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Optimization of Eddy-Current Compensation * 

J. J. VAN VAALst AND A. H. BERGMAN 

Philips Research Laboratories, Building WAE, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands 

Received December 28, 1989; revised March 8, 1990 

A comprehensive method for optimizing the preemphasis applied to pulsed gradients 
in NMR experiments in order to compensate induced eddy-current fields is presented. 
First, the eddy-current effects are measured without any compensation active. The eddy- 
current fields with spatial symmetries different from those of the pulsed gradient are also 
taken into account. Next, the measured response functions are analyzed with exponentially 
decaying terms. An exact solution of the required compensation is provided by numerical 
inversion of the response function using Laplace transformation. The calculated compen- 
sation terms are implemented in hardware. This yields a highly improved suppression of 
the eddy-current effects, including induced fields with spatial symmetries different from 
those of the switched gradient. The result is independent of the waveform or timing of the 
pulsed gradient and can compete with shielded gradient systems. o 1990 Academic press, hc. 

Eddy-current fields are a major problem associated with switching magnetic field 
gradients in NMR imaging (I) and localized spectroscopy (2) sequences. They are 
induced when there are conducting structures present in the pulsed magnetic field, 
such as cryostat shields in superconducting magnets, Faraday screens, the main magnet 
windings, the shim coils, other gradient coils, or the RF coils (3, 4). The eddy currents 
will produce magnetic fields opposing the pulsed field, and will persist, decaying mul- 
tiexponentially, for hundreds of milliseconds after switching the gradient on or off (5, 
6). In consequence, the intended phase encoding of the magnetic spins will be distorted 
and there will be phase dispersion even when the gradients are switched off. This 
results in poor selective excitation, imperfect rephasing of echoes, loss of signal, and 
distorted images and spectra. 

Apart from an eddy-current field with the same spatial symmetry as that of the 
pulsed linear gradient, eddy currents which generate fields with other spatial symmetries 
are often induced. Approximately, using the “method of images” well known from 
classical electrodynamics, the eddy-current field can be described as produced by a 
virtual current pattern which is the image of the gradient windings with respect to e.g., 
the cryostat shield cylinder. Because the gradient windings are designed for optimum 
linearity, and since this pattern is imaged by the cryostat shield mainly in the radial 
direction and not in the axial direction, the resulting fictitious current pattern will not 
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produce a perfect linear gradient field. Therefore, and due to coupling with other 
gradient or shim coils (which should be disconnected when not in use), higher-order 
terms may become important. 

Also, eddy currents which produce a time-dependent but spatially invariant B0 field 
shift, which is named a z. eddy-current field, can be induced. This asymmetry effect 
is the consequence of eccentric positioning of the internal radiation shields of the 
magnet with respect to the gradient bore. The gradient coil and all relevant cryostat 
shields must be positioned isocentrically by mechanical adjustment when possible. 

Several methods for (partially) preventing or overcoming the eddy-current effects 
are proposed in the literature. The problem is alleviated when yokeless ferrite permanent 
magnets or specially designed superconducting magnets are used ( 7). Employing 
shaped gradient pulses is sequence dependent and deficient especially for the first lo- 
20 ms following the pulsed gradient (8). The most promising solution, shielded gra- 
dients (9-23), has the disadvantage of reduced bore size and will not prevent eddy- 
current fields originating from lossy structures inside the gradient coil, such as Faraday 
screen, RF coil, and conductive probe casing. The method employed in most NMR 
systems is the so-called preemphasis: the linear eddy-current fields are compensated 
by adding an overshoot to the waveform of the pulsed gradient (14, 15). 

The z. eddy-current field can be reduced by separate compensation of the two 
halves of the gradient coil (16), but this impairs the linearity of the gradient. Alter- 
natively, after data collection, the z. shift can be corrected by software using a previously 
determined phase-shift function (17, 18), which has the disadvantage of timing and 
sequence dependency. The best solution is to apply an exponentially decaying current 
to the z. (shim) coil ( 19, 20). 

We present a comprehensive algorithm for measuring all eddy-current fields and 
optimizing the widely used overshoot compensation, resulting in a greatly improved 
suppression of the eddy-current effects. This is achieved by calculating exactly the 
required correction, taking into account the eddy currents induced by the overshoot 
correction itself, and by including the correction of eddy currents with spatial sym- 
metries different from those of the pulsed gradient. 

