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1
Introduction

With more than 10 years experience programming in R, I’ve had the
luxury of being able to spend a lot of time trying to figure out and
understand how the language works. This book is my attempt to pass
on what I’ve learned so that you can quickly become an effective R
programmer. Reading it will help you avoid the mistakes I’ve made and
dead ends I’ve gone down, and will teach you useful tools, techniques,
and idioms that can help you to attack many types of problems. In the
process, I hope to show that, despite its frustrating quirks, R is, at its
heart, an elegant and beautiful language, well tailored for data analysis
and statistics.

If you are new to R, you might wonder what makes learning such a
quirky language worthwhile. To me, some of the best features are:

• It’s free, open source, and available on every major platform. As a
result, if you do your analysis in R, anyone can easily replicate it.

• A massive set of packages for statistical modelling, machine learn-
ing, visualisation, and importing and manipulating data. Whatever
model or graphic you’re trying to do, chances are that someone has
already tried to do it. At a minimum, you can learn from their
efforts.

• Cutting edge tools. Researchers in statistics and machine learning
will often publish an R package to accompany their articles. This
means immediate access to the very latest statistical techniques and
implementations.

• Deep-seated language support for data analysis. This includes fea-
tures likes missing values, data frames, and subsetting.

• A fantastic community. It is easy to get help from experts on the R-
help mailing list (https://stat.ethz.ch/mailman/listinfo/r-help),
stackoverflow (http://stackoverflow.com/questions/tagged/r), or
subject-specific mailing lists like R-SIG-mixed-models (https:
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//stat.ethz.ch/mailman/listinfo/r-sig-mixed-models) or ggplot2
(https://groups.google.com/forum/#!forum/ggplot2). You can also
connect with other R learners via twitter (https://twitter.com/
search?q=%23rstats), linkedin (http://www.linkedin.com/groups/R-
Project-Statistical-Computing-77616), and through many lo-
cal user groups (http://blog.revolutionanalytics.com/local-r-
groups.html).

• Powerful tools for communicating your results. R packages make it
easy to produce html or pdf reports (http://yihui.name/knitr/), or
create interactive websites (http://www.rstudio.com/shiny/).

• A strong foundation in functional programming. The ideas of func-
tional programming are well suited to solving many of the challenges
of data analysis. R provides a powerful and flexible toolkit which
allows you to write concise yet descriptive code.

• An IDE (http://www.rstudio.com/ide/) tailored to the needs of in-
teractive data analysis and statistical programming.

• Powerful metaprogramming facilities. R is not just a programming
language, it is also an environment for interactive data analysis. Its
metaprogramming capabilities allow you to write magically succinct
and concise functions and provide an excellent environment for de-
signing domain-specific languages.

• Designed to connect to high-performance programming languages
like C, Fortran, and C++.

Of course, R is not perfect. R’s biggest challenge is that most R users
are not programmers. This means that:

• Much of the R code you’ll see in the wild is written in haste to solve
a pressing problem. As a result, code is not very elegant, fast, or
easy to understand. Most users do not revise their code to address
these shortcomings.

• Compared to other programming languages, the R community tends
to be more focussed on results instead of processes. Knowledge
of software engineering best practices is patchy: for instance, not
enough R programmers use source code control or automated test-
ing.

• Metaprogramming is a double-edged sword. Too many R functions
use tricks to reduce the amount of typing at the cost of making code
that is hard to understand and that can fail in unexpected ways.

https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
https://groups.google.com/forum/#!forum/ggplot2
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http://www.linkedin.com/groups/R-Project-Statistical-Computing-77616
http://www.linkedin.com/groups/R-Project-Statistical-Computing-77616
http://blog.revolutionanalytics.com/local-r-groups.html
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• Inconsistency is rife across contributed packages, even within base
R. You are confronted with over 20 years of evolution every time you
use R. Learning R can be tough because there are many special cases
to remember.

• R is not a particularly fast programming language, and poorly writ-
ten R code can be terribly slow. R is also a profligate user of memory.

Personally, I think these challenges create a great opportunity for expe-
rienced programmers to have a profound positive impact on R and the
R community. R users do care about writing high quality code, par-
ticularly for reproducible research, but they don’t yet have the skills to
do so. I hope this book will not only help more R users to become R
programmers but also encourage programmers from other languages to
contribute to R.

1.1 Who should read this book

This book is aimed at two complementary audiences:

• Intermediate R programmers who want to dive deeper into R and
learn new strategies for solving diverse problems.

• Programmers from other languages who are learning R and want to
understand why R works the way it does.

To get the most out of this book, you’ll need to have written a decent
amount of code in R or another programming language. You might not
know all the details, but you should be familiar with how functions work
in R and although you may currently struggle to use them effectively,
you should be familiar with the apply family (like apply() and lapply()).

1.2 What you will get out of this book

This book describes the skills I think an advanced R programmer should
have: the ability to produce quality code that can be used in a wide
variety of circumstances.
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After reading this book, you will:

• Be familiar with the fundamentals of R. You will understand complex
data types and the best ways to perform operations on them. You
will have a deep understanding of how functions work, and be able
to recognise and use the four object systems in R.

• Understand what functional programming means, and why it is a
useful tool for data analysis. You’ll be able to quickly learn how
to use existing tools, and have the knowledge to create your own
functional tools when needed.

• Appreciate the double-edged sword of metaprogramming. You’ll be
able to create functions that use non-standard evaluation in a prin-
cipled way, saving typing and creating elegant code to express im-
portant operations. You’ll also understand the dangers of metapro-
gramming and why you should be careful about its use.

• Have a good intuition for which operations in R are slow or use a
lot of memory. You’ll know how to use profiling to pinpoint perfor-
mance bottlenecks, and you’ll know enough C++ to convert slow R
functions to fast C++ equivalents.

• Be comfortable reading and understanding the majority of R code.
You’ll recognise common idioms (even if you wouldn’t use them your-
self) and be able to critique others’ code.

1.3 Meta-techniques

There are two meta-techniques that are tremendously helpful for improv-
ing your skills as an R programmer: reading source code and adopting
a scientific mindset.

Reading source code is important because it will help you write better
code. A great place to start developing this skill is to look at the source
code of the functions and packages you use most often. You’ll find things
that are worth emulating in your own code and you’ll develop a sense
of taste for what makes good R code. You will also see things that you
don’t like, either because its virtues are not obvious or it offends your
sensibilities. Such code is nonetheless valuable, because it helps make
concrete your opinions on good and bad code.
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A scientific mindset is extremely helpful when learning R. If you don’t
understand how something works, develop a hypothesis, design some ex-
periments, run them, and record the results. This exercise is extremely
useful since if you can’t figure something out and need to get help, you
can easily show others what you tried. Also, when you learn the right
answer, you’ll be mentally prepared to update your world view. When
I clearly describe a problem to someone else (the art of creating a re-
producible example (http://stackoverflow.com/questions/5963269)), I
often figure out the solution myself.

