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Contact of nominally flat surfaces

By J. A. GREENW00OD AND J. B. P. WILLIAMSON
Burndy Corporation Research Division, Norwalk, Connecticut, U.S.A.

(Communicated by F. P. Bowden, F.R.S.—Received 28 April 1966)

It is usually assumed that the real area of contact between two nominally flat metal surfaces is
determined by the plastic deformation of their highest asperities. This leads at once to the result
that the real area of contact is directly proportional to the load and independent of the apparent
area—a result with many applications in the theories of electric contacts and friction. Archard
pointed out that plastic deformation could not be the universal rule, and introduced a model
which showed that, contrary to earlier ideas, the area of contact could be proportional to the
load even with purely elastic contact.

This paper describes a new theory of elastic contact, which is more closely related to real
surfaces than earlier theories. We show how the contact deformation depends on the topography
of the surface, and establish the criterion for distinguishing surfaces which touch elastically
from those which touch plastically. The theory also indicates the existence of an ‘elastic contact
hardness’, a composite quantity depending on the elastic properties and the topography, which
plays the same role in elastic contact as the conventional hardness does in plastic contact.

A new instrument for measuring surface topography has been built; with it the various
parameters shown by the theory to govern surface contact can be measured experimentally.
The typical radii of surface asperities have been measured. They were found, surprisingly, to be
orders of magnitude larger than the heights of the asperities. More generally we have been able
to study the distributions of asperity heights and of other surface features for a variety of
surfaces prepared by standard techniques. Using these data we find that contact between
surfaces is frequently plastic, as usually assumed, but that surfaces which touch elastically are
by no means uncommon in engineering practice.

INTRODUCTION

It has long been realized that surfaces are rough on a microscopic scale, and that
this causes the real area of contact to be extremely small compared to the nominal
area. The calculation of the area of contact, or even the prediction of how this varies
with load, is very difficult. Early attempts to do this by applying the Hertzian theory
of contact between spheres to individual contact spots met with two difficulties: the
area of the contact spot depends on the radius of the asperity, which is not usually
known; and the predicted variation of area with load proved to be incorrect. Both
these obstacles were removed when Holm introduced the idea that although the
overall stresses are in the elastic range the local stresses at the contact spots are
much higher so that the elastic limit will be exceeded and the contact will yield
plastically; each contact can then be visualized as a small hardness indentation, so
that the mean contact pressure will be equal to the hardness and effectively
independent of the load and the contact geometry. This has been a highly fruitful
concept, both in the study of electric contact and, as developed by Bowden & Tabor
(1954, 1964), in the related subject of friction.

It was in this related study that the objection to the concept was first put forward.
Archard (1957) pointed out that although it is reasonable to assume plastic flow for
the first few traversals of one body over another it is absurd to assume this for
machine parts which may make millions of traversals during their life: the asperities
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Contact of nominally flat surfaces 301

may flow plastically at first, but they must reach a steady state in which the load is
supported elastically. He went on to show that although the simple Hertzian theory
did not predict the observed proportionality between contact area 4 and load P,
a generalized model in which each asperity is covered with microasperities, and each
microasperity with micromicroasperities, gave successively closer approximations
to the law Aoc P as more stages were considered. Archard explained that the
essential part of the argument was not the choice of asperity model: it was whether
an increase in load creates new contact areas or increases the size of existing ones;
for physically plausible surfaces any elastic model in which the number of contacts
remains constant will give A oc P¥: but if the average size remains constant (and the
number increases) the area will be proportional to the load.

Thus contact between flat surfaces can be determined either by plastic or by
elastic conditions; and we may expect that for very rough surfaces there will
certainly be plastic flow, while for very smooth ones, contact will be entirely elastic.
This paper presents a more detailed model of elastic contact between nominally flat
surfaces, and uses it to determine where the changeover from elastic to plastic
contact occurs. Nominally flat surfaces may be defined as those in which the area of
apparent contact is large so that the individual contacts are dispersed and the forces
acting through neighbouring spots do not influence each other. When curved
surfaces touch the apparent contact area is limited by their gross geometry; the
individual areas are then tightly clustered and it becomes necessary to take account
of the interaction between them (Greenwood & Tripp, in the press).