THEORY 

The spatial symmetries of the pulsed magnetic gradient fields and the induced eddy- 
current fields are indicated by p and q, respectively, where p and q represent field 
symmetries corresponding to a set of shimming gradients: 

p = x, Y, z, zo, XY, . . . and 4 = x, Y, z, zo, XY, . . . . [II 
The z component of the induced magnetic eddy-current field can be developed in q 
terms with amplitudes cq( t): 

&(r, t) = C c,(Oq. [21 
4 

Each q term is induced by pulsed magnetic fields with spatial symmetry p: 

c,(t) = c 4Jq(O. 
P 

[31 
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Thus, the time-dependent eddy-current field is described by a set of functions Z&J t), 
where each BPq( t) specifies the q eddy-current field after pulsing a p gradient: 

&(r, 0 = C BPq(t)q. 
P.4 

141 

To analyze the functions B,(t), we consider a set of LR circuits representing the 
conducting structures of the NMR system in which the eddy currents are induced 
(see Fig. 1). Each subset of npq circuits is responsible for the generated eddy-current 
fields with spatial symmetry q. All circuits are mutually coupled with the gradient- 
coil circuit and with the other eddy-current circuits. Therefore, the eddy currents Zqi 
in the circuits q, i are given by a set of npqo + n,,, + - - - + npq differential equa- 
tions: 

I- dZ ,. 
RqiZqi + L,i $f + Mz; 2 + 5 M$% + C ng’ M$J -$’ = 0 [51 

j#i q’#q j=l 

for each q, i (where q = qo, ql, . . . , qj and 1 G i < n,,). After pulsing the gradient p 
with the step function 

i 

0 
zp = 

for t < 0 

10 for t > 0 161 

the solution of the above set of equations for the induced eddy current in the circuit 
q, iis 

FIG. 1. After pulsing a gradient field p, eddy currents are induced in conducting structures of the NMR 
system which can be described by a set of LR circuits. All circuits are mutually coupled. 
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Zqi(t) a -l&~e-“TP4. [71 

So, the eddy-current field described by E&(f) is specified by a discrete sum of expo- 
nentially decaying terms for each spatial symmetry q: 

%Y 
B,(t) a C a?e-‘fTp4. [81 

i=l 

The ratio afq/b? depends on the efficiency for generating a field when current is 
induced in the circuit q, i. For each circuit, this ratio, Rqi, and Lqi are dependent on 
the resistivity of the conducting structure and on geometric factors. Due to the coupling 
between, in principle, all the circuits (when not orthogonal), the amplitude a? and 
time constant r? for the eddy-current field generated by a specific circuit are a complex 
function of the parameters of all the circuits. Fortunately, it is not required for the 
calculation of the eddy-current compensation to have any knowledge at all of the 
values of Rqj and Lqi of the individual circuits, their mutual coupling constants, or the 
efficiency ratios ayq / by. 

We will now describe the mathematical method for an exact solution of the eddy- 
current compensation, taking intrinsically into account all mutual couplings, including 
the additional eddy currents introduced by the correction, and including the eddy- 
current fields with spatial symmetry different from the pulsed gradient. This is done 
by first describing a system without any compensation active, then by considering a 
system with only compensation for the diagonal terms, and finally by solving the 
problem of compensation including cross-terms. 

No compensation. The technique of signal-processing analysis, employing a math- 
ematical description and representation of signals and systems, is an excellent tool for 
our problem, and can be used since an NMR system is a time-invariant system with 
linear response. Using this method, the induced field is described by the convolution 
of the input current of the gradient amplifier with a system impulse-response function. 
Compensation circuits are simply electronic filters with a specific impulse response, 
and, when implemented, are included in the convolution. Mathematically, the solution 
is most easily obtained by considering the transfer function, which is the Laplace 
transform of the impulse-response function. The signal-analysis technique is described 
educationally and in condensed form by Oppenheim et al. (21) . Useful properties of 
Laplace transforms are given, e.g., in Refs. (21, 22). 

Consider a system in which eddy currents are induced, but where no compensation 
is active. ’ A pictorial representation is shown in Fig. 2. After pulsing a p or q gradient, 
eddy-current fields with the same spatial symmetry are induced, denoted by BpP and 
Bqq. Moreover, after pulsing the p gradient, eddy currents are induced generating a 
field with q spatial symmetry, specified by BPq. So, as an example, this is an NMR 
system with not only diagonal-term but also cross-term eddy-current fields. 

The system inputs are the gradient input currents Z,,(t) and Zq( t), and the system 
outputs are the induced fields described by B,,(t), BPq( t), and Bqq(t). The system 

I To prevent confusion by mixing up the current i and the subscript i in the first part of this publication, 
we reversed the usual notation in signal-analysis techniques. In our notation, which is compatible with the 
convention of Ref. (22) capitals denote the original functions in the time domain, and lowercase characters 
are reserved for their Laplace transform image functions in the s domain. 
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‘P 
0 0 p-field coil 

‘q 
0 0 q-field coil 

FIG. 2. System with diagonal (p + p and q + q)- and cross-term (p --, q) eddy-current fields; no eddy- 
current compensation active. 

impulse-response functions ZZ;T( t), Hz(t), and Hi:(t) give the relation between 
input and output, describing the interaction of the gradient coil with the rest of the 
NMR system. These functions therefore specify the induced fields, including the mutual 
coupling between all conducting structures in which eddy currents are induced. 