1.4 Recommended reading

R is still a relatively young language, and the resources to help you un-
derstand it are still maturing. In my personal journey to understand R,
I’ve found it particularly helpful to use resources from other program-
ming languages. R has aspects of both functional and object-oriented
(OO) programming languages. Learning how these concepts are ex-
pressed in R will help you leverage your existing knowledge of other
programming languages, and will help you identify areas where you can
improve.

To understand why R’s object systems work the way they do, I
found The Structure and Interpretation of Computer Programs
(http://mitpress.mit.edu/sicp/full-text/book/book.html) (SICP) by
Harold Abelson and Gerald Jay Sussman, particularly helpful. It’s a
concise but deep book. After reading it, I felt for the first time that I
could actually design my own object-oriented system. The book was my
first introduction to the generic function style of OO common in R. It
helped me understand its strengths and weaknesses. SICP also talks a
lot about functional programming, and how to create simple functions
which become powerful when combined.

To understand the trade-offs that R has made compared to other pro-
gramming languages, I found Concepts, Techniques and Models of Com-
puter Programming (http://amzn.com/0262220695?tag=devtools-20) by
Peter van Roy and Sef Haridi extremely helpful. It helped me under-
stand that R’s copy-on-modify semantics make it substantially easier
to reason about code, and that while its current implementation is not
particularly efficient, it is a solvable problem.

If you want to learn to be a better programmer, there’s no place better

http://stackoverflow.com/questions/5963269
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://amzn.com/0262220695?tag=devtools-20
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to turn than The Pragmatic Programmer (http://amzn.com/020161622X?
tag=devtools-20) by Andrew Hunt and David Thomas. This book is
language agnostic, and provides great advice for how to be a better
programmer.

1.5 Getting help

Currently, there are two main venues to get help when you’re stuck
and can’t figure out what’s causing the problem: stackoverflow (http:
//stackoverflow.com) and the R-help mailing list. You can get fantastic
help in both venues, but they do have their own cultures and expecta-
tions. It’s usually a good idea to spend a little time lurking, learning
about community expectations, before you put up your first post.

Some good general advice:

• Make sure you have the latest version of R and of the package (or
packages) you are having problems with. It may be that your prob-
lem is the result of a recently fixed bug.

• Spend some time creating a reproducible example (http:
//stackoverflow.com/questions/5963269). This is often a use-
ful process in its own right, because in the course of making the
problem reproducible you often figure out what’s causing the
problem.

• Look for related problems before posting. If someone has already
asked your question and it has been answered, it’s much faster for
everyone if you use the existing answer.

1.6 Acknowledgments

I would like to thank the tireless contributors to R-help and, more re-
cently, stackoverflow (http://stackoverflow.com/questions/tagged/r).
There are too many to name individually, but I’d particularly like to
thank Luke Tierney, John Chambers, Dirk Eddelbuettel, JJ Allaire

http://amzn.com/020161622X?tag=devtools-20
http://amzn.com/020161622X?tag=devtools-20
http://stackoverflow.com
http://stackoverflow.com
http://stackoverflow.com/questions/5963269
http://stackoverflow.com/questions/5963269
http://stackoverflow.com/questions/tagged/r
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and Brian Ripley for generously giving their time and correcting my
countless misunderstandings.

This book was written in the open (https://github.com/hadley/adv-r/),
and chapters were advertised on twitter (https://twitter.com/
hadleywickham) when complete. It is truly a community effort: many
people read drafts, fixed typos, suggested improvements, and con-
tributed content. Without those contributors, the book wouldn’t be
nearly as good as it is, and I’m deeply grateful for their help. Special
thanks go to Peter Li, who read the book from cover-to-cover and
provided many fixes. Other outstanding contributors were Aaron
Schumacher, @crtahlin, Lingbing Feng, @juancentro, and @johnbaums.

Thanks go to all contributers in alphabetical order: Aaron Schu-
macher, Aaron Wolen, @aaronwolen, @absolutelyNoWarranty, Adam
Hunt, @agrabovsky, @ajdm, @alexbbrown, @alko989, @allegretto,
@AmeliaMN, @andrewla, Andy Teucher, Anthony Damico, Anton
Antonov, @aranlunzer, @arilamstein, @avilella, @baptiste, @blindjesse,
@blmoore, @bnjmn, Brandon Hurr, @BrianDiggs, @Bryce, C. Jason
Liang, @Carson, @cdrv, Ching Boon, @chiphogg, Christopher Brown,
@christophergandrud, Clay Ford, @cornelius1729, @cplouffe, Craig
Citro, @crossfitAL, @crowding, Crt Ahlin, @crtahlin, @cscheid, @cs-
gillespie, @cusanovich, @cwarden, @cwickham, Daniel Lee, @darrkj,
@Dasonk, David Hajage, David LeBauer, @dchudz, dennis feehan,
@dfeehan, Dirk Eddelbuettel, @dkahle, @dlebauer, @dlschweizer,
@dmontaner, @dougmitarotonda, @dpatschke, @duncandonutz,
@EdFineOKL, @EDiLD, @eipi10, @elegrand, @EmilRehnberg, Eric C.
Anderson, @etb, @fabian-s, Facundo Muñoz, @flammy0530, @fpepin,
Frank Farach, @freezby, @fyears, Garrett Grolemund, @garrettgman,
@gavinsimpson, @gggtest, Gökçen Eraslan, Gregg Whitworth, @gre-
gorp, @gsee, @gsk3, @gthb, @hassaad85, @i, Iain Dillingham, @ijlyttle,
Ilan Man, @imanuelcostigan, @initdch, Jason Asher, Jason Knight,
@jasondavies, @jastingo, @jcborras, Jeff Allen, @jeharmse, @jentjr,
@JestonBlu, @JimInNashville, @jinlong25, JJ Allaire, Jochen Van de
Velde, Johann Hibschman, John Blischak, John Verzani, @johnbaums,
@johnjosephhorton, Joris Muller, Joseph Casillas, @juancentro, @kdau-
ria, @kenahoo, @kent37, Kevin Markham, Kevin Ushey, @kforner, Kirill
Müller, Kun Ren, Laurent Gatto, @Lawrence-Liu, @ldfmrails, @lgatto,
@liangcj, Lingbing Feng, @lynaghk, Maarten Kruijver, Mamoun
Benghezal, @mannyishere, Matt Pettis, @mattbaggott, Matthew
Grogan, @mattmalin, Michael Kane, @michaelbach, @mjsduncan,
@Mullefa, @myqlarson, Nacho Caballero, Nick Carchedi, @nstjhp,
@ogennadi, Oliver Keyes, @otepoti, Parker Abercrombie, @patperu,

