
FreeRTOS Implementation Modules

Real Time Engineers Ltd.

neatened by dormousebhu@smth

2010c 4� 16F



2 8¹

8¹

1 About This Article 3

2 RTOS Fundamentals 3

2.1 Multitasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Multitasking Vs Concurrency . . . . . . . . . . . . . . . . 4

2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Context Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Real Time Applications . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Real Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 9

3 RTOS Implementation 10

3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Development Tools . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 The RTOS Tick . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 WinAVR Signal Attribute . . . . . . . . . . . . . . . . . . 12

3.1.4 WinAVR Naked Attribute . . . . . . . . . . . . . . . . . . 14

3.1.5 FreeRTOS Tick Code . . . . . . . . . . . . . . . . . . . . 16

3.1.6 The AVR Context . . . . . . . . . . . . . . . . . . . . . . 18

3.1.7 Saving the Context . . . . . . . . . . . . . . . . . . . . . . 19

3.1.8 Restoring the Context . . . . . . . . . . . . . . . . . . . . 20

3.2 Detailed Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Step 1 Prior to the RTOS tick interrupt . . . . . . . . . . 22

3.2.2 Step 2 The RTOS tick interrupt occurs . . . . . . . . . . 22

3.2.3 Step 3 The RTOS tick interrupt executes . . . . . . . . . 22

3.2.4 Step 4 Incrementing the Tick Count . . . . . . . . . . . . 24

3.2.5 Step 5 The TaskB stack pointer is retrieved . . . . . . . . 24

3.2.6 Step 6 Restore the TaskB context . . . . . . . . . . . . . 24

3.2.7 Step 7 The RTOS tick exits . . . . . . . . . . . . . . . . . 26



3

1 About This Article

This article will be helpful if you:

• wish to modify the FreeRTOS source code.

• port the real time kernel to another microcontroller or prototyping board.

• are new to using an RTOS and wish to get more information on their

operation and implementation.

The FreeRTOS real time kernel has been ported to a number of different

microcontroller architectures. The Atmel AVR port was chosen for this example

due to:

• the simplicity of the AVR architecture.

• the free availability of the utilized WinAVR (GCC) development tools.

• the low cost of the STK500 prototyping board

2 RTOS Fundamentals

This section provides a very brief introduction to real time and multitasking

concepts. These must be understood before reading section “RTOS Implemen-

tation”.

2.1 Multitasking

The kernel is the core component within an operating system. Operating

systems such as Linux employ kernels that allow users access to the computer

seemingly simultaneously. Multiple users can execute multiple programs appar-

ently concurrently.

Each executing program is a task under control of the operating system. If

an operating system can execute multiple tasks in this manner it is said to be

multitasking.

The use of a multitasking operating system can simplify the design of what

would otherwise be a complex software application:



4 2 RTOS FUNDAMENTALS

• The multitasking and inter-task communications features of the operating

system allow the complex application to be partitioned into a set of smaller

and more manageable tasks.

• The partitioning can result in easier software testing, work breakdown

within teams, and code reuse.

• Complex timing and sequencing details can be removed from the applica-

tion code and become the responsibility of the operating system.

2.1.1 Multitasking Vs Concurrency

A conventional processor can only execute a single task at a time - but by

rapidly switching between tasks a multitasking operating system can make it

appear as if each task is executing concurrently. This is depicted by the diagram

below which shows the execution pattern of three tasks with respect to time.

The task names are color coded and written down the left hand. Time moves

from left to right, with the colored lines showing which task is executing at

any particular time. The upper diagram demonstrates the perceived concurrent

execution pattern, and the lower the actual multitasking execution pattern.

2.2 Scheduling

The scheduler is the part of the kernel responsible for deciding which task

should be executing at any particular time. The kernel can suspend and later



2.2 Scheduling 5

resume a task many times during the task lifetime.

The scheduling policy is the algorithm used by the scheduler to decide which

task to execute at any point in time. The policy of a (non real time) multi user

system will most likely allow each task a “fair” proportion of processor time.