In general, for both diagonal terms and cross terms, the induced eddy-current fields 
are given by convolving the input current with the impulse-response function of the 
system, 

& 
Zp( t) 0 zfgy t) = B,(t) - ip(s)hgys) = b,,(s), [91 

with p and q any spatial symmetry, and where L is the Laplace transform operator 
and &(s), hg(s), and b,,(s) are the image functions of Z,(t), HE(t), and Z?,(t), 
respectively. 

For an ideal system, the generated magnetic field does not deviate from the input 
current waveform, so 

I 
Hz(t) = f&s(t) - &y(S) = s,,. [lOI 

For a nonideal system this is not valid for all q = p and some q # p, as a consequence 
of induced eddy currents. For the calculation of the required compensation, the system 
impulse-response functions ZZiT( t) must be determined. This can be done by applying, 
without any compensation active, the Heaviside unit step function U(t) as input 
current ZP( t ) : 

0 fort < 0 L 
z,(t) = up(t) = f fort = 0 - up(s) = i . ill1 

1 for t > 0 



OPTIMIZED EDDY-CURRENT COMPENSATION 57 

Then the field B,,(t) is by definition the step-response function G,,(t) and can be 
measured: 

Bpq( t) = G,,(t) = S,, - 5 afqeptlTf4 
i= I 

for t > 0 

1 
with wfq = - . 

TT [I21 

The amplitudes aTq and time constants T? are experimentally determined by an n,,- 
exponential fit of the eddy-current fields in a system without any compensation active, 
measured after applying a step function as input current. The system impulse-response 
function follows from Eq. [ 91: 

Substitution of Eqs. [ 111 and [ 12 ] yields 

h,yf( s) = sg,( s) = s,, - 5 2m!Yf?- 
i=, s + wp4- 

1131 

iI41 

The transfer function h%(s) is now determined and can be used for the calculation 
of the required compensation, as will be demonstrated below. 

Compensation excluding cross terms. In Fig. 3 a schematic diagram of the same 
system is shown, but now with compensation filters for the diagonal terms, charac- 
terized by the correction impulse-response functions Hg( t) and Hg( t). The induced 
fields are now described by 

‘P 
0 0 p-field coil 

BPPP EPqq 

‘q 
0 0 q-field coil 

I 

FIG. 3. System with diagonal (p + p and q + q)- and cross-term (p -+ q) eddy-current fields; eddy- 
current compensation excluding cross terms implemented. 
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Z,(l) 0 &y(t) = IF(t) and z;(t) 0 zqg(t) = B,(t), iI51 

where Zg(t) describes the waveform of the input current including the overshoot 
correction imposed by the compensation circuit. By combining Eqs. [ 15 1, 

Zp(t) 0 zqg(t) 0 zqg(t) = Bpg(L), [I61 

it can be seen that exact compensation for the diagonal terms (q = p) is achieved 
when 

L 
H;(t) 0 Hp”Yp”(t) = C?(t) - hg(s)h;gs) = 1. 1171 

So the transfer function of the filter must be the inverse of the transfer function of the 
system. The specification for the correction filters is obtained by calculating the cor- 
rected current Zg( t) . Using Eqs. [ 151 and [ 17 ] it follows that for exact correction, 

iZ(s) = ip(S)hE(S) and 
1 

h;(s) = - 
h;?(s) * [If31 

With the unit step function as the input current (Eqs. [ 1 l]), and using the transfer 
function of the system which we calculated in the previous section ( Eq. [ 14 ] ) , we find 

ipts) up(s) g(S) = - = - = 1 
hi:(s) Sgpp(S) S( 1 - C~=~(U~S/(S + wi))) ’ iI91 

where for notational convenience the super- and subscript pp is dropped on the eddy- 
current parameters. a. = 8 PP - PP 

*1 1, WizWi = l/Ti ,andn=n,,. Next, parameters pk are 
defined by 

Pk = 
wjl wj2 wjn-k 

h+j2+ * . . #j.-k’l (n-k)! ’ [201 

which is equivalent to (with pp’ = pk for km, = n) 

p:“’ = pE;‘) + wnpy’ for 0 < k < n 

(n) = Pn 1. 2 [211 

and parameters qk are defined by 

qk E pk - i sip:‘], 
i=l 

[221 

where pyl iS pk calculated with wi Set at zero. using the parameters pk and qk, we 
rewrite the image function ig(s), where ntil denotes the product of all but the ith 
term: 
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i;(s) = 
I-I:=, (s + Wi) 

s{ l-I:==, (s + Wi) - c:=, a;s l-Iz=, qs + Wk)) 

c ii=0 PIJk = 
2 z-0 &ski’ 

