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Abstract

A stochastic model for the generation of observed income distributions is used to provide an
explanation for the Pareto law of incomes. Analysis of the model also yields a prediction of
Paretian (power law) behaviour in the lower tail of the distribution and this is shown to occur
in a number of empirical distributions. A tractable four-parameter distribution is derived, and
shown to -t extremely well to a number of di.erent empirical income distributions.
c© 2002 Published by Elsevier Science B.V.

PACS: 89.65.Gh; 02.50.Ey

Keywords: Pareto law; Income distribution; GBM; Mixture model; Double Pareto-lognormal distribution

1. Introduction

Modelling of income distributions began over 100 years ago, with the work of
Vilfredo Pareto [1], who observed that for many populations, a plot of the logarithm
of the number of incomes above a level x against the logarithm of x, yielded points
close to a straight line of slope −�. This suggests a distribution (now known as the
Pareto distribution or power-law or fractal distribution) with density function propor-
tional to x−�−1. It has long been realized that the Pareto distribution provides a poor
-t to observed frequency data over the whole range of incomes, but it is generally
accepted that it provides a good -t to the distribution of high incomes. There have
been a number of attempts to explain this Paretian tail behaviour, the principal ones
being due to Champernowne [2], using a Markov Chain to model the evolution of
individual incomes and Mandelbrot [3] using stable L@evy distributions.
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Champernowne’s simplest model, in which individual incomes were assumed to fol-
low a random walk in the logarithmic scale, yielded a Pareto distribution over the
whole range of incomes. However, he observed that actual income distributions were
very di.erent from this in the lower tail, and that in fact something like a two-tailed
Pareto distribution held, i.e., the density of incomes at low levels x was proportional
to x raised to a positive power; while at high levels it was proportional to x raised
to a negative power. In order to ensure that his model produced an equilibrium with
such characteristics, Champernowne had to make the unrealistic assumptions that, on
average, the drift in large incomes was negative and that for low incomes was posi-
tive. Mandelbrot’s [3] explanation for the Paretian (upper-) tail behaviour was based
on the assumption that an individual’s income comprises the sum of many independent
random components or “shocks”. Using results from the theory of stable distributions,
he showed that the distribution of the sum (suitably normed) of shocks with in-nite
variance could converge to a distribution which, in the upper tail, behaves like a Pareto
distribution, with exponent � ¡ 2. The fact that estimates of �, from empirical income
distributions, are frequently greater than 2 seems to cast considerable doubt on this
theory. Another model, more along the lines of that of Champernowne, was presented
by Rutherford [4]. This model included entry and exit from the population of income
recipients. However, the resulting distribution obtained by Rutherford was not of the
Pareto form.

Although there have been a number of other re-nements and alternative models
proposed (for summaries see [5,6]), none seem to have provided much of an improve-
ment in terms of explanatory power over the model of Champernowne. Attention has
focussed more on -nding alternative parametric distributions which provide a good
-t to a wide range of observed data, and for which the parameters have a meaning-
ful economic interpretation (see e.g. [7,8]). More recently Parker, [9] has presented
a model which is claimed to explain why incomes should follow a generalised beta
distribution—a distribution which has been shown to provide a good -t to much empir-
ical income data [10,7]; and Solomon and Richmond [11] have o.ered an explanation
for the power-law behaviour of wealth distributions and other phenomena based on the
Lotka–Volterra model of population biology.

In this paper, a model is developed which predicts Paretian behaviour in both tails
and which -ts a variety of observed earnings and income distributions extremely well.
Like the Champernowne model it is based on a stochastic model for the evolution
of individual incomes. However, unlike Champernowne’s model it does not assume
equilibrium conditions. Rather, it explicitly incorporates the fact that the observed
distribution of income over a population (or over a random sample from it) will
depend on the age pro-le of the population. The age distribution will in turn de-
pend on the demographic dynamics, which may not be in equilibrium. Thus, e.g.
for a growing population there will be more younger workers than older ones in
the workforce (with an average lower income) and conversely for a declining
population, etc.