https://github.com/hadley/adv-r/
https://twitter.com/hadleywickham
https://twitter.com/hadleywickham
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Patrick Miller, @pdb61, @pengyu, Peter F Schulam, Peter Lindbrook,
Peter Meilstrup, @philchalmers, @picasa, @piccolbo, @pierreroudier,
@pooryorick, R. Mark Sharp, Ramnath Vaidyanathan, @ramnathv,
@Rappster, Ricardo Pietrobon, Richard Cotton, @richardreeve,
@rmflight, @rmsharp, Robert M Flight, @RobertZK, @robiRagan,
Romain François, @rrunner, @rubenfcasal, @sailingwave, @sarunas-
merkliopas, @sbgraves237, Scott Ritchie, @scottko, @scottl, Sean
Anderson, Sean Carmody, Sean Wilkinson, @sebastian-c, Sebastien
Vigneau, @shabbychef, Shannon Rush, Simon O’Hanlon, Simon Potter,
@SplashDance, @ste-fan, Stefan Widgren, @stephens999, Steven Pav,
@strongh, @stuttungur, @surmann, @swnydick, @taekyunk, Tal Galili,
@talgalili, @tdenes, @Thomas, @thomasherbig, @thomaszumbrunn,
Tim Cole, @tjmahr, Tom Buckley, Tom Crockett, @ttriche, @twjacobs,
@tyhenkaline, @tylerritchie, @ulrichatz, @varun729, @victorkryukov,
@vijaybarve, @vzemlys, @wchi144, @wibeasley, @WilCrofter, William
Doane, Winston Chang, @wmc3, @wordnerd, Yoni Ben-Meshulam,
@zackham, @zerokarmaleft, Zhongpeng Lin.

1.7 Conventions

Throughout this book I use f() to refer to functions, g to refer to vari-
ables and function parameters, and h/ to paths.

Larger code blocks intermingle input and output. Output is commented
so that if you have an electronic version of the book, e.g., http://adv-
r.had.co.nz, you can easily copy and paste examples into R. Output
comments look like #> to distinguish them from regular comments.

1.8 Colophon

This book was written in Rmarkdown (http://rmarkdown.rstudio.com/)
inside Rstudio (http://www.rstudio.com/ide/). knitr (http://yihui.
name/knitr/) and pandoc (http://johnmacfarlane.net/pandoc/)
converted the raw Rmarkdown to html and pdf. The website
(http://adv-r.had.co.nz) was made with jekyll (http://jekyllrb.com/),
styled with bootstrap (http://getbootstrap.com/), and automatically

http://adv-r.had.co.nz
http://adv-r.had.co.nz
http://rmarkdown.rstudio.com/
http://www.rstudio.com/ide/
http://yihui.name/knitr/
http://yihui.name/knitr/
http://johnmacfarlane.net/pandoc/
http://adv-r.had.co.nz
http://jekyllrb.com/
http://getbootstrap.com/
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published to Amazon’s S3 (http://aws.amazon.com/s3/) by travis-ci
(https://travis-ci.org/). The complete source is available from github
(https://github.com/hadley/adv-r).

Code is set in inconsolata (http://levien.com/type/myfonts/
inconsolata.html).

http://aws.amazon.com/s3/
https://travis-ci.org/
https://github.com/hadley/adv-r
http://levien.com/type/myfonts/inconsolata.html
http://levien.com/type/myfonts/inconsolata.html
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Foundations





2
Data structures

This chapter summarises the most important data structures in base R.
You’ve probably used many (if not all) of them before, but you may
not have thought deeply about how they are interrelated. In this brief
overview, I won’t discuss individual types in depth. Instead, I’ll show
you how they fit together as a whole. If you need more details, you can
find them in R’s documentation.

R’s base data structures can be organised by their dimensionality (1d,
2d, or nd) and whether they’re homogeneous (all contents must be of
the same type) or heterogeneous (the contents can be of different types).
This gives rise to the five data types most often used in data analysis:

Homogeneous Heterogeneous
1d Atomic vector List
2d Matrix Data frame
nd Array

Almost all other objects are built upon these foundations. In Chapter 7
you’ll see how more complicated objects are built of these simple pieces.
Note that R has no 0-dimensional, or scalar types. Individual numbers
or strings, which you might think would be scalars, are actually vectors
of length one.

Given an object, the best way to understand what data structures it’s
composed of is to use str(). str() is short for structure and it gives a
compact, human readable description of any R data structure.

Quiz

Take this short quiz to determine if you need to read this chapter. If the
answers quickly come to mind, you can comfortably skip this chapter.
You can check your answers in Section 2.5.

13
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1. What are the three properties of a vector, other than its con-
tents?

2. What are the four common types of atomic vectors? What
are the two rare types?

3. What are attributes? How do you get them and set them?
4. How is a list different from an atomic vector? How is a matrix

different from a data frame?
5. Can you have a list that is a matrix? Can a data frame have

a column that is a matrix?

Outline

• Section 2.1 introduces you to atomic vectors and lists, R’s 1d data
structures.

• Section 2.2 takes a small detour to discuss attributes, R’s flexible meta-
data specification. Here you’ll learn about factors, an important data
structure created by setting attributes of an atomic vector.

• Section 2.3 introduces matrices and arrays, data structures for storing
2d and higher dimensional data.

• Section 2.4 teaches you about the data frame, the most important data
structure for storing data in R. Data frames combine the behaviour of
lists and matrices to make a structure ideally suited for the needs of
statistical data.

2.1 Vectors

The basic data structure in R is the vector. Vectors come in two flavours:
atomic vectors and lists. They have three common properties:

• Type, typeof(), what it is.
• Length, length(), how many elements it contains.
• Attributes, attributes(), additional arbitrary metadata.

They differ in the types of their elements: all elements of an atomic
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vector must be the same type, whereas the elements of a list can have
different types.

NB: is.vector() does not test if an object is a vector. Instead it returns
TRUE only if the object is a vector with no attributes apart from names.
Use is.atomic(x) || is.list(x) to test if an object is actually a vector.

2.1.1 Atomic vectors

There are four common types of atomic vectors that I’ll discuss in detail:
logical, integer, double (often called numeric), and character. There are
two rare types that I will not discuss further: complex and raw.