CP=opkSk n ffi 
= II 1~0 (S + fik) = lz S + Oi . 

v31 

Thus i;(s) is determined by the poles Qj = Q$ = 1 /ry’, which are the roots of the 
polynomial 

CL0 &Sk+‘, v41 

and the residues ai = a:‘, which are given by 

Cii=OPk(-%)k 
ai = n zzo Ul( Qk - Qi) * 

Finally, with a0 = 0 and a0 = 1, it is found that 

i;(s) = f + i (yi 
i=, s+ Q;’ 

Now, inverse Laplace transformation gives the corrected current (when the unit step 
function is applied as input current) required for exact compensation of the eddy- 
current field with the same spatial symmetry as that of the pulsed field: 

i 

0 for t < 0 

z;(t) = “PP 
] + 2 aye-‘ITPp for t > 0. 

i=l 

So, for exact correction of the diagonal eddy currents the filter must convolve the 
waveform of the current delivered to the filter with the simple multiexponentially 
decaying part of the above function. The filter function is specified by n,, decaying 
exponentials with amplitudes (Y?, which are the residues CX~’ calculated with Eq. [ 25 1, 
and with time constants $, given by the inverse of the roots Qfp which are calculated 
from Eq. [24]. 

Compensation including cross terms. Now the correction of cross terms is also in- 
cluded, as depicted in Fig. 4. In this figure several alternative pathways are suggested 
which can be used when filters for the correction of the cross terms are implemented. 
For diagonal terms (q = p), the induced fields and the condition for exact compensation 
are, for this scheme, also described by Eqs. [ 16 ] and [ 17 1. The required compensation 
for the diagonal terms is not affected by the correction of the cross terms and is 
calculated in the previous section. For cross terms (q Z p), the most straightforward 
way of compensating is to use version (a) of correcting a cross term, indicated in Fig. 
4 by the correction filter with impulse-response function Hz(*). In that case, after 
pulsing an input current Zp( t), the q field generated by the current applied to the p- 
field gradient coil is denoted by Z3,,( t) and is given by 
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p-field coil 

q-field coil 

I 

FIG. 4. System with diagonal (p + p and q + q)- and cross-term (p + q) eddy-current fields; eddy- 
current compensation including cross terms implemented. 

Zp( t) 0 HZ(t) 0 Hgy t) = B,(t), [281 
and the q field generated by the current which is, through the cross-term correction 
circuit, applied to the q-field gradient coil is denoted by Bg( t) and is described by 

Zp( t) 0 Hgy( t) 0 H$@ (t) 0 HF(t) 0 H$y(t) = zl~(t). 1291 

The cross terms will be exactly compensated when 

&y(t) = -Bpq(t). [301 

Since the diagonal term for the q gradient is compensated according to the condition 
of Eq. [ 17 1, it follows from Eqs. [ 28 ] - [ 301 that 

fGY (t) = -H;:(t). 1311 

Therefore, using compensation of the cross terms according to scheme (a) of Fig. 4, 
the correction filter must simply pass a waveform which is opposing but shaped iden- 
tically to the cross-term step response measured in the absence of any compensation. 
In other words, for exact compensation the correction circuits for the cross terms must 
convolve the current which is applied to the filter with the negative of a multiexpo- 
nentially decaying function specified by the n, exponentials with parameters a? and 
Tfq describing the induced cross-term eddy-current fields measured without compen- 
sation active. 

When an alternative scheme for the correction of cross-terms is used, for instance, 
any of the schemes (b)-(d) indicated in Fig. 4, or when not only p --, q but also the 
reverse q + p eddy-current fields are induced, the required compensation can be 
calculated by a completely similar mathematical approach. 

A computer program for calculating exactly the required eddy-current compensation 
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from noncompensated eddy-current field parameters was developed, employing the 
method described above. The inverse calculation is also implemented. For interested 
readers the Fortran source program is available upon request. 

OPTIMIZATION ALGORITHM 

The successive steps of measuring and quantifying the induced eddy-current fields 
and of calculating and implementing the correction required for exact compensation 
are now discussed. 

First the eddy-current fields following excitation with a step function are measured 
without any compensation active. Usually, this is done with small pick-up coils or 
tiny NMR samples. In that case, for a complete analysis of all the possible spatial 
symmetries, the eddy-current fields must be measured typically at 31 points, from 
which the spatial dependence is determined using field-analysis methods employing 
Legrende polynomials or spherical harmonics (23,24). This must be done at a number 
of points in time to obtain the time dependence. However, less laborious methods are 
usually practiced: the single-point measurement method which is insensitive to or 
disturbed by eddy-current fields with nondiagonal spatial symmetry, or the often used 
two-point method which has similar problems but eliminates or gives information on 
the z. eddy-current fields. So, employing a point method, complete analysis requires 
measurements at many spatial points, whereas when the measurements are confined 
to one or two points eddy-current fields with other symmetries simultaneously present 
are either overlooked or contaminate the information measured for the diagonal eddy- 
current field. 