The policy used in real time / embedded systems is described later.

In addition to being suspended involuntarily by the RTOS kernel a task

can choose to suspend itself. It will do this if it either wants to delay (sleep)

for a fixed period, or wait (block) for a resource to become available (eg a serial

port) or an event to occur (eg a key press). A blocked or sleeping task is not

able to execute, and will not be allocated any processing time.

Referring to the numbers in the diagram above:

• At (1) task 1 is executing.

• At (2) the kernel suspends task 1 ...

• ... and at (3) resumes task 2.

• While task 2 is executing (4), it locks a processor peripheral for it’s own

exclusive access.

• At (5) the kernel suspends task 2 ...

• ... and at (6) resumes task 3.

• Task 3 tries to access the same processor peripheral, finding it locked task

3 cannot continue so suspends itself at (7).

• At (8) the kernel resumes task 1.

• Etc.



6 2 RTOS FUNDAMENTALS

• The next time task 2 is executing (9) it finishes with the processor periph-

eral and unlocks it.

• The next time task 3 is executing (10) it finds it can now access the

processor peripheral and this time executes until suspended by the kernel.

2.3 Context Switching

As a task executes it utilizes the processor / microcontroller registers and

accesses RAM and ROM just as any other program. These resources together

(the processor registers, stack, etc.) comprise the task execution context.

A task is a sequential piece of code - it does not know when it is going to

get suspended or resumed by the kernel and does not even know when this has

happened. Consider the example of a task being suspended immediately before

executing an instruction that sums the values contained within two processor

registers.

While the task is suspended other tasks will execute and may modify the

processor register values. Upon resumption the task will not know that the pro-

cessor registers have been altered - if it used the modified values the summation



2.4 Real Time Applications 7

would result in an incorrect value.

To prevent this type of error it is essential that upon resumption a task has

a context identical to that immediately prior to its suspension. The operating

system kernel is responsible for ensuring this is the case - and does so by saving

the context of a task as it is suspended. When the task is resumed its saved

context is restored by the operating system kernel prior to its execution. The

process of saving the context of a task being suspended and restoring the context

of a task being resumed is called context switching.

2.4 Real Time Applications

Real time operating systems (RTOS’s) achieve multitasking using these

same principals - but their objectives are very different to those of non real time

systems. The different objective is reflected in the scheduling policy. Real time

/ embedded systems are designed to provide a timely response to real world

events. Events occurring in the real world can have deadlines before which the

real time / embedded system must respond and the RTOS scheduling policy

must ensure these deadlines are met.

To achieve this objective the software engineer must first assign a priority

to each task. The scheduling policy of the RTOS is then to simply ensure that

the highest priority task that is able to execute is the task given processing

time. This may require sharing processing time ”fairly” between tasks of equal

priority if they are ready to run simultaneously.

Example:

The most basic example of this is a real time system that incorporates a

keypad and LCD. A user must get visual feedback of each key press within a

reasonable period - if the user cannot see that the key press has been accepted

within this period the software product will at best be awkward to use. If the

longest acceptable period was 100ms - any response between 0 and 100ms would

be acceptable. This functionality could be implemented as an autonomous task

with the following structure:

void vKeyHandlerTask( void *pvParameters )

{

// Key handling is a continuous process and as such the task

// is implemented using an infinite loop (as most real time



8 2 RTOS FUNDAMENTALS

// tasks are).

for( ;; )

{

[Suspend waiting for a key press]

[Process the key press]

}

}

Now assume the real time system is also performing a control function that

relies on a digitally filtered input. The input must be sampled, filtered and the

control cycle executed every 2ms. For correct operation of the filter the temporal

regularity of the sample must be accurate to 0.5ms. This functionality could be

implemented as an autonomous task with the following structure:

void vControlTask( void *pvParameters )

{

for( ;; )

{

[Suspend waiting for 2ms since the start of the previous

cycle]

[Sample the input]

[Filter the sampled input]

[Perform control algorithm]

[Output result]

}

}

The software engineer must assign the control task the highest priority as:

• The deadline for the control task is stricter than that of the key handling

task.