Atomic vectors are usually created with c(), short for combine:

dbl_var <- c(1, 2.5, 4.5)

# With the L suffix, you get an integer rather than a double

int_var <- c(1L, 6L, 10L)

# Use TRUE and FALSE (or T and F) to create logical vectors

log_var <- c(TRUE, FALSE, T, F)

chr_var <- c("these are", "some strings")

Atomic vectors are always flat, even if you nest c()’s:

c(1, c(2, c(3, 4)))

#> [1] 1 2 3 4

# the same as

c(1, 2, 3, 4)

#> [1] 1 2 3 4

Missing values are specified with NA, which is a logical vector of length
1. NA will always be coerced to the correct type if used inside c(), or
you can create NAs of a specific type with NA_real_ (a double vector),
NA_integer_ and NA_character_.

2.1.1.1 Types and tests

Given a vector, you can determine its type with typeof(), or check if
it’s a specific type with an “is” function: is.character(), is.double(),
is.integer(), is.logical(), or, more generally, is.atomic().
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int_var <- c(1L, 6L, 10L)

typeof(int_var)

#> [1] "integer"

is.integer(int_var)

#> [1] TRUE

is.atomic(int_var)

#> [1] TRUE

dbl_var <- c(1, 2.5, 4.5)

typeof(dbl_var)

#> [1] "double"

is.double(dbl_var)

#> [1] TRUE

is.atomic(dbl_var)

#> [1] TRUE

NB: is.numeric() is a general test for the “numberliness” of a vector
and returns TRUE for both integer and double vectors. It is not a specific
test for double vectors, which are often called numeric.

is.numeric(int_var)

#> [1] TRUE

is.numeric(dbl_var)

#> [1] TRUE

2.1.1.2 Coercion

All elements of an atomic vector must be the same type, so when you
attempt to combine different types they will be coerced to the most
flexible type. Types from least to most flexible are: logical, integer,
double, and character.

For example, combining a character and an integer yields a character:

str(c("a", 1))

#> chr [1:2] "a" "1"

When a logical vector is coerced to an integer or double, TRUE becomes 1
and FALSE becomes 0. This is very useful in conjunction with sum() and
mean()

x <- c(FALSE, FALSE, TRUE)
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as.numeric(x)

#> [1] 0 0 1

# Total number of TRUEs

sum(x)

#> [1] 1

# Proportion that are TRUE

mean(x)

#> [1] 0.333

Coercion often happens automatically. Most mathematical functions
(+, log, abs, etc.) will coerce to a double or integer, and most logical
operations (&, |, any, etc) will coerce to a logical. You will usually get a
warning message if the coercion might lose information. If confusion is
likely, explicitly coerce with as.character(), as.double(), as.integer(),
or as.logical().

2.1.2 Lists

Lists are different from atomic vectors because their elements can be of
any type, including lists. You construct lists by using list() instead of
c():

x <- list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9))

str(x)

#> List of 4

#> $ : int [1:3] 1 2 3

#> $ : chr "a"

#> $ : logi [1:3] TRUE FALSE TRUE

#> $ : num [1:2] 2.3 5.9

Lists are sometimes called recursive vectors, because a list can con-
tain other lists. This makes them fundamentally different from atomic
vectors.

x <- list(list(list(list())))

str(x)

#> List of 1

#> $ :List of 1

#> ..$ :List of 1
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#> .. ..$ : list()

is.recursive(x)

#> [1] TRUE

c() will combine several lists into one. If given a combination of atomic
vectors and lists, c() will coerce the vectors to lists before combining
them. Compare the results of list() and c():

x <- list(list(1, 2), c(3, 4))

y <- c(list(1, 2), c(3, 4))

str(x)

#> List of 2

#> $ :List of 2

#> ..$ : num 1

#> ..$ : num 2

#> $ : num [1:2] 3 4

str(y)

#> List of 4

#> $ : num 1

#> $ : num 2

#> $ : num 3

#> $ : num 4

The typeof() a list is list. You can test for a list with is.list() and
coerce to a list with as.list(). You can turn a list into an atomic vector
with unlist(). If the elements of a list have different types, unlist()
uses the same coercion rules as c().
Lists are used to build up many of the more complicated data structures
in R. For example, both data frames (described in Section 2.4) and linear
models objects (as produced by lm()) are lists:

is.list(mtcars)

#> [1] TRUE

mod <- lm(mpg ~ wt, data = mtcars)

is.list(mod)

#> [1] TRUE

2.1.3 Exercises

1. What are the six types of atomic vector? How does a list differ
from an atomic vector?
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2. What makes is.vector() and is.numeric() fundamentally dif-
ferent to is.list() and is.character()?

3. Test your knowledge of vector coercion rules by predicting the
output of the following uses of c():

c(1, FALSE)

c("a", 1)

c(list(1), "a")

c(TRUE, 1L)

4. Why do you need to use unlist() to convert a list to an atomic
vector? Why doesn’t as.vector() work?

5. Why is 1 == "1" true? Why is -1 < FALSE true? Why is "one"
< 2 false?

6. Why is the default missing value, NA, a logical vector? What’s
special about logical vectors? (Hint: think about c(FALSE,

NA_character_).)

2.2 Attributes

All objects can have arbitrary additional attributes, used to store meta-
data about the object. Attributes can be thought of as a named list (with
unique names). Attributes can be accessed individually with attr() or
all at once (as a list) with attributes().

y <- 1:10

attr(y, "my_attribute") <- "This is a vector"

attr(y, "my_attribute")

#> [1] "This is a vector"

str(attributes(y))

#> List of 1

#> $ my_attribute: chr "This is a vector"

The structure() function returns a new object with modified attributes:

structure(1:10, my_attribute = "This is a vector")

#> [1] 1 2 3 4 5 6 7 8 9 10
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#> attr(,"my_attribute")

#> [1] "This is a vector"

By default, most attributes are lost when modifying a vector:

attributes(y[1])

#> NULL

attributes(sum(y))

#> NULL

The only attributes not lost are the three most important:

• Names, a character vector giving each element a name, described in
Section 2.2.0.1.

• Dimensions, used to turn vectors into matrices and arrays, described
in Section 2.3.

• Class, used to implement the S3 object system, described in Section 7.2.

Each of these attributes has a specific accessor function to get and set
values. When working with these attributes, use names(x), dim(x), and
class(x), not attr(x, "names"), attr(x, "dim"), and attr(x, "class").

2.2.0.1 Names

You can name a vector in three ways:

• When creating it: x <- c(a = 1, b = 2, c = 3).

• By modifying an existing vector in place: x <- 1:3; names(x) <-

c("a", "b", "c").

• By creating a modified copy of a vector: x <- setNames(1:3, c("a",

"b", "c")).

