enzymes carry out reactions in parallel pathways using different 
substrates leading to the biosynthesis of isoleucine or valine and leucine. A 
cDNA clone encoding threonine dehydratase (TD), the first enzyme in the 
isoleucine biosynthetic pathway, has been isolated from tomato (Samach et al., 
1991). Surprisingly, the level of TD mRNA was > 50-fold higher in sepals and 
> 500-fold higher in the rest of the flower than in roots or leaves. However, the 
reason for such high levels of expression of biosynthetic TD mRNA in flowers 
is not understood. TD was believed to be present only as a feedback regulated 
form of the enzyme in higher plants. However, an isoleucine insensitive form of 
the enzyme has been identified and characterized in senescing tomato leaves 
(Szamosi et al., 1993). Isoleucine insensitive TD activity is first noticed when the 
leaf starts to show the symptoms of senescence. The highest specific activity of 
the enzyme is observed in the old, yellowish senescing leaves. During senescence, 
amino acids are liberated due to protein degradation. The new form of recently 
identified TD will degrade threonine and serine to release ammonia which can 
be converted to glutamine by glutamine synthetase. Glutamine can then be 
transported to the growing point or the storage tissue. Appearance of the 
isoleucine-insensitive enzyme suggests a role for this enzyme in remobilization 
of nitrogen during plant senescence. 
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Acetohydroxyacid synthase (AHAS) is the first enzyme common to the 
synthesis of the branched chain amino acids, cDNAs encoding AHAS have been 
isolated from several species, e.g. Arabidopsis, canola, corn, tobacco etc. (see 
Keeler et al., 1993 and references cited therein). Messages for AHAS are most 
prevalent in the dividing cells of developing organs (Keeler et al., 1993) which is 
consistent with the enzyme activity data (Stidham and Singh, 1991) and the 
studies monitoring the flux of carbon through this pathway (Singh et al., 1994). 
A cDNA clone encoding ketoacid reductoisomerase (KARl) has been isolated 
from a spinach expression library (Dumas et al., 1991). The deduced amino acid 
sequence shows the "fingerprint" region of NAD(P)H-binding site reported in 
several NAD(P)H-dependent oxidoreductases. There appears to be a single 
KARI gene per haploid genome of spinach. A cDNA for 3-isopropylmalate 
dehydrogenase (IPMDH) from Brassica napus has been isolated using functional 
complementation of yeast (Ellerstorm et al., 1992). All of the cDNAs isolated for 
AHAS, KARI and IPMDH contain a chloroplast transit peptide sequence, 
consistent with the chloroplastic localization of the branched chain amino acid 
biosynthetic pathway. 

The branched chain amino acid biosynthetic pathway has received a great 
deal of attention in the last decade because of the discovery that two classes 
of highly successful commercial herbicides, imidazolinones and sulfonylureas, 
inhibit AHAS. Highly favorable environmental properties and high potency 
of these herbicides have led to the development of herbicide resistant crops 
(Newhouse et al., 1991, 1992). Imidazolinone resistant lines of corn, the first 
commercial agricultural biotechnology product, were introduced in 1991. 

Phenomenal commercial success of the AHAS inhibiting herbicides has 
prompted a search for inhibitors of other enzymes of this pathway. Two po- 
tent inhibitors of KARI have been reported which have good herbicidal 
activity (Schulz et al., 1988; Wittenbach et al., 1992). Both inhibitors, Hoe 704 
(2dimethylphosphinoyl-2-hydroxyacetate) and N-isopropyl oxalylhydroxamate 
(IpOHA), are substrate analogs. O-isobutenyl oxalylhydroxamate, which is 
herbicidal at 400 g/ha, has been identified as an inhibitor of isopropylmalate 
dehydrogenase (Wittenbach et al., 1992). A herbicidal inhibitor of isopropylmal- 
ate isomerase, 1-hydroxy-2-nitro-cyclopentane-l-carboxylic acid, has also been 
recently reported (Hawkes et al., 1993). Only time will tell if inhibitors of any 
other enzyme in this pathway will be as commercially successful as the AHAS 
inhibitors. 

Proline biosynthesis 

• Despite the implicated role of proline in stress tolerance, the proline biosynthetic 
pathway has only recently been elucidated in higher plants. A eDNA clone 
that encodes pyrroline-5-carboxylate synthase (P5CS), a bifunctional enzyme 
containing glutamate kinase and glutamate semialdehyde dehydrogenase activi- 
ties, has been isolated from Viffna aconitifolia (Hu et al., 1992). The bifunctional 
enzyme is feedback inhibited by proline. In the same laboratory, a eDNA clone 
for P5C reductase was isolated from a soybean root nodule library (Delauney 
and Verma, 1990). Two to three copies of this gene were found in the soybean 
genome and the message was found in nodules, roots and leaves. Salt stress 
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induced the expression of P5CS and P5CR which indicates a role of these 
enzymes in proline biosynthesis and osmoregulation in plants. However, a 
50-fold overexpression of P5C reductase did not increase the proline content of 
transgenic tobacco plants suggesting that the reaction catalyzed by this enzyme 
may not be the rate limiting step for proline biosynthesis (Szoke et al., 1992). 

An alternate route of P5C synthesis from ornithine by ornithine amino- 
transferase (OAT) has been proposed in Vigna aconitifolia (Delauney et al., 1993). 
Under normal physiological conditions, both glutamate and ornithine pathway 
contribute to proline biosynthesis. Salt stress and nitrogen starvation causes 
depression of OAT mRNA with a concomitant elevation of P5CS transcripts. In 
contrast, under excess nitrogen conditions, OAT transcripts were more abun- 
dant while P5CS mRNA remained at the constitutive levels. These results 
indicate the utilization of different pathways of proline biosynthesis under 
different environmental conditions. 
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