MATHEMATICAL MODEL

We shall consider the contact between a plane and a nominally flat surface
covered with a large number of asperities which, at least near their summits, are
spherical. We assume that all asperity summits have the same radius £, and that
their heights vary randomly: the probability that a particular asperity has a height
between z and z+dz above some reference plane will be ¢(z)dz. Figure 1 shows
schematically the type of contact envisaged. The behaviour of an individual asperity

s S smooth surface
____________ M NV NJ___reference plane in
rough surface

Fic¢ure 1. Contact of rough surfaces. The load is supported by those asperities (shaded)
whose heights are greater than the separation between the reference planes.

is known from the Hertzian equations (Timoshenko & Goodier 1951). The contact
radius a,, area 4, and load P, can be expressed in terms of the compliance w (the
distance which points outside the deforming zone move together during the

deformation) as a4, = phwt, A, —mpw, P,—LE Bt
1 1—-v3 1-12
where = 7, 7,

19-2
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If either of the contacting surfaces is much more elastic than the other, £’ is just the
‘plane-stress modulus’ for that material, E/(1—»?): if the materials are the same
E' is half this.

If the two surfaces come together until their reference planes are separated by
a distance d, then there will be contact at any asperity whose height was originally
greater than d. Thus, the probability of making contact at any given asperity, of
height z, is ©
prob (z > d) = fd d(z)dz

and if there are IV asperities in all, the expected number of contacts will be

n= wa¢(z) dz.
a

Also, since w = z—d and A, = 7fw, then the mean contact area is

[ s g0,

and the expected total area of contact will be given by

4 =nNﬂf:(z-d)¢(z)dz.

Similarly, we find the expected total load is
P=NEp [ -t g a
a

and if we assume electrical contact over the whole of the area of mechanical contact,
then since the conductance of a single contact is G; = 2a/p where p is the resistivity
(see Holm 1958) the expected total conductance will be

G = 2Np-1p} f * e—d)t $(z) de.
d

Since this argument assumes that the microcontacts are sufficiently separated to
be mechanically independent it seems reasonable to treat the current flow through
them also as independent.

It is convenient to introduce standardized variables, and describe heights in terms
of the standard deviation o of the height distribution, also, we introduce the surface
density of asperities # and write NV = .o/ where .« is the nominal contact area.
This gives number of contact spots n = yf Fy(h);

total conductance G = 27.9/p~BEot Fy(h);
total contact area A = wyffoFi(h);
load P = 40/ B frot Fy(h);

where £, the standardized separation, is equal to d/o and

Fyh) = f = nrgre) s
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where ¢*(s), the standardized height distribution, is the height distribution scaled
to make its standard deviation unity.

Exponential distribution of asperity heights

One interesting case (which provides a convenient example in which the above
equations can be treated exactly) is when the heights follow an exponential distribu-
tion: then ¢*(s) = e~s. The functions F, (k) are just n!e~", and so we have

n = nof et G = migp~Yfo)td e,
A = agfo)t b, P = mh(nfo) E'(o|fd &b,

Eliminating the separation 2 we find that there is exact proportionality between the
load and the number of contact spots, the conductance, and the area of contact.
Thus, the average size of contact spots, and the contact pressure, are independent
of the load. Of course, the size of any individual contact spot increases with load
but at the same time new, small, spots are formed and there is a perfect balance
which leaves the average unchanged.

This result does not depend on the particular surface model or deformation mode
considered: it holds provided the asperities have an exponential height distribution
and all obey the same area/compliance and load/compliance laws. Although it will
be shown later that height distributions tend to be Gaussian rather than exponential,
the exponential distribution is nevertheless a fair approximation to the uppermost
25 9, of the asperities of most surfaces. This leads us to suggest that the origin of
the laws of friction, and particularly of the proportionality between area and load,
liesnot in the ideal plastic flow of individual contact spots but simply in the statistics
of surface roughness. This speculation is discussed more fully by Greenwood (1965)

Gaussian distribution of asperity heights
The experimental results which follow show that for many surfaces the height
distribution is Gaussian to a very good approximation. We have, therefore,

—1ls2
e

$*(s) = 7(—217,—)

and so E\0) = s | a= et s

The functions F%(h) and Fy(h) had not been tabulated, and so were computed by
integration of the differential equation satisfied by exp (— 1A2) F,,(h), namely

Y —hy —(n+1)y(h) = 0;

we worked backwards from the values at large £ which may be found from the
asymptotic expansions. Subsequently tables of parabolic cylinder functions
appeared (Miller 1964) and were used to check the values.

From these equations, and using physically reasonable values for the parameters,
we have calculated the relations between the load and the separation, the area of
contact, the mean pressure, and the contact resistance. The results approximate
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dimensionless separation (d/o)

0 ! | | | !
10° 10° 10" 1 10 107

load (Kg)

FiaurE 2 (a). Relation between separation and load. The curve shows the expected value of
the load for a given separation, assuming a Gaussian distribution of asperity heights.
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area of contact (mm?2)
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10° ! |
102 10" 1 10 10%
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Freure 2(b). Relation between area of contact and load. The solid curve, for nominal area
10 em?, and the broken curve, for nominal area 1 em?, show that the real area of contact
is independent of the nominal area.
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closely to those for the exponential distribution; they are shown in figures 2 to 4, for

the case = 300/mm?, fo = 10~*mm?,
E'(o/p)} = 256 Kg/mm?, p = 2-4upQ cm.