Names don’t have to be unique. However, character subsetting, de-
scribed in Section 3.4.1, is the most important reason to use names and
it is most useful when the names are unique.

Not all elements of a vector need to have a name. If some names are
missing, names() will return an empty string for those elements. If all
names are missing, names() will return NULL.
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y <- c(a = 1, 2, 3)

names(y)

#> [1] "a" "" ""

z <- c(1, 2, 3)

names(z)

#> NULL

You can create a new vector without names using unname(x), or remove
names in place with names(x) <- NULL.

2.2.1 Factors

One important use of attributes is to define factors. A factor is a vector
that can contain only predefined values, and is used to store categorical
data. Factors are built on top of integer vectors using two attributes:
the class(), “factor”, which makes them behave differently from regular
integer vectors, and the levels(), which defines the set of allowed values.

x <- factor(c("a", "b", "b", "a"))

x

#> [1] a b b a

#> Levels: a b

class(x)

#> [1] "factor"

levels(x)

#> [1] "a" "b"

# You can't use values that are not in the levels

x[2] <- "c"

#> Warning in `[<-.factor`(`*tmp*`, 2, value = "c"): invalid

#> factor level, NA generated

x

#> [1] a <NA> b a

#> Levels: a b

# NB: you can't combine factors

c(factor("a"), factor("b"))

#> [1] 1 1

Factors are useful when you know the possible values a variable may
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take, even if you don’t see all values in a given dataset. Using a factor
instead of a character vector makes it obvious when some groups contain
no observations:

sex_char <- c("m", "m", "m")

sex_factor <- factor(sex_char, levels = c("m", "f"))

table(sex_char)

#> sex_char

#> m

#> 3

table(sex_factor)

#> sex_factor

#> m f

#> 3 0

Sometimes when a data frame is read directly from a file, a column you’d
thought would produce a numeric vector instead produces a factor. This
is caused by a non-numeric value in the column, often a missing value
encoded in a special way like . or -. To remedy the situation, coerce the
vector from a factor to a character vector, and then from a character to
a double vector. (Be sure to check for missing values after this process.)
Of course, a much better plan is to discover what caused the problem in
the first place and fix that; using the na.strings argument to read.csv()

is often a good place to start.

# Reading in "text" instead of from a file here:

z <- read.csv(text = "value\n12\n1\n.\n9")

typeof(z$value)

#> [1] "integer"

as.double(z$value)

#> [1] 3 2 1 4

# Oops, that's not right: 3 2 1 4 are the levels of a factor,

# not the values we read in!

class(z$value)

#> [1] "factor"

# We can fix it now:

as.double(as.character(z$value))

#> Warning: NAs introduced by coercion

#> [1] 12 1 NA 9

# Or change how we read it in:

z <- read.csv(text = "value\n12\n1\n.\n9", na.strings=".")
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typeof(z$value)

#> [1] "integer"

class(z$value)

#> [1] "integer"

z$value

#> [1] 12 1 NA 9

# Perfect! :)

Unfortunately, most data loading functions in R automatically convert
character vectors to factors. This is suboptimal, because there’s no
way for those functions to know the set of all possible levels or their
optimal order. Instead, use the argument stringsAsFactors = FALSE

to suppress this behaviour, and then manually convert character vec-
tors to factors using your knowledge of the data. A global option, op-
tions(stringsAsFactors = FALSE), is available to control this behaviour,
but I don’t recommend using it. Changing a global option may have
unexpected consequences when combined with other code (either from
packages, or code that you’re source()ing), and global options make
code harder to understand because they increase the number of lines
you need to read to understand how a single line of code will behave.

While factors look (and often behave) like character vectors, they are
actually integers. Be careful when treating them like strings. Some
string methods (like gsub() and grepl()) will coerce factors to strings,
while others (like nchar()) will throw an error, and still others (like c())
will use the underlying integer values. For this reason, it’s usually best
to explicitly convert factors to character vectors if you need string-like
behaviour. In early versions of R, there was a memory advantage to
using factors instead of character vectors, but this is no longer the case.

2.2.2 Exercises

1. An early draft used this code to illustrate structure():

structure(1:5, comment = "my attribute")

#> [1] 1 2 3 4 5

But when you print that object you don’t see the comment at-
tribute. Why? Is the attribute missing, or is there something
else special about it? (Hint: try using help.)

2. What happens to a factor when you modify its levels?
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f1 <- factor(letters)

levels(f1) <- rev(levels(f1))

3. What does this code do? How do f2 and f3 differ from f1?

f2 <- rev(factor(letters))

f3 <- factor(letters, levels = rev(letters))

2.3 Matrices and arrays

Adding a dim() attribute to an atomic vector allows it to behave like
a multi-dimensional array. A special case of the array is the matrix,
which has two dimensions. Matrices are used commonly as part of the
mathematical machinery of statistics. Arrays are much rarer, but worth
being aware of.

Matrices and arrays are created with matrix() and array(), or by using
the assignment form of dim():

# Two scalar arguments to specify rows and columns

a <- matrix(1:6, ncol = 3, nrow = 2)

# One vector argument to describe all dimensions

b <- array(1:12, c(2, 3, 2))

# You can also modify an object in place by setting dim()

c <- 1:6

dim(c) <- c(3, 2)

c

#> [,1] [,2]

#> [1,] 1 4

#> [2,] 2 5

#> [3,] 3 6

dim(c) <- c(2, 3)

c

#> [,1] [,2] [,3]

#> [1,] 1 3 5

#> [2,] 2 4 6

length() and names() have high-dimensional generalisations:
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• length() generalises to nrow() and ncol() for matrices, and dim() for
arrays.

• names() generalises to rownames() and colnames() for matrices, and
dimnames(), a list of character vectors, for arrays.

length(a)

#> [1] 6

nrow(a)

#> [1] 2

ncol(a)

#> [1] 3

rownames(a) <- c("A", "B")

colnames(a) <- c("a", "b", "c")

a

#> a b c

#> A 1 3 5

#> B 2 4 6

length(b)

#> [1] 12

dim(b)

#> [1] 2 3 2

dimnames(b) <- list(c("one", "two"), c("a", "b", "c"), c("A", "B"))

b

#> , , A

#>

#> a b c

#> one 1 3 5

#> two 2 4 6

#>

#> , , B

#>

#> a b c

#> one 7 9 11

#> two 8 10 12

c() generalises to cbind() and rbind() for matrices, and to abind() (pro-
vided by the abind package) for arrays. You can transpose a matrix with
t(); the generalised equivalent for arrays is aperm().
You can test if an object is a matrix or array using is.matrix() and
is.array(), or by looking at the length of the dim(). as.matrix() and
as.array() make it easy to turn an existing vector into a matrix or array.
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Vectors are not the only 1-dimensional data structure. You can have
matrices with a single row or single column, or arrays with a single
dimension. They may print similarly, but will behave differently. The
differences aren’t too important, but it’s useful to know they exist in case
you get strange output from a function (tapply() is a frequent offender).
As always, use str() to reveal the differences.