• The consequence of a missed deadline is greater for the control task than

for the key handler task.

The next page demonstrates how these tasks would be scheduled by a real

time operating system.



2.5 Real Time Scheduling 9

2.5 Real Time Scheduling

The diagram below demonstrates how the tasks defined on the previous

page would be scheduled by a real time operating system. The RTOS has itself

created a task - the idle task - which will execute only when there are no other

tasks able to do so. The RTOS idle task is always in a state where it is able to

execute.

Referring to the diagram above:

• At the start neither of our two tasks are able to run - vControlTask is

waiting for the correct time to start a new control cycle and vKeyHan-

dlerTask is waiting for a key to be pressed. Processor time is given to

the RTOS idle task.

• At time t1, a key press occurs. vKeyHandlerTask is now able to execute

- it has a higher priority than the RTOS idle task so is given processor

time.

• At time t2 vKeyHandlerTask has completed processing the key and

updating the LCD. It cannot continue until another key has been pressed

so suspends itself and the RTOS idle task is again resumed.

• At time t3 a timer event indicates that it is time to perform the next

control cycle. vControlTask can now execute and as the highest priority

task is scheduled processor time immediately.

• Between time t3 and t4, while vControlTask is still executing, a key

press occurs. vKeyHandlerTask is now able to execute, but as it has a

lower priority than vControlTask it is not scheduled any processor time.



10 3 RTOS IMPLEMENTATION

• At t4 vControlTask completes processing the control cycle and cannot

restart until the next timer event - it suspends itself. vKeyHandlerTask

is now the task with the highest priority that is able to run so is scheduled

processor time in order to process the previous key press.

• At t5 the key press has been processed, and vKeyHandlerTask suspends

itself to wait for the next key event. Again neither of our tasks are able

to execute and the RTOS idle task is scheduled processor time.

• Between t5 and t6 a timer event is processed, but no further key presses

occur.

• The next key press occurs at time t6, but before vKeyHandlerTask

has completed processing the key a timer event occurs. Now both tasks

are able to execute. As vControlTask has the higher priority vKeyHan-

dlerTask is suspended before it has completed processing the key, and

vControlTask is scheduled processor time.

• At t8 vControlTask completes processing the control cycle and suspends

itself to wait for the next. vKeyHandlerTask is again the highest prior-

ity task that is able to run so is scheduled processor time so the key press

processing can be completed.

3 RTOS Implementation

This section describes the RTOS context switch source code from the bot-

tom up. The FreeRTOS Atmel AVR microcontroller port is used as an exam-

ple. The section ends with a detailed step by step look at one complete context

switch.

3.1 Building Blocks

3.1.1 Development Tools

A goal of FreeRTOS is that it is simple and easy to understand. To this

end the majority of the RTOS source code is written in C, not assembler.

The example presented here uses the WinAVR development tools. WinAVR

is a free Windows to AVR cross compiler based on GCC.



3.1 Building Blocks 11

3.1.2 The RTOS Tick

When sleeping, a task will specify a time after which it requires ‘waking’.

When blocking, a task can specify a maximum time it wishes to wait.

The FreeRTOS real time kernel measures time using a tick count variable.

A timer interrupt (the RTOS tick interrupt) increments the tick count with

strict temporal accuracy - allowing the real time kernel to measure time to a

resolution of the chosen timer interrupt frequency.

Each time the tick count is incremented the real time kernel must check

to see if it is now time to unblock or wake a task. It is possible that a task

woken or unblocked during the tick ISR will have a priority higher than that

of the interrupted task. If this is the case the tick ISR should return to the

newly woken/unblocked task - effectively interrupting one task but returning to

another. This is depicted below:

Referring to the numbers in the diagram above:

• At (1) the RTOS idle task is executing.