Figures 2(b), 3, and 4 each show the relation between the expected values of two
variables both dependent on the separation. To have calculated the expected value
of one for a given expected value of the other would have been very much more
difficult: preliminary work using a Monte Carlo method suggests that except at low
loads the two approaches give the same result.

éo
=5
@
s
@
[
=
&4
=i
g [
g
5 —
Z
] | - | | | |
10° 10* 10" 1 10 10°

load (Kg)

F16URE 3. Variation of mean real pressure with load. A change of the load by a factor of 105
causes the real pressure to change by only a factor of 2.

Figure 2(a) shows how the separation varies with the load, calculated for a
nominal area of 1cm?: an increase from a light pressure of 100g/cm? to a heavy
pressure of 10 Kg/ecm? merely reduces the separation from 2-60 to 0-90-. Figure 2(b)
shows that for a given nominal area the area of contact is almost exactly propor-
tional to the load. Further, the two curves, for nominal contact areas of 1 and 10 cm?,
are almost indistinguishable, showing that the contact area depends on the load and
not on the nominal pressure. The similarity with the behaviour calculated by
assuming ideal plastic flow, where the mean pressure is equal to the hardness,
suggests that there is an ‘elastic contact hardness’ which controls the area of contact
under elastic conditions. The validity of this concept is indicated in figure 3, which
shows how the mean pressure at the contact areas, P/4, varies with load. For a load
range of 10° the mean pressure varies only between 0-2 and 0-4 of E'(c/f). The
elastic contact hardness, at least for a Gaussian surface, can be taken as 0-25E'(a//8)};
it plays the samerole in relations describing the elastic contact of rough surfaces as
does the hardness in discussions of plastic contact. Using this concept, we can
calculate the area of contact directly from the load for elastic contact precisely as
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contact resistance (uQ)

100
load (Kg)

103

10°

10 (®)

contact resistance (u()

10" ! | L
10* 107" 1 10

load (Kg)

FI16URE 4. Variation of contact resistance with load. Figure 4 (a) shows the resistance when
the current flows through all mechanical contact spots, as in contact between film-free
surfaces; this gives B oc P70%, Figure 4(b) shows the result of assuming that only the
plastically deformed contacts pass current, as may happen with film-covered surfaces;
this gives R oc P14,
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we should for plastic contact using the hardness. Figure 4a shows the contact
resistance, R, assuming that the mechanical contact areas are all conducting. The
result approximates closely to the simple law Roc P99,

The separation depends on the nominal pressure and not on the total load. The
variables n, G, and 4, on the other hand, depend on both the nominal area and the
separation, and in such a way that their overall dependence on the nominal area is
small. Thus, the separation is the link which, while depending itself on the nominal
pressure, enables the other variables to depend on the load only. In rough terms the
dependence on pressure can be explained by assuming that a certain number of
contact spots is needed to provide a given contact area: when the nominal area is
large there will be enough high peaks to provide these, while for a small nominal
area lower peaks will be needed also.

Contact of rough curved bodies

When the contact areas are limited to a small part of the surface because of the
overall curvature of the bodies, the assumption that the individual contacts are
independent fails: the contacts will be sufficientlyclose together for the force on one
to change the height of its neighbours. The treatment is then much more involved
than that for independent contacts (Greenwood & Tripp, in the press). It shows
that the classical Hertzian contact theory is a high load limit for rough surfaces, and
that at lower loads the area of contact is much more dispersed. The real pressures
at the microcontacts (which are much higher than the Hertzian pressures) are of the
same order as those for nominally flat surfaces; and are again almost proportional
to B’ 4/(o’/B). In both cases the factor varies slowly with load: for the contact between
curved surfaces it also varies with the roughness; but for all the cases considered the
range was only 0-36 to 0-61, in good agreement with the values 0-2 to 0-4 found for
nominally flat surfaces.

The origin of the slow variation of the contact pressure is the same as it is for
nominally flat surfaces: again, the number of contacts is roughly proportional to the
load and the average size of a contact area is almost constant. Thus the arguments in
this paper are not limited to the nominally flat surfaces considered.

LIMIT OF ELASTIC DEFORMATION

From the work of Tabor (1951) on the ball indentation hardness test, we know
that the onset of plastic flow is reached when the maximum Hertzian pressure g,
between a ball and a plane reaches about 0-6H, where H is the hardness. Since

w = (3m)*q5 B/ E"
the critical value of the elastic displacement at the asperity necessary for some
plastic flow is w, = 0-89p(H|E")2.