str(1:3) # 1d vector

#> int [1:3] 1 2 3

str(matrix(1:3, ncol = 1)) # column vector

#> int [1:3, 1] 1 2 3

str(matrix(1:3, nrow = 1)) # row vector

#> int [1, 1:3] 1 2 3

str(array(1:3, 3)) # "array" vector

#> int [1:3(1d)] 1 2 3

While atomic vectors are most commonly turned into matrices, the di-
mension attribute can also be set on lists to make list-matrices or list-
arrays:

l <- list(1:3, "a", TRUE, 1.0)

dim(l) <- c(2, 2)

l

#> [,1] [,2]

#> [1,] Integer,3 TRUE

#> [2,] "a" 1

These are relatively esoteric data structures, but can be useful if you
want to arrange objects into a grid-like structure. For example, if you’re
running models on a spatio-temporal grid, it might be natural to preserve
the grid structure by storing the models in a 3d array.

2.3.1 Exercises

1. What does dim() return when applied to a vector?
2. If is.matrix(x) is TRUE, what will is.array(x) return?
3. How would you describe the following three objects? What

makes them different to 1:5?

x1 <- array(1:5, c(1, 1, 5))

x2 <- array(1:5, c(1, 5, 1))

x3 <- array(1:5, c(5, 1, 1))



Data structures 27

2.4 Data frames

A data frame is the most common way of storing data in R, and if
used systematically (http://vita.had.co.nz/papers/tidy-data.pdf)
makes data analysis easier. Under the hood, a data frame is a list of
equal-length vectors. This makes it a 2-dimensional structure, so it
shares properties of both the matrix and the list. This means that a
data frame has names(), colnames(), and rownames(), although names()

and colnames() are the same thing. The length() of a data frame is the
length of the underlying list and so is the same as ncol(); nrow() gives
the number of rows.

As described in Chapter 3, you can subset a data frame like a 1d struc-
ture (where it behaves like a list), or a 2d structure (where it behaves
like a matrix).

2.4.1 Creation

You create a data frame using data.frame(), which takes named vectors
as input:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))

str(df)

#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 1 2 3

#> $ y: Factor w/ 3 levels "a","b","c": 1 2 3

Beware data.frame()’s default behaviour which turns strings into fac-
tors. Use stringAsFactors = FALSE to suppress this behaviour:

df <- data.frame(

x = 1:3,

y = c("a", "b", "c"),

stringsAsFactors = FALSE)

str(df)

#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 1 2 3

#> $ y: chr "a" "b" "c"

http://vita.had.co.nz/papers/tidy-data.pdf
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2.4.2 Testing and coercion

Because a data.frame is an S3 class, its type reflects the underlying
vector used to build it: the list. To check if an object is a data frame,
use class() or test explicitly with is.data.frame():

typeof(df)

#> [1] "list"

class(df)

#> [1] "data.frame"

is.data.frame(df)

#> [1] TRUE

You can coerce an object to a data frame with as.data.frame():

• A vector will create a one-column data frame.

• A list will create one column for each element; it’s an error if they’re
not all the same length.

• A matrix will create a data frame with the same number of columns
and rows as the matrix.

2.4.3 Combining data frames

You can combine data frames using cbind() and rbind():

cbind(df, data.frame(z = 3:1))

#> x y z

#> 1 1 a 3

#> 2 2 b 2

#> 3 3 c 1

rbind(df, data.frame(x = 10, y = "z"))

#> x y

#> 1 1 a

#> 2 2 b

#> 3 3 c

#> 4 10 z

When combining column-wise, the number of rows must match, but
row names are ignored. When combining row-wise, both the number
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and names of columns must match. Use plyr::rbind.fill() to combine
data frames that don’t have the same columns.

It’s a common mistake to try and create a data frame by cbind()ing
vectors together. This doesn’t work because cbind() will create a ma-
trix unless one of the arguments is already a data frame. Instead use
data.frame() directly:

bad <- data.frame(cbind(a = 1:2, b = c("a", "b")))

str(bad)

#> 'data.frame': 2 obs. of 2 variables:

#> $ a: Factor w/ 2 levels "1","2": 1 2

#> $ b: Factor w/ 2 levels "a","b": 1 2

good <- data.frame(a = 1:2, b = c("a", "b"),

stringsAsFactors = FALSE)

str(good)

#> 'data.frame': 2 obs. of 2 variables:

#> $ a: int 1 2

#> $ b: chr "a" "b"

The conversion rules for cbind() are complicated and best avoided by
ensuring all inputs are of the same type.

2.4.4 Special columns

Since a data frame is a list of vectors, it is possible for a data frame to
have a column that is a list:

df <- data.frame(x = 1:3)

df$y <- list(1:2, 1:3, 1:4)

df

#> x y

#> 1 1 1, 2

#> 2 2 1, 2, 3

#> 3 3 1, 2, 3, 4

However, when a list is given to data.frame(), it tries to put each item
of the list into its own column, so this fails:

data.frame(x = 1:3, y = list(1:2, 1:3, 1:4))

#> Error in data.frame(1:2, 1:3, 1:4, check.names = FALSE, stringsAsFactors = TRUE): arguments imply differing number of rows: 2, 3, 4



30 Advanced R

A workaround is to use I(), which causes data.frame() to treat the list
as one unit:

dfl <- data.frame(x = 1:3, y = I(list(1:2, 1:3, 1:4)))

str(dfl)

#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 1 2 3

#> $ y:List of 3

#> ..$ : int 1 2

#> ..$ : int 1 2 3

#> ..$ : int 1 2 3 4

#> ..- attr(*, "class")= chr "AsIs"

dfl[2, "y"]

#> [[1]]

#> [1] 1 2 3

I() adds the AsIs class to its input, but this can usually be safely ignored.

Similarly, it’s also possible to have a column of a data frame that’s a
matrix or array, as long as the number of rows matches the data frame:

dfm <- data.frame(x = 1:3, y = I(matrix(1:9, nrow = 3)))

str(dfm)

#> 'data.frame': 3 obs. of 2 variables:

#> $ x: int 1 2 3

#> $ y: 'AsIs' int [1:3, 1:3] 1 2 3 4 5 6 7 8 9

dfm[2, "y"]

#> [,1] [,2] [,3]

#> [1,] 2 5 8

Use list and array columns with caution: many functions that work with
data frames assume that all columns are atomic vectors.