While there are several distributions derived in the paper corresponding to divers
dynamic behaviour, the most important one is a four parameter distribution which I
call the double Pareto-lognormal distribution. It exhibits Paretian behaviour in both



W.J. Reed / Physica A 319 (2003) 469–486 471

tails, and is shown to provide an excellent -t to observed data on income and earnings,
ranging over a number of jurisdictions and times.

2. Characteristics of empirical income distributions

Fig. 1 displays plots of four income and earnings distributions which are quite typical.
They are for US household income, 1997 [12]; Canadian personal earnings, 1996 [13];
Sri Lankan 6-months household income, 1981 [14] and Bohemian personal income,
1933 [4]. The plots are of density (frequency per unit of income) vs. income, both on
logarithmic scales. Since income data is typically binned into classes, what is actually
plotted is frequency divided by bin width vs. bin mid-point. Also, since the top income
class is open-ended, the observed density for this class is not well de-ned, and therefore
does not appear in the plots. In all the plots, the right-hand part appears to be asymptotic
to a straight line of negative slope, in agreement with Pareto’s law for high incomes.
In addition, there is apparently linear behaviour at the left-hand end of the plots,

Fig. 1. Plots of income density against income both on logarithmic scales for four empirical income dis-
tributions. The Pareto Law is exempli-ed by the asymptotic linearity in the right-hand tail. Note also the
apparent linearity in the left-hand tail.
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Fig. 2. Lower-tail and upper-tail Pareto laws. These are demonstrated, for the four empirical distributions
discussed in Section 2 by the linear nature of the relationship between cumulative frequencies below (top
row) and above (bottom row) speci-ed levels of income or earnings, when both are plotted on logarithmic
scales.

in agreement with Champernowne’s observation of Paretian tail behaviour for low
incomes. This is further illustrated in Fig. 2, which shows (plotted on logarithmic
axes) cumulative frequencies above and below various levels of income (or earnings).

The Canadian data is di.erent from the rest in that the slope at the left-hand end is
negative. However, this distribution is for earnings, while the others are for income,
either personal or household. Many empirical incomes and earnings distributions appear
to follow a form similar to one or other of those displayed in Fig. 1. In the remainder
of this paper, I will present a stochastic model which predicts distributions like those
displayed. A glance ahead at Figs. 4–7 which show the -tted distributions obtained
from maximum likelihood estimates of the parameters, should suggest to the reader
something of the explanatory power of the model.

3. The model

The current distribution of incomes over a population is the same as the probability
distribution of the income of an individual randomly selected from that population.
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Thus a stochastic model for the generation of the income of such an individual can be
used to explain the observed distribution of incomes in a population or random sample.
To this end assume that individual incomes follow geometric brownian motion (GBM):

dX = �X dt + �X dw ;

where X (t) denotes an individual’s income at time t; � and � are mean drift and vari-
ance parameters (rate and volatility of growth) and dw is white noise (the increment of
a Wiener process). This model is the continuous-time analog of the proportional e.ects
model of Gibrat [15] and of the logarithmic random walk model used by Champer-
nowne [2]. Individuals will enter the workforce 1 at di.erent times and with di.erent
starting incomes. Suppose that the distribution of starting incomes, X0(t) say, at time
t, is lognormally distributed and also that it evolves as GBM:

dX0 = �0X0 dt + �0X0 dw

so that

log (X0(t)) ∼ N
(

a +
(

�0 − �2
0

2

)
t; b2 + �2

0t
)

;

where a and b2 are the mean and variance of log(starting income) at some initial
reference time t = 0, 
 years ago, say. With these assumptions it can easily be shown
that the current income, X = X |T , of a randomly selected individual, who entered the
workforce T years ago (at time 
 − T ) will be lognormally distributed with log(X )
having mean

E(log (X )) = a +
(

�0 − �2
0

2

)
(
 − T ) +

(
� − �2

2

)
T = A0 +

(
�̃ − �̃2

2

)
T

and variance

V (log (X )) = b2 + �2
0(
 − T ) + �2T = B2

0 + �̃2T ;

where A0 = a + (�0 − �2
0=2)
 and B2

0 = b2 + �2
0
 are the mean and variance of the log

of current starting income (i.e., at time t = 
), and

�̃ = � − �0; �̃2 = �2 − �2
0 :

If an individual is randomly selected from the current workforce, the time T that
he or she has been in the workforce will be a random variable, whose distribution
will rePect the history of entry and exit from the workforce. Thus the distribution
of current income, QX , say, of the randomly selected individual can be regarded as
a mixture of lognormal distributions of the above type, with the mixing parameter
T . If the distribution of T is known, or can be speci-ed parametrically, one can,
in principle, -nd the distribution of QX (e.g. by integrating the density of the above
lognormal distribution with respect to the density of T ). This will provide a parametric
form for the current distribution of incomes.