Plastic flow first occurs internally, and will be restricted by the surrounding elastic
material, so we may conveniently take the criterion for detectable plastic flow to
be rather higher, i.e. at ,

¢ w, = FUH|E).
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Now, just as the probability of making contact at a given asperity is

prob (z > d) = f: d(z) dz,

so the probability of a plastic contact is
prob (z > d+w,) = f @(z) dz.
d+wp

Again, the expected total area of the contacts which become plastic will be
A, = mypst f " e—d)p2)de
d+wp

= ﬂnﬂaﬂf’:w* (s—h) p*(s)ds
where wh = wylo = (B/o) (H|E")2.

Provided that only a small proportion of the area of contact is plastic, the overall
properties will be close to those predicted by the elastic theory. Moreover, the
predictions concerning the plastic contacts will be reasonably good, because the
plastic displacements will be limited to an elastic magnitude, since any asperity
which starts to collapse will immediately have its excess load taken by the remaining
asperities. Accordingly, we can use elastic theory to study the growth of plastic
contact areas with increasing load. For example, for the surface used for figures
2 to 5, assuming a hardness such that w} = 2, we find that 1 %, of the contact area
is plastic at a nominal pressure of 1-1 Kg/cm?, 2 %, at a pressure of 3-7 Kg/em?, and
5%, at a pressure of 13-4 Kg/em?2. For wj = 1-5, the transition from elastic to plastic
contact is even slower, the corresponding pressures being 18, 122, and 1200 g/cm?.

If we define the limit of elastic contact to be when the area of plastic contact
becomes some specified fraction of the total contact area, we can obtain a relation
between the surface roughness, as defined by the factor w3}, and the critical value of
the nominal pressure. The fundamental relation is in fact between the surface
roughness and the critical separation %, for the ratio 4,/ 4 depends only on w¥ and ,
with no other parameters entering. Thus, we arbitrarily choose a value of 4,/4,
determine the critical separation as a function of wj, and hence, introducing the
values of the surface parameters, we obtain the corresponding nominal pressure.

The factor wj is slightly unsatisfactory as a generalized surface roughness para-
meter, since it decreases when the roughness increases, and so we shall substitute
¥ = (w})~t = (B'|H) |/(c/p) which we call the plasticity index: it combines the
material and topographic properties of the solids in contact. Table 1(a) shows how
the critical separation varies with the plasticity index of the surface taking
A4,/A = 0-02 as the criterion for the onset of a significant degree of plasticity. The
nominal pressure which would have to be applied to cause the necessary critical
separation is also shown.

The critical value of the plasticity index for a given nominal pressure varies with
the particular value of 4,/4 used as the criterion, but as table 1(b) shows, the
variation is not important.
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In principle the plasticity index merely determines the critical load at which the
deformation changes from elastic to plastic. In practice, however, the plasticity
index completely dominates the behaviour, and the load has little effect; for,
although the plasticity index can in theory have any value from 0 toco (and it appears
that surfaces range from 0-1 to over 100) it is only for the narrow range 0-6 to 1 that
the mode of deformation is in doubt. When % is less than 0-6 plastic contact could
be caused only if the surfaces were forced together under very large nominal pres-
sures indeed: when ¥ exceeds 1-0 plastic flow will occur even at trivial nominal
pressures. Most surfaces have plasticity indices larger than 1-0, and thus, except for

TABLE 1. LIMIT OF ELASTIC DEFORMATION OF ROUGH SURFACES

(a) Variation of separation h, and critical nominal pressure p,om.

with plasticity index
0-6 0-7 0-8 0-9 1.0
h, = djo 0-11 1-34 2-57 3-80 5-08
Dom (g/0m2) 430x 108 3-75x10%  1.22 x 102 1-07 2.0 x 10-3

For i < 0-6 the pressures are impracticably high, and for ¢ > 1-0 they are impracticably low.

(b) Variation of plasticity index yr with elastic breakdown criterion A,[A
Jor Ppom. = 1 Kg/em?

A,lA 0-01 0-02 0-05 0-10 0-50
0-70 0-74 0-81 0-88 (1-26)
The value for 4,/4 = 0-5 is in parentheses since it is unreasonable to use elastic theory so
far beyond the elastic limit.

(All values of the nominal pressure have been calculated assuming ﬂE’,B%a'% = 0-75, in agree-
ment with the values of 4, f7, and E’(a/f)} used in figures 2 t05.)

especially smooth surfaces, the asperities will flow plastically under the lightest
loads, as has frequently been postulated. These values, and indeed the definition of
the plasticity index, hold only for the particular surface model considered, but it
seems clear that the concept is a general one.