• At (2) the RTOS tick occurs, and control transfers to the tick ISR (3).

• The RTOS tick ISR makes vControlTask ready to run, and as vCon-

trolTask has a higher priority than the RTOS idle task, switches the

context to that of vControlTask.

• As the execution context is now that of vControlTask , exiting the ISR

(4) returns control to vControlTask, which starts executing (5).

A context switch occurring in this way is said to be Preemptive, as the

interrupted task is preempted without suspending itself voluntarily.



12 3 RTOS IMPLEMENTATION

The AVR port of FreeRTOS uses a compare match event on timer 1 to

generate the RTOS tick. The following pages describe how the RTOS tick ISR

is implemented using the WinAVR development tools.

3.1.3 WinAVR Signal Attribute

The GCC development tools allow interrupts to be written in C. A compare

match event on the AVR timer 1 peripheral can be written using the following

syntax.

void SIG_OUTPUT_COMPARE1A( void ) __attribute__ ( ( signal ) );

void SIG_OUTPUT_COMPARE1A( void )

{

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

}

The ‘ attribute ( ( signal ) ) ’ directive on the function prototype

informs the compiler that the function is an ISR and results in two important

changes in the compiler output.

The ‘signal’ attribute ensures that every processor register that gets mod-

ified during the ISR is restored to its original value when the ISR exits. This is

required as the compiler cannot make any assumptions as to when the interrupt

will execute, and therefore cannot optimize which processor registers require

saving and which don’t.

The ‘signal’ attribute also forces a ‘return from interrupt’ instruction (RETI)

to be used in place of the ‘return’ instruction (RET) that would otherwise be

used. The AVR microcontroller disables interrupts upon entering an ISR and

the RETI instruction is required to re-enable them on exiting.

Code output by the compiler:

;void SIG_OUTPUT_COMPARE1A( void )

;{

; ---------------------------------------

; CODE GENERATED BY THE COMPILER TO SAVE

; THE REGISTERS THAT GET ALTERED BY THE



3.1 Building Blocks 13

; APPLICATION CODE DURING THE ISR.

PUSH R1

PUSH R0

IN R0,0x3F

PUSH R0

CLR R1

PUSH R18

PUSH R19

PUSH R20

PUSH R21

PUSH R22

PUSH R23

PUSH R24

PUSH R25

PUSH R26

PUSH R27

PUSH R30

PUSH R31

; ---------------------------------------

; CODE GENERATED BY THE COMPILER FROM THE

; APPLICATION C CODE.

;vPortYieldFromTick();

CALL 0x0000029B ;Call subroutine

;}

; ---------------------------------------

; CODE GENERATED BY THE COMPILER TO

; RESTORE THE REGISTERS PREVIOUSLY

; SAVED.

POP R31

POP R30



14 3 RTOS IMPLEMENTATION

POP R27

POP R26

POP R25

POP R24

POP R23

POP R22

POP R21

POP R20

POP R19

POP R18

POP R0

OUT 0x3F,R0

POP R0

POP R1

RETI

; ---------------------------------------

3.1.4 WinAVR Naked Attribute

The previous section showed how the ‘signal’ attribute can be used to write

an ISR in C and how this results in part of the execution context being auto-

matically saved (only the processor registers modified by the ISR get saved).

Performing a context switch however requires the entire context to be saved.

The application code could explicitly save all the processor registers on en-

tering the ISR, but doing so would result in some processor registers being saved

twice - once by the compiler generated code and then again by the application

code. This is undesirable and can be avoided by using the ’naked’ attribute in

addition to the ‘signal’ attribute.

void SIG_OUTPUT_COMPARE1A( void ) __attribute__ ( ( signal, naked ) );

void SIG_OUTPUT_COMPARE1A( void )

{

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

}



3.1 Building Blocks 15

The ‘naked’ attribute prevents the compiler generating any function entry

or exit code. Now compiling the code results in much simpler output:

;void SIG_OUTPUT_COMPARE1A( void )

;{

; ---------------------------------------

; NO COMPILER GENERATED CODE HERE TO SAVE

; THE REGISTERS THAT GET ALTERED BY THE

; ISR.