1 Note that the expression “enter the workforce” is appropriate for discussion of earned income. When
discussing income from all sources it would be more accurate to use the expression “begin receiving income”.
For the sake of simplicity the former expression will be used throughout. Similarly, the word “individual”
should be interpreted as “household”, where appropriate.
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The simplest case considered will be for a workforce or population growing at a -xed
(proportional) rate. In this case to a -rst approximation the time T since recruitment of
a randomly selected individual will have an exponential distribution, with probability
density function (p.d.f.)

fT (t) = � e−�t ; t ¿ 0 :

In this case it can easily be shown (see Appendix) that the distribution of QY =log( QX ) is
that of the sum of two random variables, one with a normal distribution, and the other
with a two-tailed exponential distribution and hence that the distribution of current
income, QX , is that of the product of independent random variables Z and V say, where
Z is lognormally distributed and V has a double Pareto distribution, with p.d.f.

fV (v) =




��
�+� v�−1 for v6 1;

��
�+� v−�−1 for v ¿ 1;

(1)

where � and � are two positive parameters. From this the distribution of QX can be
determined. In the appendix, it is shown that it has density

f QX (x) =
��

� + �

[
x−�−1 exp{�A + �2B2=2}�

(
log x − A − �B2

B

)

+x�−1 exp{−�A + �2B2=2}�c
(

log x − A + �B2

B

) ]
(2)

on x ¿ 0 where � is the cumulative distribution function of the standard normal dis-
tribution; �c = 1 − �, and A = A0 and B2 = B2

0 are the mean and variance parameters
of the lognormally distributed component Z .

This distribution, which I shall call the double Pareto-lognormal (or dPlN) distribu-
tion is displayed in Fig. 3, which shows the density f QX (x) plotted against x in the two
cases � ¿ 1 and � ¡ 1, as well as the logarithm of the density f QY (y) plotted against
y, where QY = log ( QX ). Note the similarity to the logarithmic plots for the empirical
distributions displayed in Fig. 1. Also, the Paretian behaviour of distribution (2) in
both tails is easily established, i.e.,

f QX (x) ∼ x−�−1 (x → ∞); f QX (x) ∼ x�−1 (x → 0)

and can be seen in the logarithmic plots of Fig. 3. In terms of probabilities,

P( QX ¿ x) ∼ x−� (x → ∞); P( QX 6 x) ∼ x� (x → 0) :

While the -rst of these results (limit as x → ∞) is the usual Pareto law, the second
(limit as x → 0) corresponds to a form of the Pareto law in the lower tail, which
seems to hold empirically in many cases (Fig. 2).

A distribution similar to the dPlN was proposed by Colombi [16], who considered
the distribution resulting from the product of independent Pareto and lognormal random
variables, and named it the Pareto-lognormal distribution. This corresponds to the
limiting form of the above dPlN distribution as � → ∞. While Colombi showed that
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Fig. 3. Plots of the shape of the density function of the double Pareto-lognormal distribution for the cases
� ¡ 1 and � ¿ 1. The lower panels show the corresponding density of log(X ) on the logarithmic scale.
Observe the asymptotic linearity in both tails.

his distribution provided a very good -t to empirical income data, its genesis was
essentially ad hoc and not based on an underlying stochastic model.

In order to -t the dPlN model, by maximum likelihood, to empirical income distri-
bution data, which is typically binned in disjoint classes, one needs to compute from
(2) the probability �i of income QX belonging to a class i (i.e., to integrate f QX (x) be-
tween lower and upper class boundaries). Expressions for the probabilities �i are given
in the appendix. The log-likelihood is

‘ =
m∑

i=1

fi log(�i) ;

where fi (i=1; : : : ; m) are the observed frequencies in the m cells. Maximum likelihood
(ML) estimates of the model parameters can be found by numerically maximizing ‘
over �; �; A and B.