2.4.5 Exercises

1. What attributes does a data frame possess?
2. What does as.matrix() do when applied to a data frame with

columns of different types?
3. Can you have a data frame with 0 rows? What about 0

columns?



Data structures 31

2.5 Answers

1. The three properties of a vector are type, length, and at-
tributes.

2. The four common types of atomic vector are logical, integer,
double (sometimes called numeric), and character. The two
rarer types are complex and raw.

3. Attributes allow you to associate arbitrary additional meta-
data to any object. You can get and set individual attributes
with attr(x, "y") and attr(x, "y") <- value; or get and set
all attributes at once with attributes().

4. The elements of a list can be any type (even a list); the ele-
ments of an atomic vector are all of the same type. Similarly,
every element of a matrix must be the same type; in a data
frame, the different columns can have different types.

5. You can make “list-array” by assuming dimensions to a list.
You can make a matrix a column of a data frame with df$x

<- matrix(), or using I() when creating a new data frame
data.frame(x = I(matrix())).
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Subsetting

R’s subsetting operators are powerful and fast. Mastery of subsetting
allows you to succinctly express complex operations in a way that few
other languages can match. Subsetting is hard to learn because you need
to master a number of interrelated concepts:

• The three subsetting operators.

• The six types of subsetting.

• Important differences in behaviour for different objects (e.g., vectors,
lists, factors, matrices, and data frames).

• The use of subsetting in conjunction with assignment.

This chapter helps you master subsetting by starting with the simplest
type of subsetting: subsetting an atomic vector with [. It then gradu-
ally extends your knowledge, first to more complicated data types (like
arrays and lists), and then to the other subsetting operators, [[ and
$. You’ll then learn how subsetting and assignment can be combined
to modify parts of an object, and, finally, you’ll see a large number of
useful applications.

Subsetting is a natural complement to str(). str() shows you the struc-
ture of any object, and subsetting allows you to pull out the pieces that
you’re interested in.

Quiz

Take this short quiz to determine if you need to read this chapter. If the
answers quickly come to mind, you can comfortably skip this chapter.
Check your answers in Section 3.5.

1. What is the result of subsetting a vector with positive integers,
negative integers, a logical vector, or a character vector?

33
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2. What’s the difference between [, [[, and $ when applied to a
list?

3. When should you use drop = FALSE?
4. If x is a matrix, what does x[] <- 0 do? How is it different to

x <- 0?
5. How can you use a named vector to relabel categorical vari-

ables?

Outline

• Section 3.1 starts by teaching you about [. You’ll start by learning the
six types of data that you can use to subset atomic vectors. You’ll then
learn how those six data types act when used to subset lists, matrices,
data frames, and S3 objects.

• Section 3.2 expands your knowledge of subsetting operators to include
[[ and $, focussing on the important principles of simplifying vs. pre-
serving.

• In Section 3.3 you’ll learn the art of subassignment, combining subset-
ting and assignment to modify parts of an object.

• Section 3.4 leads you through eight important, but not obvious, appli-
cations of subsetting to solve problems that you often encounter in a
data analysis.

3.1 Data types

It’s easiest to learn how subsetting works for atomic vectors, and then
how it generalises to higher dimensions and other more complicated ob-
jects. We’ll start with [, the most commonly used operator. Section 3.2
will cover [[ and $, the two other main subsetting operators.

3.1.1 Atomic vectors

Let’s explore the different types of subsetting with a simple vector, x.

x <- c(2.1, 4.2, 3.3, 5.4)
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Note that the number after the decimal point gives the original position
in the vector.
There are five things that you can use to subset a vector:

• Positive integers return elements at the specified positions:

x[c(3, 1)]

#> [1] 3.3 2.1

x[order(x)]

#> [1] 2.1 3.3 4.2 5.4

# Duplicated indices yield duplicated values

x[c(1, 1)]

#> [1] 2.1 2.1

# Real numbers are silently truncated to integers

x[c(2.1, 2.9)]

#> [1] 4.2 4.2

• Negative integers omit elements at the specified positions:

x[-c(3, 1)]

#> [1] 4.2 5.4

You can’t mix positive and negative integers in a single subset:

x[c(-1, 2)]

#> Error in x[c(-1, 2)]: only 0's may be mixed with negative subscripts

• Logical vectors select elements where the corresponding logical value
is TRUE. This is probably the most useful type of subsetting because
you write the expression that creates the logical vector:

x[c(TRUE, TRUE, FALSE, FALSE)]

#> [1] 2.1 4.2

x[x > 3]

#> [1] 4.2 3.3 5.4

If the logical vector is shorter than the vector being subsetted, it will
be recycled to be the same length.

x[c(TRUE, FALSE)]

#> [1] 2.1 3.3

# Equivalent to

x[c(TRUE, FALSE, TRUE, FALSE)]

#> [1] 2.1 3.3
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A missing value in the index always yields a missing value in the out-
put:

x[c(TRUE, TRUE, NA, FALSE)]

#> [1] 2.1 4.2 NA

• Nothing returns the original vector. This is not useful for vectors but
is very useful for matrices, data frames, and arrays. It can also be
useful in conjunction with assignment.

x[]

#> [1] 2.1 4.2 3.3 5.4

• Zero returns a zero-length vector. This is not something you usually
do on purpose, but it can be helpful for generating test data.

x[0]

#> numeric(0)

If the vector is named, you can also use:

• Character vectors to return elements with matching names.

(y <- setNames(x, letters[1:4]))

#> a b c d

#> 2.1 4.2 3.3 5.4

y[c("d", "c", "a")]

#> d c a

#> 5.4 3.3 2.1

# Like integer indices, you can repeat indices

y[c("a", "a", "a")]

#> a a a

#> 2.1 2.1 2.1

# When subsetting with [ names are always matched exactly

z <- c(abc = 1, def = 2)

z[c("a", "d")]

#> <NA> <NA>

#> NA NA
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3.1.2 Lists

Subsetting a list works in the same way as subsetting an atomic vector.
Using [ will always return a list; [[ and $, as described below, let you
pull out the components of the list.

3.1.3 Matrices and arrays

You can subset higher-dimensional structures in three ways:

• With multiple vectors.
• With a single vector.
• With a matrix.

The most common way of subsetting matrices (2d) and arrays (>2d)
is a simple generalisation of 1d subsetting: you supply a 1d index for
each dimension, separated by a comma. Blank subsetting is now useful
because it lets you keep all rows or all columns.

a <- matrix(1:9, nrow = 3)

colnames(a) <- c("A", "B", "C")

a[1:2, ]

#> A B C

#> [1,] 1 4 7

#> [2,] 2 5 8

a[c(T, F, T), c("B", "A")]

#> B A

#> [1,] 4 1

#> [2,] 6 3

a[0, -2]

#> A C

By default, [ will simplify the results to the lowest possible dimension-
ality. See Section 3.2.1 to learn how to avoid this.