; ---------------------------------------

; CODE GENERATED BY THE COMPILER FROM THE

; APPLICATION C CODE.

;vTaskIncrementTick();

CALL 0x0000029B ;Call subroutine

; ---------------------------------------

; NO COMPILER GENERATED CODE HERE TO RESTORE

; THE REGISTERS OR RETURN FROM THE ISR.

; ---------------------------------------

;}

When the ‘naked’ attribute is used the compiler does not generate any func-

tion entry or exit code so this must now be added explicitly. The macros port-

SAVE CONTEXT() and portRESTORE CONTEXT() respectively save

and restore the entire execution context:

void SIG_OUTPUT_COMPARE1A( void ) __attribute__ ( ( signal, naked ) );

void SIG_OUTPUT_COMPARE1A( void )

{

/* Macro that explicitly saves the execution

context. */

portSAVE_CONTEXT();



16 3 RTOS IMPLEMENTATION

/* ISR C code for RTOS tick. */

vPortYieldFromTick();

/* Macro that explicitly restores the

execution context. */

portRESTORE_CONTEXT();

/* The return from interrupt call must also

be explicitly added. */

asm volatile ( "reti" );

}

The ‘naked’ attribute gives the application code complete control over when

and how the AVR context is saved. If the application code saves the entire

context on entering the ISR there is no need to save it again before performing

a context switch so none of the processor registers get saved twice.

3.1.5 FreeRTOS Tick Code

The actual source code used by the FreeRTOS AVR port is slightly different

to the examples shown on the previous pages. vPortYieldFromTick() is itself

implemented as a ‘naked’ function, and the context is saved and restored within

vPortYieldFromTick() . It is done this way due to the implementation of

non-preemptive context switches (where a task blocks itself) - which are not

described here.

The FreeRTOS implementation of the RTOS tick is therefore (see the com-

ments in the source code snippets for further details):

void SIG_OUTPUT_COMPARE1A( void ) __attribute__ ( ( signal, naked ) );

void vPortYieldFromTick( void ) __attribute__ ( ( naked ) );

/*--------------------------------------------------*/

/* Interrupt service routine for the RTOS tick. */

void SIG_OUTPUT_COMPARE1A( void )

{

/* Call the tick function. */



3.1 Building Blocks 17

vPortYieldFromTick();

/* Return from the interrupt. If a context

switch has occurred this will return to a

different task. */

asm volatile ( "reti" );

}

/*--------------------------------------------------*/

void vPortYieldFromTick( void )

{

/* This is a naked function so the context

is saved. */

portSAVE_CONTEXT();

/* Increment the tick count and check to see

if the new tick value has caused a delay

period to expire. This function call can

cause a task to become ready to run. */

vTaskIncrementTick();

/* See if a context switch is required.

Switch to the context of a task made ready

to run by vTaskIncrementTick() if it has a

priority higher than the interrupted task. */

vTaskSwitchContext();

/* Restore the context. If a context switch

has occurred this will restore the context of

the task being resumed. */

portRESTORE_CONTEXT();

/* Return from this naked function. */

asm volatile ( "ret" );

}



18 3 RTOS IMPLEMENTATION

/*--------------------------------------------------*/

3.1.6 The AVR Context

A context switch requires the entire execution context to be saved. On the

AVR microcontroller the context consists of:

• 32 general purpose processor registers. The gcc development tools assume

register R1 is set to zero.

• Status register. The value of the status register affects instruction execu-

tion, and must be be preserved across context switches.

• Program counter. Upon resumption, a task must continue execution from

the instruction that was about to be executed immediately prior to its

suspension.

• The two stack pointer registers.