If the observations do not correspond to a true random sample, the log-likelihood will
not be as above. If there is information on the way the data were obtained, it may be
possible to determine the correct log-likelihood. In the absence of such information, one
can regard the above procedure as providing what Barndor.–Nielsen [17] has termed
maximum likeness estimates and which minimize a directed measure of dissimilarity
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(the Kullback–Liebler information) between the observed frequency distribution and
the estimated dPlN parametric distribution.

4. Results

The top panels in Fig. 2 exemplify the lower-tail Pareto law predicted from the
model for the four empirical income distributions introduced in Section 2 (and dis-
played in Fig. 1). While it apparently only holds over a limited range for the Sri
Lankan and Bohemian data (with few data points), the same could be said of the
familiar upper-tail Pareto law (lower panels of Fig. 2), e.g. for Canadian and Sri Lankan
data.

Figs. 4–7 show the double Pareto-lognormal distribution -tted to the four empirical
income distributions. The top two panels in each show the -tted density in natural and
logarithmic scales superimposed on the observed distributions. The bottom two panels
show the observed cell frequencies plotted against -tted frequencies and a Q–Q plot of

Fig. 4. The double Pareto-lognormal distribution -tted by maximum likelihood to US household income
(1997) data.
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Fig. 5. The double Pareto-lognormal distribution -tted by maximum likelihood to Canadian personal earnings
(1996) data.

the quantiles 2 of -tted distribution vs. the quantiles of empirical distribution. Clearly,
the model provides a very good -t to the data. Table 1 displays the ML estimates
of the four parameters and of the Gini ratio as well as the chi-square goodness of -t
statistic and the deviance (using percentage frequencies).

Note that for Canadian 1996 personal earnings, the ML estimate of � is less than
one. This corresponds to the negative slope of left-hand arm in the log–log plot of
density (Fig. 1 top right-hand panel and Fig. 3 bottom right-hand panel), which in
turn corresponds to a monotone decreasing distribution of income, with the modal
class being the lowest income class (Fig. 4 top left-hand panel). In the appendix, it
is shown that � ¡ 1 if and only � − �0 + � ¡ �2 − �2

0. Rates of growth for individual
earnings could be lower on average over the population, than those of income (personal
or household) because of the inclusion in the latter of social welfare payments, rental
and interest income, etc. Thus one might expect a smaller � for earnings. How the
variability in growth (�2) would compare for earnings and incomes is less clear, since

2 Note that because of the grouped nature of the data one cannot calculate exact quantiles of the empirical
distributions. Here the upper boundary of each cell is used as the quantile corresponding to the proportion
of observations at or below that level. Thus it provides only an upper bound of the true quantile. However,
for large datasets this value should be close to the true quantile.
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Fig. 6. The double Pareto-lognormal distribution -tted by maximum likelihood to Sri Lankan 6-month
household income (1981) data.

the inclusion of social welfare payments would tend to lower the variability, while that
of rental and interest income would tend to increase it.

Note also that �̂− �̂ ¿ 1 for the more recent North American data (US 1997 house-
hold income and Canadian 1996 individual earnings) but that for the Sri Lankan and
Bohemian data �̂ − �̂ ¡ 0. In the appendix, it is shown that � − � ¡ 1 if and only if
� ¿ �0, i.e., the growth rate of individual incomes on average exceeds that of starting
incomes. This result would suggest that this condition holds for the Sri Lankan and
Bohemian populations, but not for the Canadian or American ones, although of course
it could be due to sampling error, with the likelihood being Pat in the region of its
maximum.

It seems implausible that in Canada and the USA, starting incomes should be growing
faster than individual incomes or that the mean starting incomes should be, respectively,
CAD$43,200 and US$68,900, as would be indicated from the ML estimates exp (Â −
B̂2=2), (on the other hand the corresponding ML estimates for Sri Lanka (5400 Rps)
and Bohemia (7.72 thousand Kr) seem much more plausible). The reason for this
inconsistency is probably related to the fact that the assumption of a workforce or
population, growing at a -xed rate, is more closely approximated in the Sri Lankan and
Bohemian cases than in the Canadian and American ones. Indeed under the assumption
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Fig. 7. The double Pareto-lognormal distribution -tted by maximum likelihood to Bohemian personal income
(1933) data.

of a declining workforce (see the following section), the lognormal component of the
distribution of QX no longer represents the current distribution of starting incomes, and
so � no longer represents the mean of the log(starting income).