Alternatively, we use a phantom which more or less covers the complete volume 
of interest in order to consistently determine all the eddy-current fields, including 
those with spatial symmetry different from that of the pulsed gradient. Initially, the 
magnetic field homogeneity is optimized without any gradient being pulsed. Then the 
eddy-current fields are measured with the pulse sequence depicted in Fig. 5 by adjusting 
the shims to maximize the observed FID for given delay times 6 following a p gradient 
pulse. This will be possible with just the p shim when only eddy-current fields with p 
spatial symmetry are induced. When, however, cross-term eddy-current fields are sig- 
nificant, maximizing the FID will not be feasible with only the diagonal shim, and 
the shims corresponding to the cross-term spatial symmetries must be included in the 
procedure. So with this method the presence of relevant cross-term eddy-current fields 
is instantly noticed, and they are measured simultaneously with but independently of 
the diagonal term. 

FIG. 5. Pulse sequence for measuring eddy-current fields. The pulsed gradient is switched on during a 
time A which is at least five times the largest eddy-current time constant T&. The fall time of the gradient 
must be as short as possible. The delay time 6 is variable. The RF pulse excites the nuclear spins with a 
small tip angle. The NMR signal is real-time displayed on a large screen monitor or numerically evaluated 
in order to allow interactive optimization of the individual shims for a specific time 6. 
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The gradient is switched on for a long time A, typically 3 s, but at least five times 
the largest eddy-current time constant Tza,. The fall time tf of the gradient must be 
as short as possible since the method described under Theory demands excitation of 
the eddy-current fields with a step function. In practice the nonzero fall time, which 
is typically 0.5-l ms, causes only very small errors in the measured eddy-current 
amplitudes ~7~~~: 

.,=.,,(,.+&f+ . ..). ~321 

So the amplitude willbe affected by less than 0.5% when Tfq > 3~. The determination 
of the eddy-current time constants is not impaired at all by a nonzero fall time. Only 
the first part of = 10 ms of the FID is observed. The procedure is repeated for several 
values of 6. For small 6 and strong eddy-current fields, maximization is only possible 
for the,first few milliseconds of the FID. The NMR signal is acquired off resonance 
in order to separate the effect of a frequency shift as a consequence of a z. eddy- 
current field, and of a change in the envelope as a result of eddy-current fields with 
any other spatial symmetry. 

Next, the observed eddy-current behavior as a function of time following the p 
gradient pulse is fitted for each spatial dependence q with n, exponential terms (see 
Eq? [ 121). The accuracy of the parameters determined by the fit procedure is essential 
for the result of the calculation of the correction constants. 

Then, the compensation required for exact correction is calculated both for diagonal 
and for cross terms with the method described under Theory. The step response of 
the system is measured more easily after the gradient is switched off, as described 
above, whereas the theory describes the situation after switching the gradient on more 
conveniently. This is no problem since the induced eddy-current fields in both situations 
are opposite but identically shaped. 

Finally, the calculated overshoot exponent& are implemented in the hardware, 
e.g., using the well-known circuit for a multiexponentially decaying overshoot given 
in Fig. 6, where R f, and RF set amplitude and time constant independently for each 
exponential term: 

,gq = R;R’ RP R’ --- 
RF-“(&= + RF) - Rf - Rq,“- Rf’ 

for R4 4 Rf’, ]331 

TTq = RfCi. 1341 

For diagonal terms (q = p), the amplitude and time constant are of course defined 
by LYE’ and 77’. The maximum adjustable amplitude and time constant are limited 
by R’fRf and by RF,” Cj, respectively. By splitting up the resistors Rq and Rf, the 
lower limit can also be set in order to allow more accurate setting of the parameters. 
The resistor Rt is only inserted for diagonal filters, where the ratio R’/Ri determines 
the sensitivity for passing the original waveform. It can be convenient when this ratio 
deviates from one, for instance, for the pq = zozo filter. Because the accuracy of the 
correction established with the compensation algorithm described is very high, also 
the temperature and time stability of the electronic components must be high to 
ensure proper functioning of the eddy-current compensation over a longer time period. 
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FIG. 6. Electronic correction filter compensating q eddy-current fields after pulsing a p gradient. The basic 
circuits connected between A, and B, (with i = 1, , n,) induce exponentially decaying overshoots with 
amplitudes and time constants independently set by Rf and Rf, respectively. The resistor Ri is only inserted 
between Ar, and B,, for diagonal filters ( q = p) 

To facilitate the setting of the exponential parameters, the circuit of Fig. 6 can be 
adapted to allow computer control of the amplitudes and time constants, for example, 
using programmable switched-capacitor filters. Even more sophisticated is the use of 
computer-controlled digital signal-processing (DSP) techniques for the correction fil- 
ters, which has the additional benefit of superior accuracy and stability. 