3.1 Building Blocks 19

3.1.7 Saving the Context

Each real time task has it’s own stack memory area so the context can be

saved by simply pushing processor registers onto the task stack. Saving the

AVR context is one place where assembly code is unavoidable.

portSAVE CONTEXT() is implemented as a macro, the source code

for which is given below:

#define portSAVE_CONTEXT() \

asm volatile ( \

"push r0 \n\t" \ (1)

"in r0, __SREG__ \n\t" \ (2)

"cli \n\t" \ (3)

"push r0 \n\t" \ (4)

"push r1 \n\t" \ (5)

"clr r1 \n\t" \ (6)

"push r2 \n\t" \ (7)

"push r3 \n\t" \

"push r4 \n\t" \

"push r5 \n\t" \

:

:

:

"push r30 \n\t" \

"push r31 \n\t" \

"lds r26, pxCurrentTCB \n\t" \ (8)

"lds r27, pxCurrentTCB + 1 \n\t" \ (9)

"in r0, __SP_L__ \n\t" \ (10)

"st x+, r0 \n\t" \ (11)

"in r0, __SP_H__ \n\t" \ (12)

"st x+, r0 \n\t" \ (13)

);

Referring to the source code above:

• Processor register R0 is saved first as it is used when the status register is

saved, and must be saved with its original value.



20 3 RTOS IMPLEMENTATION

• The status register is moved into R0 (2) so it can be saved onto the stack

(4).

• Processor interrupts are disabled (3). If portSAVE CONTEXT() was

only called from within an ISR there would be no need to explicitly dis-

able interrupts as the AVR will have already done so. As the port-

SAVE CONTEXT() macro is also used outside of interrupt service rou-

tines (when a task suspends itself) interrupts must be explicitly cleared

as early as possible.

• The code generated by the compiler from the ISR C source code assumes

R1 is set to zero. The original value of R1 is saved (5) before R1 is cleared

(6).

• Between (7) and (8) all remaining processor registers are saved in numer-

ical order.

• The stack of the task being suspended now contains a copy of the tasks

execution context. The kernel stores the tasks stack pointer so the context

can be retrieved and restored when the task is resumed. The X processor

register is loaded with the address to which the stack pointer is to be saved

(8 and 9).

• The stack pointer is saved, first the low byte (10 and 11), then the high

nibble (12 and 13).

3.1.8 Restoring the Context

portRESTORE CONTEXT() is the reverse of portSAVE CONTEXT()

. The context of the task being resumed was previously stored in the tasks stack.

The real time kernel retrieves the stack pointer for the task then POP’s the con-

text back into the correct processor registers.

#define portRESTORE_CONTEXT() \

asm volatile (

"lds r26, pxCurrentTCB \n\t" \ (1)

"lds r27, pxCurrentTCB + 1 \n\t" \ (2)

"ld r28, x+ \n\t" \

"out __SP_L__, r28 \n\t" \ (3)



3.2 Detailed Example 21

"ld r29, x+ \n\t" \

"out __SP_H__, r29 \n\t" \ (4)

"pop r31 \n\t" \

"pop r30 \n\t" \

:

:

:

"pop r1 \n\t" \

"pop r0 \n\t" \ (5)

"out __SREG__, r0 \n\t" \ (6)

"pop r0 \n\t" \ (7)

);

Referring to the code above:

• pxCurrentTCB holds the address from where the tasks stack pointer

can be retrieved. This is loaded into the X register (1 and 2).

• The stack pointer for the task being resumed is loaded into the AVR stack

pointer, first the low byte (3), then the high nibble (4).

• The processor registers are then popped from the stack in reverse numer-

ical order, down to R1.

• The status register stored on the stack between registers R1 and R0, so is

restored (6) before R0 (7).

3.2 Detailed Example

The final part of section 2 shows how these building blocks and source

code modules are used to achieve a context switch on the AVR microcontroller.

The example demonstrates in seven steps the process of switching from a lower

priority task, called TaskA, to a higher priority task, called TaskB.