The four empirical distributions used above for illustration were chosen partly
because of the excellence of the -t of the dPlN distribution, but also because of
the fact that they cover a variety of types of income, countries and times. There are
of course other examples that could have been used, where the -t would not have
been quite so impressive. However, by and large the dPlN distribution has proved to
provide a very good -t.

5. E�ects of changing the assumption of a constantly growing population

The double Pareto-lognormal distribution used in Section 4 is based on the assump-
tion that the distribution of the time, T , that an individual has been in the workforce
is exponential. This is justi-ed, at least to a -rst approximation, if the workforce or
population is growing at a -xed (proportional) rate. Even though the double Pareto-
lognormal distribution yields an extremely good -t to the four empirical distributions
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Table 1
Maximum likelihood estimates of the four parameters (�; �; A and B) and of the Gini ratio for the double
Pareto-lognormal distribution, along with the Pearson $2 goodness-of--t statistic and the deviance

�̂ �̂ Â B̂ Gini $2 Deviance

US Hshd. 97 22.43 1.43 11.27 0.51 0.39 0.16 0.16
Can. Ind. 96 4.16 0.79 10.71 0.27 0.45 0.19 0.18
SL Hshd. 81 2.09 3.09 8.68 0.41 0.42 0.40 0.40
Bohemia Ind. 33 2.15 8.40 2.23 0.61 0.55 0.28 0.29

The four cases considered are those discussed in Section 2.

considered, it is doubtful whether the constant growth rate assumption is valid in all
cases. An obvious question is whether a better -t can be obtained using other, perhaps
more plausible, assumptions concerning workforce dynamics?

To this end suppose the number of recruits entering the workforce in time t to
t + dt was R(t) dt and that at that time recruitment was growing at the rate �(t), i.e.,
�(t)=R′(t)=R(t). It follows then that R(t)=R(0) exp (

∫ t
0 �(s) ds)=R(0) exp ('(t)), say.

If all participants were to leave the workforce K years after recruitment, the number of
workers currently in the workforce (at time 
) would be N (
)=R(0)

∫ 


−K exp ('(s)) ds.

Of these, the number who entered the workforce between t and t + dt years ago is
R(0) exp ('(
 − t)) dt. Thus under these assumptions, the probability density of the
time T since recruitment of a randomly selected member of the current workforce is

fT (t) =
exp ('(
 − t))∫ 



−K exp ('(s)) ds
; 0 ¡ t ¡ K :

(More generally, one could consider the time K that an individual spends in the work-
force as a random variable. In this case, the marginal density of T could in principle
be found by integrating the above expression with respect to the density of K .)

It is possible to obtain closed-form expressions for the density fT (t) in some simple
cases:
• Constant Recruitment: In this case �(t) ≡ 0 and fT (t) = 1=K for 0 ¡ t ¡ K , i.e.,

T is uniformly distributed on (0; K). The resulting distribution of QX can be shown to
have p.d.f.

f QX (x) =
1

�K

[
x2�=�2−1 exp

(
2�
�2

(
�

B2

�2 − A
))

J1 − J2

]
;

where

J1 = �
(

log(x) − A + �K + 2�B2=�2
√

K�2 + B2

)
− �

(
log(x) − A + 2�B2=�2

B

)

and

J2 = �
(

log(x) − A + �K√
K�2 + B2

)
− �

(
log(x) − A

B

)
;
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where to avoid clutter the subscripts and tildes have been omitted from A0; B0; �̃ and
�̃2. To calculate the log-likelihood for grouped data, the p.d.f. f QX (x) must be integrated
numerically to obtain the cell probabilities �i, since closed-form expressions are not
attainable. The p.d.f. of QX is unimodal and looks somewhat like the dPlN density with
� ¿ 1 (Fig. 3 right-hand panels), although it actually exhibits Paretian behaviour in at
most one tail (the upper tail if � ¡ 0; the lower tail if � ¿ 0 and neither tail if � = 0.
Nonetheless, for large K the departures from Paretian behaviour may be slight. (NB:
The result for � ¡ 0 corresponds essentially to Champernowne’s [2] equilibrium result
with negative mean drift).
• Recruitment growing at a constant rate: In this case �(t) ≡ �, a positive constant,