When there are measurement or fitting errors, or errors as a consequence of tolerance 
in the amplifier and correction-circuit components, fine adjustment employing the 
measurement method described above may be required to give the optimum com- 
pensation. This is most easily done by starting with a large 6 and first adjusting the 
amplitude of the term with the largest time constant, and subsequently proceeding to 
shorter times 6 and terms with smaller time constants. 

Using the method of observing and optimizing the NMR signal of a large phantom 
with the shims, eddy-current fields with any spatial symmetry are inevitably noticed 
due to their effect on the NMR signal and instantly identified and quantified by the 
shims required for the optimization. Another advantage of this method is that the 
(residual) eddy-current fields are assessed by exactly the same criterion used when the 
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NMR imaging and spectroscopy results are evaluated, namely the spectral linewidth, 
shift, and shape observed over the volume of interest. 

RESULTS 

We used the novel algorithm to improve the eddy-current compensation of our 6.3 
T, 20 cm horizontal-bore animal system with 20 T/m nonshielded gradients. The 
free bore of the Oxford Instruments magnet with the gradient and shim set inserted 
is 13.5 cm. In this system, the eddy currents induced immediately following a long 
gradient pulse (A 2 5 T& and 6 = 0 in Fig. 5) are of the order of 45% of the pulsed 
gradient level, requiring a compensation overshoot of approximately 80% on the gra- 
dient waveform. The basic eddy-current time constants are of the order of 15, 130, 
and 600 ms. Table 1 gives a complete list of all the induced eddy-current fields, mea- 
sured without any compensation active. Also listed are the parameters required for 
exact compensation, calculated by the computer program which determines the am- 
plitudes and time constants according to the method reported under Theory, where 
for correction of the nondiagonal terms scheme (a) of Fig. 4 is assumed. 

In Fig. 7 the block diagram for compensation of the 6.3 T animal system is shown. 

TABLE I 

Eddy-Current Compensation Parameters’ of a 6.3 T System 

Pulsed field Induced field 
P 4 

Response function’ 

* 
0, r 

Required overshoot’ 

cl? 7: 

X X 2.60 7.0 11.73 6.6 
17.96 19.8 40.11 15.1 
14.45 102.9 19.31 86.9 
8.83 343.2 8.22 315.1 
0.59 6272.7 0.58 6236.0 

ZO 0.254 7.2 0.254 7.2 
0.126 73.1 0.126 73.1 

y 22.85 18.0 57.56 12.5 L, 
18.39 137.3 22.81 111.7 
4.59 624.8 4.24 597.8 

z 6.81 11.4 6.81 11.4 
6.46 107.3 6.46 107.3 

ZO 0.165 5.1 0.165 5.1 
0.296 165.8 0.296 165.8 

Z Z 17.06 16.5 27.29 13.3 
8.85 135.7 9.67 123.7 
2.22 866.3 2.18 847.5 

zo zo 42.37 3.0 191.05 1.3 
19.96 38.5 26.17 30.6 
6.82 404.3 6.93 377.4 

’ The unit of a? and a? is a percentage of the pulsed field p, except for p # z. and q = z. where the unit 
is ppm/(mT/m). The unit of c and 77 is ms. 

b Measured without any compensation active. 
’ For nondiagonal terms the compensation is implemented according to scheme (a) of Fig. 4. 
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z z - coil 
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FIG. 7. Block diagram for eddy-current compensation of the 6.3 T, 20 cm diameter horizontal-bore 
Oxford Instruments magnet. Inserted are 13.5 cm diameter bore nonshielded gradients with maximum 
strength of 20 mT/m and minimum rise and fall time for pulsing between zero and maximum gradient 
strength of 1 ms. 

In a preliminary attempt, we implemented S- 12 exponentials per correction filter, 
yielding maximum flexibility. We realized the circuit of Fig. 6, combining four basic 
circuits A;-Bi at a time, by using a quad operational amplifier (Precision Monolithics, 
Inc., OP-400). After fine adjustment of the eddy-current compensation, the actual 
filter setting using an electronic filter with 12 exponential terms was measured and 
was found to be virtually identical to the calculated compensation described by n,, 
terms (typically n,, = 3) given in Table 1; the difference is less than the estimated 
level of residual eddy-current fields. So the n,, calculated terms do indeed specify the 
required filter parameters with an excellent accuracy. 