The source code is compatible with the WinAVR development tools.



22 3 RTOS IMPLEMENTATION

3.2.1 Step 1 Prior to the RTOS tick interrupt

This example starts with TaskA executing. TaskB has previously been

suspended so its context has already been stored on the TaskB stack.

TaskA has the context demonstrated by the diagram below.

The (A) label within each register shows that the register contains the

correct value for the context of task A.

3.2.2 Step 2 The RTOS tick interrupt occurs

The RTOS tick occurs just as TaskA is about to execute an LDI instruc-

tion. When the interrupt occurs the AVR microcontroller automatically places

the current program counter (PC) onto the stack before jumping to the start of

the RTOS tick ISR.

3.2.3 Step 3 The RTOS tick interrupt executes

The ISR source code is given below. The comments have been removed to

ease reading, but can be viewed on a previous page.

/* Interrupt service routine for the RTOS tick. */

void SIG_OUTPUT_COMPARE1A( void )

{

vPortYieldFromTick();

asm volatile ( "reti" );



3.2 Detailed Example 23

}

/*--------------------------------------------------*/

void vPortYieldFromTick( void )

{

portSAVE_CONTEXT();

vTaskIncrementTick();

vTaskSwitchContext();

portRESTORE_CONTEXT();

asm volatile ( "ret" );

}

/*--------------------------------------------------*/

SIG OUTPUT COMPARE1A() is a naked function, so the first in-

struction is a call to vPortYieldFromTick() . vPortYieldFromTick() is

also a naked function so the AVR execution context is saved explicitly by a call

to portSAVE CONTEXT() .

portSAVE CONTEXT() pushes the entire AVR execution context onto

the stack of TaskA, resulting in the stack illustrated below. The stack pointer for

TaskA now points to the top of it’s own context. portSAVE CONTEXT()

completes by storing a copy of the stack pointer. The real time kernel already

has copy of the TaskB stack pointer - taken the last time TaskB was suspended.



24 3 RTOS IMPLEMENTATION

3.2.4 Step 4 Incrementing the Tick Count

vTaskIncrementTick() executes after the TaskA context has been saved.

For the purposes of this example assume that incrementing the tick count has

caused TaskB to become ready to run. TaskB has a higher priority than TaskA

so vTaskSwitchContext() selects TaskB as the task to be given processing time

when the ISR completes.

3.2.5 Step 5 The TaskB stack pointer is retrieved

The TaskB context must be restored. The first thing portRESTORE CONTEXT

does is retrieve the TaskB stack pointer from the copy taken when TaskB was

suspended. The TaskB stack pointer is loaded into the processor stack pointer,

so now the AVR stack points to the top of the TaskB context.

3.2.6 Step 6 Restore the TaskB context

portRESTORE CONTEXT() completes by restoring the TaskB con-

text from its stack into the appropriate processor registers.



3.2 Detailed Example 25



26 3 RTOS IMPLEMENTATION

Only the program counter remains on the stack.

3.2.7 Step 7 The RTOS tick exits

vPortYieldFromTick() returns to SIG OUTPUT COMPARE1A()

where the final instruction is a return from interrupt (RETI). A RETI instruc-

tion assumes the next value on the stack is a return address placed onto the

stack when the interrupt occurred.

When the RTOS tick interrupt started the AVR automatically placed the

TaskA return address onto the stack - the address of the next instruction to

execute in TaskA . The ISR altered the stack pointer so it now points to

the TaskB stack. Therefore the return address POP’ed from the stack by the

RETI instruction is actually the address of the instruction TaskB was going

to execute immediately before it was suspended.

The RTOS tick interrupt interrupted TaskA , but is returning to TaskB

- the context switch is complete!

If you would like more information, take a look at the FreeRTOS ColdFire

Implementation Report. This was written by the Motorola ColdFire port au-

thors, and details both the ColdFire source code and the development process

undertaken in producing the port.