and fT (t) = � e−�t=(1 − e−�K) for 0 ¡ t ¡ K , i.e., T has a truncated negative ex-
ponential distribution on (0; K). If K is considered to be large, one has essentially
the exponential distribution considered in the previous section, leading to the double
Pareto-lognormal distribution of observed incomes.
• Recruitment declining at a constant rate: In this case �(t) ≡ −*, a negative

constant, and fT (t)= * e*t=(e*K − 1) for 0 ¡ t ¡ K . For *K large and � ¿ 0 it can be
shown that the distribution of QX is approximately that of the product of a lognormal
random variable with a random variable U , with density

fU (u) =
��

� − �
[u�−1 − u�−1]; 0 ¡ u ¡ 1

and zero elsewhere, where � and � are positive parameters (� �= �). The lognormal
component no longer represents the current distribution of starting income—rather its
logarithm has mean A0 + K(�̃− �̃2=2) and variance B2

0 + �̃2. Using this approximation,
closed-form expressions for the p.d.f. of QX and the cell probabilities �i can be obtained.
The p.d.f. of QX exhibits lower-tail Paretian behaviour. For � ¡ 0 a similar result holds
only now �; � ¡ 0; the density of the component U has support on {1 ¡ u ¡∞} and
Paretian behaviour occurs only in the upper tail.

The constant recruitment and declining recruitment models were -tted to the US
and Canadian data. In both cases the -t of the constant recruitment model provided
a poorer -t than the double Pareto-lognormal model. However, while the -t of the
declining recruitment model was also, in both cases, inferior to that of the double
Pareto-lognormal distribution, it was only marginally so (di.erence only in the third
decimal of the chi-square and deviance statistics).

Another alternative would be to use actual data on growth in the workforce to deter-
mine the empirical distribution of the random variable T . One could then use a Monte
Carlo procedure to determine the distribution of QX by sampling from the distribution
of T and for each value generating a lognormal deviate with the appropriate mean and
variance parameters. In principle, one could numerically calculate the likelihood (and
hence obtain approximate ML estimates) by approximating the cell probabilities �i us-
ing the above Monte Carlo procedure with given values of the parameters. However,
in view of the added computational complexity and the loss of analytic simplicity this
procedure was not carried out.
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6. Concluding remarks

The main results of this paper are:
• to emphasize that many empirical income distributions exhibit Paretian behaviour

in both tails. Although the lower-tail Paretian behaviour has been identi-ed before (e.g.
[2]), unlike the upper-tail Paretian behaviour (Pareto’s Law), it has not been regarded
as a phenomenon requiring explanation.
• To demonstrate that a distribution of incomes with such two-tailed Paretian be-

haviour can be explained by a simple stochastic model for the evolution of individual
incomes which recognizes the fact that individuals have been in the workforce for
di.erent lengths of time.
• To derive a new, Pexible, four-parameter probability distribution (the double

Pareto-lognormal distribution), which has a theoretical basis and which can be used to
describe many income distributions. It is shown to -t extremely well to four di.erent
empirical income distributions.

Any good model of a complex phenomenon leaves out more than it includes and
this is certainly true of the model proposed in this paper. Nonetheless, I claim that the
model captures the essence of the process underlying Pareto’s law. The main novelty
in the analysis is the recognition of the fact that an observed income distribution will
depend on the “age” pro-le of the workforce, which in turn will depend on recruitment
dynamics. Mathematically this involves determining the distribution of the state of a
stochastic process after a random length of time. This di.ers from the approach used
by Champernowne [2] and others, who sought a stationary distribution, corresponding
to a population in equilibrium.