Plastic deformation may be of vital importance even when the area of plastic
contact is trivial. Frequently with oxide covered surfaces electrical contact will
occur only at plastically deformed asperities. Thus the conductance through the
plastic contacts, G, is of great interest. This is given by

6, = 2stpop)i [ (s-miges)ds

Figure 4 (b) shows how the contact resistance varies with the load, for the same case
as figure 4 (@) with added condition that ¢ = 0-7. The graph shows the conductance
through the areas of plastic contact under conditions where the contact as a whole
is still within the limits of validity of the elastic theory, i.e. 4,/4 < 0-02. The
resistance is a thousand times larger than the value for oxide-free surfaces, and it
varies rather more rapidly with load: Roc P-14. This appears to be the first time an
exponent less than minus one has been derived theoretically, though such behaviour,
over limited ranges, is well known experimentally.
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In real surfaces there is a range of asperity radii. The effect on the purely elastic
properties is very small, since the influences of greater and smaller radii largely
cancel; but the effect on the plastic properties is more serious: the sharper asperities
may flow plastically when the ones with the mean radius do not, and so there can
be no averaging. This may reduce the dependence of the resistance on load.

- There is an interesting formal similarity between the plasticity index suggested
in this paper and the usual criterion for elastic surface contact due to Blok (1952).
Blok considers a model surface of equal parallel sinusoidal ridges, and shows that
these can be completely levelled elastically provided the average slope is less than
H[nE'. Blok’s yield condition, that the maximum contact pressure equals the
hardness, H, reduces to the condition that the maximum (internal) shear stress is
equal to the yield stress in shear, k, provided the hardness equals 2¢k ~ 5-4k, which
is a good approximation (see Tabor 1951). Expressing the average slope in terms
of the ridge height, %, and the radius of curvature at the summit, 8, Blok’s rule for
purely elastic contact can be written

E [k 1
E— B < 1.

Halliday (1955) has developed a similar ‘average slope’ criterion for a single
spherical asperity, again based on the requirement of complete elastic flattening,
and by applying this to individual asperities observed by reflexion electron micro-
scopy has demonstrated the existence of elastic surfaces. There is, however, a
fundamental difference between these approaches and the present theory. The
condition that asperities must be completely elastic is too stringent. Purely elastic
contact can occur between surfaces where the asperities could become plastic if
deformed separately. The present approach shows how the complete criterion com
bines both the shape of individual asperities and the spread of their heights.

MEASUREMENT OF SURFACE TOPOGRAPHY

The approach developed above indicates that the contact behaviour of a surface
can be described in terms of two material properties: the hardness and the elastic
modulus, and two topographic parameters: the radius of asperity summits and the
spread of asperity heights. The usual way of specifying surface texture is to give
a single parameter, such as the mean deviation from an average line. This is, of
course, quite inadequate for the application of surface contact theory. In principle
the information required is available in a profilometric trace (Abbott & Firestone
1933) such as that shown in figure 5. It is possible to derive the distribution of peak
heights manually from traces such as these, and to find the mean radius of the peaks
by manual curve-fitting; but the process is tedious, and it would be impracticable
to generate data in useful quantities.

To overcome this difficulty we have built a surface analysing system, which
basically consists of a Taylor-Hobson model 3 Talysurf feeding a digital computer
through a suitable analog-to-digital conversion and sampling unit. The voltage
analog of the surface is obtained in the usual way by means of a stylus and an
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electromechanical transducer. A graph of the profile is plotted by a pen recorder, and
at the same time the data conversion unit samples this voltage and punchesit on paper
tape. The sampling rate is 36-7 readings per second, each reading being three decimal

percentage of surface below specified height

999

99

95

80

50

20

01—

Sum

250um

1 | | 1 L I |

2 4 6
height above arbitrary datum (pm)

Fiaure 5. Cumulative height distribution of bead-blasted aluminium. Both the distributions
of all heights ( x ) and of peak heights ( @ ) are Gaussian, at least in therange + 2 standard
deviations. The profile of the same surface is shown in the upper diagram: the vertical
magnification is 50 times the horizontal magnification.

digits. With the usual horizontal magnification of 100 this records the surface height
every 1-7 um: with the 500 times magnification the horizontal resolution becomes
0-34 um. Autocorrelation measurements show high correlation between adjacent
height readings, which indicates that the horizontal resolution is adequate. We have
not yet found a surface for which the full resolution of 0-34 um was needed. In a
typical observation 1500 height readings are recorded from a profile corresponding
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to 0-1in. of the surface. At the largest vertical magnification the height is recorded
in units of 10A. Stringent precautions have to be taken to isolate the stylus from
mechanical vibrations, and the Talysurf transducer is mounted on an elaborate
aseismic table. In practice the system is limited by residual noise—mechanical and
electrical—with an amplitude of about 50A. Similar systems are now in use at
Messrs Rank Taylor Hobson, and at the National Engineering Laboratory (R.E.
Reason; B. Sharman, private communications).