Implementing the calculated n,,-exponential overshoot correction listed in Table 1 
immediately reduced the eddy-current effects to less than I%, which was improved 
easily by some additional fine tuning of the amplitudes. The initial accuracy is limited 
by the accuracy of the estimated uncorrected eddy-current parameters, and by inac- 
curacies in the hardware (accuracy of preemphasis settings and amplification param- 
eters, amplifier stability and noise, and so on). Subsequent fine tuning of only the 
preset amplitudes resulted in residual eddy-current fields which are ~0.25% of the 
pulsed gradient for 6 2 300 ~LS and A = 3 s, and ~0.05% of the pulsed gradient for 6 
> A following a gradient pulse typically used in NMR experiments ( A = 2 ms) . This 
is better, and much easier to realize, than the specifications for a shielded gradient set 
(with smaller bore) which was designed by an external company for our animal system. 

The quality of the compensation is not destroyed by changing the magnitude or 
the rise or fall time of the pulsed gradient. 

In Fig. 8 we illustrate the effect of eddy currents and the results with the optimized 
compensation on a 4 cm diameter spherical phantom covering the complete region 
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FIG. 8. The effect of eddy currents on a 15 Hz spectral line obtained from a 4 cm diameter spherical 
phantom covering the complete volume of interest in a 6.3 T horizontal-bore animal system. (a) No gradient 
pulsed. (b) With y gradient pulsed and with optimum compensation for pq = yy, but no compensation for 
cross terms. (c) With y gradient pulsed and with optimum compensation for pq = yy, pq = yz, and pq 
= yzO. The signals are obtained using the pulse sequence described in Fig. 5, with the gradient switched on 
at a strength of 10 mT/m for a time A = 3 s, with the fall time t/ = 0.5 ms, and start of data acquisition at 
a time 6 = 1 ms after the switching off of the gradient. 

which is of interest in our animal system for imaging and spectroscopy of the rat. 
Figure 8a shows the Fourier transform of the NMR signal obtained from this phantom 
when no gradients are pulsed. The signal is shimmed to 15 Hz (0.06 ppm) which is 
a linewidth representative of metabolites in biological tissue at 6.3 T. 

When only eddy-current fields with the same spatial symmetry as that of the pulsed 
gradient are corrected, still significant eddy-current fields are not compensated, as is 
clear from Fig. 8b, where a 10 mT/m y gradient was pulsed for 3 s, and switched off 
1 ms prior to data acquisition. The y gradient pulse induces y, z, and z. eddy-current 
fields (see Table 1) . If small pick-up coils or NMR samples had been used at one or 
more places along the y axis to measure the eddy-current fields following a y gradient 
pulse, the effect of the induced z eddy-current field would not have been noticed at 
all, and the z. eddy-current field only after special analyses. The spectral line is shifted 
4.6 ppm ( 1240 Hz) downfield, indicating a strong z. eddy-current field. The “wiggles” 
are a consequence of the time dependence of the z. eddy-current field and of the 
presence of an eddy-current gradient field (2.5 ), obviously with a spatial symmetry 
different from that of the pulsed gradient. 

Figure 8c shows the spectral line when the cross terms are also compensated. The 
spectrum is now almost completely free from eddy-current effects and appears nearly 
identical to. the spectrum obtained when no gradient was pulsed. 
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DISCUSSION 

The novel compensation algorithm improved the elimination of eddy-current effects 
dramatically. The method succeeded in reducing the residual eddy-current fields by 
a factor of at least five in systems which were initially optimally adjusted with con- 
ventional methods. This was established both in animal systems with horizontal 20 
cm bore (6.3 T) and vertical 7 cm bore (7 T) and in a human whole-body 4 T system. 
In our 6.3 T, 20 cm diameter horizontal-bore Oxford Instruments magnet with 20 
mT/m gradients, we reduced the eddy-current fields by a factor of =200 compared 
to the situation without any compensation, yielding residual eddy-current fields =400 
times less strong than those of the pulsed gradient. 

NMR results which were only obtainable after improving the eddy-current com- 
pensation according to our algorithm were presented in preliminary form at several 
meetings in 1988 (26, 27) and 1989 (28-30). Those results concern high-resolution 
imaging, spectroscopic imaging, and spectroscopy of very small volumes and will be 
the subject of future publications. 

After we implemented the optimized compensation of the eddy currents in our 6.3 
7 system (31) and tested the result by localized spectroscopy investigations (26, 27), 
several publications appeared, disclosing related solutions to the problem ( 14,32, 1.5). 
However, none of the published algorithms described the measurement method (sen- 
sitive to eddy-current fields with any spatial symmetry employing an NMR signal 
which at the same time reflects the final objective pursued) and comprehensive ap- 
proach (yielding a complete and mathematically exact solution without any approx- 
imation for the compensation of all eddy-current fields, including mutual coupling 
and cross terms) as presented in this paper. 