The stochastic model used for the evolution of individual incomes is based on GBM
and is, in essence, a formulation of Gibrat’s [15] law of proportional e.ects. It is
analogous to Chapernowne’s [2] logarithmic random walk model. While in reality an
individual’s income would not change continuously (as does GBM) but rather would
change only at discrete times, one could think of GBM as approximating a geometric
Poisson jump process in which (proportional) changes in income are independent ran-
dom variables occurring at random times (in a Poisson process). For such a process
the mean and variance of the logarithm of the income of an individual t years after
entering the workforce are both proportional to t, just as for GBM. While no evidence
is presented to justify the use of GBM to model the distribution of starting incomes,
it is convenient and probably provides a reasonable approximation—starting incomes
are likely to have a skewed distribution and to evolve over time. While the GBM
speci-cation implies a variance which increases over time, this can be avoided if so
desired by setting the variance parameter �2

0 = 0. The use of other speci-cations for
starting incomes has not been considered, although it may be possible to do so and
maintain analytic tractability.

The model allows for di.erences between individuals (or households, etc.) only
through stochastic e.ects. Thus di.erences in educational background, age, sex, etc.
are not explicitly included. They can be thought of as entering the model through the
distribution of starting incomes, and through the way in which the incomes of di.erent
individuals evolve stochastically. A subject for future research would be to treat these
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characteristics as covariates, and to relate the model parameters to them through some
sort of generalized linear model [18].

Di.erent assumptions on workforce dynamics have been shown to give rise to di.er-
ent observed income distributions, with Paretian behaviour in one or other tail. The key
fact concerning Paretian tail behaviour relates to singularities in the moment generating
function (m.g.f.) of QY , the logarithm of observed income. If, as with an exponential
mixing distribution (for T ) the m.g.f. of QY has simple poles on opposite sides of the
origin, then Paretian behaviour will occur in both tails. Upper- (respectively lower-)
tail Paretian behaviour is associated with simple poles which are positive (respectively
negative). If there are poles of higher order (as would arise, e.g. if T followed an
Erlang distribution), then true Paretian behaviour would not occur, although the density
of QX would di.er from a power law in the tail only by a function exhibiting so-called
regular variation (see e.g. [19]). In this case departures from Paretian behaviour might
not be apparent in observed distributions.

The double Pareto-lognormal distribution, derived under the assumption of a work-
force or population growing at a constant rate, provides a good -t to the empirical
income distributions considered, even in cases when such an assumption is of ques-
tionable validity. This distribution satis-es the three conditions spelt out in the Ency-
clopedia of Statistical Sciences [6] as desirable properties of an income distribution
model, viz. (a) stochastic foundation—it is deduced from an a priori set of probability
assumptions; (b) convergence to the Pareto law; and (c) goodness of -t. In view of
this it should be given serious consideration as an income distribution model. A subject
for future research is to compare its performance in goodness of -t (over a range of
empirical income distributions) to other proposed parametric forms, e.g. the Dagum
distributions [8] and the generalized beta distributions [10].
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Appendix—Derivation and properties of the double Pareto-lognormal distribution

Under the assumptions of the model of Section 3, the logarithm Y = Y |T of the
current income X = X |T of an individual who entered the workforce T years ago has
a lognormal distribution:

Y = log(X ) ∼ N
(

A0 +
(

�̃ − �̃2

2

)
T; B2

0 + �̃2T
)

;

which has m.g.f.

MY |T (�) = exp
(

A0� + B2
0� 2=2 +

[(
�̃ − �̃2

2

)
� + �̃2� 2=2

]
T
)

:
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The distribution of the logarithm of current income of a randomly selected individual,
QY , say, will have m.g.f.

M QY (�) = E(exp (� QY )) = ET (EY |T (exp (�Y ))) = ET (MY |T (�)) ;

which from above can be written

M QY (�) = exp (A0� + B2
0� 2=2)MT

((
�̃ − �̃2

2

)
� + �̃2� 2=2

)
:

If T is exponentially distributed with parameter �, then the m.g.f. of T is MT (�) =
�=(� − �) from which it follows that

M QY (�) =
� exp (A0� + B2

0� 2=2)
� − (�̃ − �̃2=2)� − (�̃2=2)� 2

= exp (A0� + B2
0� 2=2)

��
(� − �)(� + �)

;

where � and −� (�; � ¿ 0) are the two roots of the characteristic equation

�̃2

2
z2 +

(
�̃ − �̃2

2

)
z − � = 0 : (3)