The computer is programmed to evaluate many different surface texture
parameters: for this analysis it locates the peaks in the profiles, and calculates o the
standard deviation of their heights, 9 their surface density, and f their mean radius;
for comparison it also calculates the height distribution of the entire surface, and
the conventional ‘centre line average’.

Experimental study of surface topography

A series of experiments was performed to determine the height distribution, the
peak height distribution, and the plasticity indices of representative surfaces; and
also to study how ¢ changes during various surface treatments. Topographic data
obtained from several typical surfaces are given in figures 5 to 7. Figure 5 shows
the surface profile and the height distributions for a bead-blasted aluminium speci-
men (c.l.a. 47 pin.). The heights are measured from an arbitrary reference plane, and
the proportion of the surface lying below a specified height is plotted on normal
probability paper, which has a distorted scale so designed that a Gaussian distribu-
tion of heights will appear as a straight line. The height distribution of the surface
(crosses) is indeed Gaussian. This agrees with results reported by Bickel (1963).
The circles show the distribution of the peaks: this too is Gaussian. The standard
deviation, o, is 1-37 um; the mean radius of the peaks is 13 um. Applying the above
theory we find that the surface has a plasticity index of 30, and would thus deform
plastically at all loads.

Although several common surface preparations produce Gaussian distributions,
many do not; figure 6 shows the results for a mild steel specimen which had been
slid against a copper flat under oleic acid. Neither the surface nor the peaks are
Gaussian, although even in this case the uppermost peaks form a reasonably good
approximation to a Gaussian distribution. In fact it appears to be generally true
that the peak height distribution of a surface is more nearly Gaussian than is the
overall surface height. Although the surface is not particularly smooth (3-4 pin. c.la.
o is 0-065 um) the peak radius is so large (0-24mm) that the plasticity index is
only 0-8.

Surfaces with values of ¢ well into the elastic range occur commonly: for example,
a one inch diameter steel roller bearing was found to have a cl.a. of 1-6 uin., a
standard deviation of 0-024 um, and a mean peak radius of 150 um; this gives a
plasticity index of 0-25. The very low value of ¥ was in this case partly due to the
great hardness. However, softer materials can also be highly elastic. A polished mild
steel specimen with a c.l.a. of 0-5 uin. showed a mean peak radius of 0-5 mm, a stan-
dard deviation of 100A, and a plasticity index of 0-3. Holm long ago reported mean
pressures of 0-02 H for carefully polished surfaces (see Holm 1958); since for elastic
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contact the mean pressure is about 0-25E'(c/8)} or 0-25y-H, this suggests plasticity
indices as low as ¢ = 0-1.

Figure 7 shows the effects of three different surface treatments applied to mild
steel. A ground surface (figure 7 (a)) gave Gaussian distributions for both the surface
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Figure 6. Cumulative height distribution of mild steel specimen. Distribution of all heights,
% . Distribution of peaks, @ . This specimen was abraded on 400 grade carborundum
paper, then slid against a copper block flooded with oleic acid, at approximately 10 Kg,
130 cm/s for 30 s. Although the distribution is at first sight highly non-Gaussian, in fact
nearly 909, of the surface is approximately Gaussian; the surface, with an actual
standard deviation of 1-:3um, would behave in contact as if Gaussian with a standard
deviation of half this. The profile of the same surface is shown in the upper diagram:
the vertical magnification is 200 times the horizontal magnification.

and the peaks. Lightly abrading the ground surface on 600 grade metallographic
paper under water preferentially removed the higher parts of the surface, producing
a non-Gaussian distribution (figure 7(b)). The mean peak radius changed from
15 to 63 um, and the plasticity index was reduced from 7 to 2-7. Lightly polishing
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a ground specimen on a metallographic polishing wheel has a quite different effect
(figure 7(c)): the distributions remained almost Gaussian, but, as the profile clearly
shows, the small scale roughness was removed from both peaks and valleys. The
result was to increase the mean peak radius even more, to 83 pm, and to reduce
¥ to 2-5.

250um

Ficure 7. Profiles of mild steel specimen after three surface treatments. (a) Surface ground
only. (b) Surface ground and then lightly polished. (c) Surface ground and then lightly
abraded on 600 paper.