The reduction of eddy-current effects is at least as good as can be obtained with 
available double-shielded gradient sets, which have the disadvantage of smaller bore 
size or reduced gradient strength. In our system the uncompensated eddy-current 
fields are as large as 45% of the pulsed gradient. We have realized a reduction to 
residual effects of less than 0.5% of the uncompensated eddy-current fields, corre- 
sponding to 0.25% of the switched gradient, within 300 I.LS following the gradient pulse. 
The literature on self-shielded gradients reports a reduction relative to the uncom- 
pensated eddy-current fields down to 3- 10% for single screening (33, 34) and a design 
specification of 1% for double screening (35), which can be improved by further 
optimalization. In practice, however, the elimination of eddy-current fields using 
shielded gradients is limited by the manufacturing accuracy, rather than the design 
accuracy. Also, shielded gradients do not reduce eddy-current fields induced in lossy 
structures inside the gradient bore. This is possibly the reason for the problems con- 
cerning residual eddy-current fields which still occur when a shielded gradient coil is 
employed (36, 37). Additional efforts are essential in shielded gradient systems to 
compensate for the effects of remaining eddy-current fields originating from imperfect 
nulling of the pulsed field outside the gradient bore and from inevitable eddy-current 
fields induced in the interior of the gradient bore. These problems can be handled by 
additional adjustment of the rephasing gradient waveforms for each experiment (37)) 
or by data processing (36) using an experiment-specific phase function, similar to the 
correction of z0 eddy-current fields ( 17). In some systems shielded gradients are inserted 
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with a diameter much smaller than that of the magnet bore. This is a rather unsatis- 
factory use of expensive wide-bore magnets, imposed by the necessity of eliminating 
the eddy-current fields. 

The preemphasis method, on the other hand, has the disadvantage of causing an 
increased boil-off of cryogens due to the joule heating induced by the eddy currents 
in the Dewar. This effect will be small (depending on the construction of the super- 
conducting magnet and on the measurement techniques used) and of no great im- 
portance when a cryocooler is installed. The stability of the preemphasis method 
depends on the electronic components used in the compensation circuit, and on the 
temperature changes of, e.g., cryostat shields. Therefore, care must be taken with the 
choice of the hardware components, which must be stable over time and with respect 
to the environment temperature, and with the design of the magnet in order to minimize 
the temperature changes of the cryostat shields in which eddy currents are induced, 
since this would result in changes in the resistivity and therefore in the time constants 
of the induced eddy-current fields ( 7). 

It is not possible to compensate cross terms in systems without higher-order or z. 
shims, or with shim coils and amplifiers which cannot be operated dynamically. In 
that case the best result is obtained by optimizing the compensation separately for 
several smaller volumes, instead of one large volume covering the complete region of 
interest, and assembling correction filters for each small volume. Then, for NMR 
spectroscopy or imaging which is located dominantly over such a smaller volume, the 
corresponding compensation circuit must be used. Alternatively, when a computer- 
controlled compensation circuit is implemented, look-up tables with the compensation 
constants for each small volume can be employed. 

Both shielded gradients and preemphasis methods require about the same gradient 
amplifier power for gradient sets which are optimally designed, are equally strong, 
have a similar linearity over the same region of interest, and have the same diameter 
for the free bore. The additional power over a situation without any shielding or 
compensation of eddy-current fields is, in the case of preemphasis, used for the decaying 
overshoot, and in the case of shielding, continuously used to compensate for the 
opposing field generated by the screening gradient (employed to null the gradient field 
outside the gradient tube) over the region of interest. 

CONCLUSION 

We have demonstrated a method for complete quantitative characterization and 
exact temporal and spatial compensation of eddy-current fields, including eddy-current 
fields with z. or any other spatial symmetry q different from that of the pulsed gradient 
p. The required correction can be calculated exactly from the multiexponentially 
decaying step response measured without compensation using a large phantom. For 
diagonal terms (q = p) the correction is given by the inverse of the diagonal transfer 
function of the system. The compensation is described by the same number of ex- 
ponentials as the diagonal step response of the system, but with different amplitudes 
and time constants. For cross terms (q # p) the correction is given by the negative of 
the nondiagonal transfer function of the system, when implemented according to 
scheme (a) in Fig. 4. The compensation is described by the same number of expo- 
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nentials as the cross-term step response of the system, with the same (but negative) 
amplitudes and the same time constants. 

It is evident that when the presented compensation algorithm is combined with 
self-shielded gradients, the final suppression of eddy-current effects will be improved 
optimally. As an upgrade of available unshielded gradient coils, the proposed com- 
pensation method is a minor technical modification yielding a major improvement 
in the performance of the system. It is comprehensive, straightforward, and easy and 
inexpensive to implement and gives a superior suppression of the eddy-current effects 
during and following gradient pulses. 
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