Now it is easily con-rmed that ��=(�−�)(�+�) is the m.g.f. of the double exponential
distribution with density function

f(x) =




��
�+� e�x if x ¡ 0;

��
�+� e−�x if x¿ 0:

Also since exp (A0�+B2
0� 2=2) is the m.g.f of an N (A0; B2

0) random variable, it follows
that the distribution of QY can be represented as that of the sum of independent normal
and double exponential random variables. Since the logarithm of a double exponential
random variable has a double Pareto distribution as de-ned in Section 3, it follows that
the income QX of a randomly selected individual can be represented as the product of
independent lognormal and double Pareto random variables. The p.d.f. can be obtained
from the p.d.f. of QY = log( QX ) which in turn can be found by convolving a double
exponential density with a normal density. The details are tedious and are omitted.
The result is

f QY (y) =
��

� + �

[
e−�(y−A)+�2B2=2�

(
y − A − �B2

B

)

+e�(y−A)+�2B2=2�c
(

y − A + �B2

B

) ]
(4)

from which the p.d.f. of QX in Section 3 follows. Note that to avoid clutter the subscripts
have been dropped from A0 and B0.

To -t the model by maximum likelihood to grouped income data, one can maximize
the multinomial log-likelihood ‘ =

∑m
i=1 fi log(�i), where �i is the probability (ex-

pressed parametrically in terms of �; �; A and B) of the income of a randomly selected
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income individual falling in cell i. The �i can be obtained by integrating the density
f QY (y) between the logarithms of upper and lower cell limits. With some work it can
be shown that

�i = �
(

yi+1 − A
B

)
− �

(
yi − A

B

)
− �

� + �
I1 +

�
� + �

I2 ;

where

I1 = exp (−�(yi+1 − A − �B2=2))�
(

yi+1 − A − �B2

B

)

−exp (−�(yi − A − �B2=2))�
(

yi − A − �B2

B

)
;

I2 = exp (�(yi+1 − A + �B2=2))�c
(

yi+1 − A + �B2

B

)

−exp (�(yi − A + �B2=2))�c
(

yi − A + �B2

B

)

and yi+1 and yi are, respectively, the logarithms of the upper and lower income limits
for cell i.

With these formulas the log-likelihood, ‘(�; �; A; B), can be coded and then maxi-
mized numerically, using a routine that does not require derivatives, to -nd ML esti-
mates of the parameters. The results in Section 4 (Table 1) were obtained using the
S-Plus routine nlminb [20].

The random variable QX (the current income of a randomly selected individual) can
be represented as

QX = eZV ;

where Z ∼ N (A0; B2
0) and V has the double Pareto distribution with p.d.f. (1). The

lognormal component eZ represents the distribution of current starting incomes, while
the double Pareto component V represents the income of the selected individual relative
to current starting incomes. One can easily show that P(V ¿ 1) ¿ 1

2 if and only if
� ¡ �. In other words, loosely put, the distribution of current incomes across the whole
workforce will on the whole be “above” that of current starting incomes if � ¡ �. The
mean of the double Pareto distribution (1) can easily be shown to be

E(X ) =
��

(� + 1)(� − 1)

for � ¿ 1 (the expectation does not converge for �6 1). From this it follows E( QX ) ¿
E(eZ) (i.e., the mean of current incomes over the whole workforce exceeds the mean
current starting income) if and only if � ¡ � + 1. Examining the roots of the charac-
teristic equation (3), this condition can be expressed in terms of the original model
parameters. Precisely, it is � ¿ �0 or in other words that the growth rate of individual
incomes is on average higher than that of starting incomes. One would expect this to
hold in most circumstances.
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The double Pareto (and double Pareto-lognormal) distributions are qualitatively dif-
ferent in the two cases � ¿ 1 and � ¡ 1. In the former case both are unimodal dis-
tributions; in the latter the densities are decreasing. From the characteristic equation
(3), it can be shown that � ¡ 1 if and only if � ¡ �2 − �2

0 − � + �0. Thus one might
expect a decreasing income distribution (with its mode at zero) when � and/or � − �0

are small, and/or �2 − �2
0 is large. The combination of a slowly growing workforce

with slow but variable increases in income for workers as they progress, could result
in this condition being met.
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