In addition to a distribution of heights of asperities, a surface is also characterized
by a distribution of asperity radii, or equivalently, asperity curvatures. The distribu-
tion of curvatures is the more convenient, since the data sometimes fit a I" distri-
bution, in which case the higher moments of the distribution of radii would be
infinite. The curvatures are sometimes almost Gaussian, as in figure 8, which shows

_the results found for a bead-blasted gold specimen.

Certain assumptions are implicit whenever data obtained from a linear profile are
used to describe the topography of a surface. Abbott & Firestone referred to
cumulative height distribution curves such as figure 5 as ‘bearing area curves’.
Several authors have recently suggested that these are only ‘bearing line curves’,
and that two such distributions, from perpendicular profiles, must be multiplied
together to produce a genuine height distribution of a surface (and thus a reliable
value of o). This is not so. The height distribution would in principle be obtained
from an infinite number of closely spaced parallel sections—the usual process of
integration over a surface. However, when the profiles are long compared with the
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surface irregularities they will all contain the same information, so that if, for
example, 10 9, of one profile lies above a certain height then 10 9, of every profile
does, and the correct interpretation is that 109, of the surface, not 19, lies above
this height. This is clearly true for randomly structured surfaces: with strongly
oriented surfaces it is necessary to add that the profiles must be made so as to include
a representative sample of the topography.
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Fiaure 8. Histogram of curvatures at peaks for bead-blasted gold specimen. The continuous
curve is the Gaussian with the same mean and standard deviation.

Even though the profiles will in general not cross the summits on the surface the
radius of their peaks is a good approximation of that of the asperities. If we consider
a single spherical asperity it can easily be shown that the radius of a profile which
misses the summit by x is (82 — #?)3. This means that the true radius, 3, exceeds the
profile radius by a factor of secc, where a is the maximum slope of the surface at
the point represented by the peak of the profile; thus even for a surface with a 25°
slope the maximum error will be only 10 %,, and the average error will be much less.
For a paraboloidal asperity the error vanishes.

A POSSIBLE TOPOGRAPHIC MECHANISM OF WEAR

These results show that plasticity indices ranging from 30 to 0-25 can readily be
created by normal techniques; also that abrading and polishing reduce the plasticity
index. This suggests that the wearing-in process is the gradual reduction of ¥ from
an initial ‘plastic’ value to one in the elastic range. The detailed mechanism of the
creation of a wear particle is not relevant here: the hypothesis merely assumes that
wear is very much more probable when asperities touch plastically than in purely
elastic contacts. Qur first attempts to demonstrate this argument were unsuccessful.
Although ‘elastic’ surfaces could readily be made by several fine-polishing processes,

20 Vol. 295. A.
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it was not possible to generate them by rubbing two ‘plastic’ surfaces together.
Initially the surfaces became polished: the higher parts deformed to leave plateaux
separated by the original valleys. But as sliding continued the surface lost its overall
flatness and became smooth rolling hills, on a larger scale than the original rough-
ness. This may be attributable to smoothing of adhering wear particles. Carefully
selected areas gave plasticity indices as low as 0-5, but these were not representative
of the whole surface. The problem was further complicated by surface scoring
(roughening), presumably due to abrasion by prows (Cocks 1962, 1964 ; Antler 1964)
or by wear particles.

It occurred to us that sliding a flat specimen against a woven metal grid would
still permit the repeated plastic contact between asperities which leads to smoothing,
but would minimize damage, by interrupting the process of prow-formation or by
removing the wear particles after very short sliding distances.

Three surface-ground mild steel specimens were slid at 100 cm/s under a load of
1-5Kg against a stainless steel woven grid which was flooded with ordinary
machining coolant oil. The grid was changed regularly to avoid the development of
wear flats. Figure 9 shows that under these conditions the plasticity index does
indeed fall until it reaches the elastic range; and it is clear that the rate of change

10—~

plasticity index

time (h)

Ficure 9. Effect of continued sliding on the plasticity index. The behaviour of three mild
steel specimens slid against a stainless steel woven grid at 100 cm/s under loads of
1-5 Kg: @ and O show results for two specimens with initial plasticity indices of 9; the
crosses show the behaviour of a specimen which had a lower (though still plastic) initial
value of .
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decreases as the fraction of the contacts which are elastic increases. The manner in
which 3 varies during the experiment is much more significant than its absolute
value; for the spacing between the height readings determines the smallest peak
which can be detected and thus the average radius is to some extent a function of
the experimental resolution. During this experiment the standard deviation of the
asperity heights, and the c.La., of the two rougher specimens fell by a factor of three,
and those of the smoother specimen fell slightly: the mean radius of the asperities,
on the other hand, increased by much-larger factors of 20 and 10 respectively, thus
clearly showing the inadequacy of the simple measures of surface roughness.

When the experiment was continued for a further 2h, the roughening process
became dominant and the plasticity index rose again. There was a slight reduction
in mean radius, and a much larger increase (threefold) in the c.l.a. and the standard
deviation of asperity heights. At the same time wear flats appeared on the grid. It
is not clear whether these were responsible for the roughening, or whether a transi-
tion from mild to severe wear from some other cause was responsible for both.

CoONCLUSION

The theory developed in this paper leads to a set of relations which give the total
real area of contact, the number of microcontacts, the load, and the conductance
between two surfaces in terms of the separation of their mean planes. Whereas the
separation depends on the nominal pressure (that is, the load divided by the
nominal area of contact), the number of microcontacts and the total area of contact
depend on the load only. The separation is not very sensitive to the pressure: in fact
the mean planes of two similar surfaces in contact are usually separated by 1 to 2
times the standard deviation, or roughly by the centre line average. This means that
the average gap between 20 uin. surfaces is, for a wide range of loads, approximately
20 pin. This explains the difficulty of making metal-to-metal gastight seals.

The area of contact and the load depend on the separation in similar ways, so that
their ratio is almost constant. This leads to the concept of an ‘elastic hardness’ by
means of which the area of contact can be predicted from the load just as it is for
plastic contact using the conventional hardness.

The theory provides a criterion which indicates whether contact will be elastic
or plastic: this, the ‘plasticity index’, is essentially the ratio of the elastic hardness
to the real hardness. For most surfaces the deformation mode cannot be affected
by changes in the load. It will be elastic if the plasticity index is low, and plastic if
it is high. The widespread idea that in general contact is elastic at low loads and
becomes plastic as the load increases is wrong. The index, which is equal to
(E'|H) (0/B)%, may be regarded as a generalized surface texture parameter, com-
bining both material and topographic properties.

The contact between solids is controlled by two material properties, the plane-
stress elastic modulus, and the hardness; and three topographic properties, the -
surface density of the asperities, the standard deviation of their height distribution,
and their mean radius. The commonly quoted parameter ‘centre-line-average’ is

useful only in that it is a loose measure of the spread of asperity heights. In order to
20-2
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be able to explore the practical implications of this theory a system has been
developed which can measure these new topographic parameters from profilometric
observations.

The range of peak radii is very large. Many surfaces have a mean value of 10 to
20 um; but values of over 500 um are not unusual. A peak 0-1 um high may have
a radius of 1 mm; the radius need not be of the same order as the height, as some-
times assumed. This of course completely changes estimates of the load a single
asperity can carry without yielding. Many common surfaces have a Gaussian distri-
bution of asperity heights. Some types of surface, e.g. bead-blasted ones, are
Gaussian to a very good approximation. Others are definitely not Gaussian; how-
ever, we have not found any evidence that the non-Gaussian ones fit any other
well-known distribution (for example, the extreme value distribution). Even
surfaces which have unsymmetrical profiles usually give a straight line on normal
probability paper for all but the lowest tenth; and the distribution of their peaks is
even closer to Gaussian.

The chief significance of the Gaussian distribution in contact theory appears to
be that over a limited range it approximates to an exponential distribution. For the
exponential distribution there is exact proportionality between the number of
contacts, the area of contact, and the load: thus the average size (and the distribu-
tion of sizes) of a contact area is independent of the load. For the Gaussian distribu-
tion, among others, these results still hold approximately, and this leads to the idea,
which we have discussed elsewhere, that the laws of friction are not the result of
material properties, but arise directly from the statistics of surface topography.

Although most common surfaces have plasticity indices well above 1, and thus
deform plastically on contact even at the lightest loads, there are several types of
surface used in normal engineering with plasticity indices well into the elastic range;
a brief survey revealed examples of ¥ values ranging from 30 to 0-25. The repeated
contact between surfaces, as in normal sliding or in metallographic polishing, tends
to reduce . However, the wear debris produced in sliding can reverse this trend,
and by damaging the surface can prevent ¥ from reaching the elastic range. Sub-
dividing the nominal area of contact reduces the effectiveness of the roughening
process, and the gradual decrease of the plasticity index from its initial value in the
plastic range to a value in the elastic range is clearly revealed.

We wish to acknowledge the valuable contributions of Mr R.Russakoff who
designed and built the topographic analyser, and of Mr R. T. Hunt who carried out
" most of the experiments. The development of the theory was greatly helped by
many discussions with Dr J. H. Tripp.
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