Because matrices and arrays are implemented as vectors with special
attributes, you can subset them with a single vector. In that case, they
will behave like a vector. Arrays in R are stored in column-major order:

(vals <- outer(1:5, 1:5, FUN = "paste", sep = ","))

#> [,1] [,2] [,3] [,4] [,5]
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#> [1,] "1,1" "1,2" "1,3" "1,4" "1,5"

#> [2,] "2,1" "2,2" "2,3" "2,4" "2,5"

#> [3,] "3,1" "3,2" "3,3" "3,4" "3,5"

#> [4,] "4,1" "4,2" "4,3" "4,4" "4,5"

#> [5,] "5,1" "5,2" "5,3" "5,4" "5,5"

vals[c(4, 15)]

#> [1] "4,1" "5,3"

You can also subset higher-dimensional data structures with an integer
matrix (or, if named, a character matrix). Each row in the matrix
specifies the location of one value, where each column corresponds to a
dimension in the array being subsetted. This means that you use a 2
column matrix to subset a matrix, a 3 column matrix to subset a 3d
array, and so on. The result is a vector of values:

vals <- outer(1:5, 1:5, FUN = "paste", sep = ",")

select <- matrix(ncol = 2, byrow = TRUE, c(

1, 1,

3, 1,

2, 4

))

vals[select]

#> [1] "1,1" "3,1" "2,4"

3.1.4 Data frames

Data frames possess the characteristics of both lists and matrices: if you
subset with a single vector, they behave like lists; if you subset with two
vectors, they behave like matrices.

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df[df$x == 2, ]

#> x y z

#> 2 2 2 b

df[c(1, 3), ]

#> x y z

#> 1 1 3 a

#> 3 3 1 c

# There are two ways to select columns from a data frame
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# Like a list:

df[c("x", "z")]

#> x z

#> 1 1 a

#> 2 2 b

#> 3 3 c

# Like a matrix

df[, c("x", "z")]

#> x z

#> 1 1 a

#> 2 2 b

#> 3 3 c

# There's an important difference if you select a single

# column: matrix subsetting simplifies by default, list

# subsetting does not.

str(df["x"])

#> 'data.frame': 3 obs. of 1 variable:

#> $ x: int 1 2 3

str(df[, "x"])

#> int [1:3] 1 2 3

3.1.5 S3 objects

S3 objects are made up of atomic vectors, arrays, and lists, so you can
always pull apart an S3 object using the techniques described above and
the knowledge you gain from str().

3.1.6 S4 objects

There are also two additional subsetting operators that are needed for
S4 objects: @ (equivalent to $), and slot() (equivalent to [[). @ is more
restrictive than $ in that it will return an error if the slot does not exist.
These are described in more detail in Section 7.3.

3.1.7 Exercises

1. Fix each of the following common data frame subsetting er-
rors:
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mtcars[mtcars$cyl = 4, ]

mtcars[-1:4, ]

mtcars[mtcars$cyl <= 5]

mtcars[mtcars$cyl == 4 | 6, ]

2. Why does x <- 1:5; x[NA] yield five missing values? (Hint:
why is it different from x[NA_real_]?)

3. What does upper.tri() return? How does subsetting a matrix
with it work? Do we need any additional subsetting rules to
describe its behaviour?

x <- outer(1:5, 1:5, FUN = "*")

x[upper.tri(x)]

4. Why does mtcars[1:20] return a error? How does it differ
from the similar mtcars[1:20, ]?

5. Implement your own function that extracts the diagonal en-
tries from a matrix (it should behave like diag(x) where x is
a matrix).

6. What does df[is.na(df)] <- 0 do? How does it work?

3.2 Subsetting operators

There are two other subsetting operators: [[ and $. [[ is similar to [,
except it can only return a single value and it allows you to pull pieces
out of a list. $ is a useful shorthand for [[ combined with character
subsetting.

You need [[ when working with lists. This is because when [ is applied
to a list it always returns a list: it never gives you the contents of the
list. To get the contents, you need [[:

“If list x is a train carrying objects, then x[[5]] is the object in car
5; x[4:6] is a train of cars 4-6.”
— @RLangTip

Because it can return only a single value, you must use [[ with either a
single positive integer or a string:
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a <- list(a = 1, b = 2)

a[[1]]

#> [1] 1

a[["a"]]

#> [1] 1

# If you do supply a vector it indexes recursively

b <- list(a = list(b = list(c = list(d = 1))))

b[[c("a", "b", "c", "d")]]

#> [1] 1

# Same as

b[["a"]][["b"]][["c"]][["d"]]

#> [1] 1

Because data frames are lists of columns, you can use [[ to extract a
column from data frames: mtcars[[1]], mtcars[["cyl"]].

S3 and S4 objects can override the standard behaviour of [ and [[ so
they behave differently for different types of objects. The key difference
is usually how you select between simplifying or preserving behaviours,
and what the default is.

3.2.1 Simplifying vs. preserving subsetting

It’s important to understand the distinction between simplifying and
preserving subsetting. Simplifying subsets returns the simplest possible
data structure that can represent the output, and is useful interactively
because it usually gives you what you want. Preserving subsetting keeps
the structure of the output the same as the input, and is generally better
for programming because the result will always be the same type. Omit-
ting drop = FALSE when subsetting matrices and data frames is one of
the most common sources of programming errors. (It will work for your
test cases, but then someone will pass in a single column data frame and
it will fail in an unexpected and unclear way.)

Unfortunately, how you switch between simplifying and preserving dif-
fers for different data types, as summarised in the table below.

Simplifying Preserving
Vector x[[1]] x[1]

List x[[1]] x[1]

Factor x[1:4, drop = T] x[1:4]
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Simplifying Preserving
Array x[1, ] or x[, 1] x[1, , drop = F] or x[, 1, drop = F]

Data frame x[, 1] or x[[1]] x[, 1, drop = F] or x[1]

Preserving is the same for all data types: you get the same type of
output as input. Simplifying behaviour varies slightly between different
data types, as described below:

• Atomic vector: removes names.

x <- c(a = 1, b = 2)

x[1]

#> a

#> 1

x[[1]]

#> [1] 1

• List: return the object inside the list, not a single element list.

y <- list(a = 1, b = 2)

str(y[1])

#> List of 1

#> $ a: num 1

str(y[[1]])

#> num 1

• Factor: drops any unused levels.

z <- factor(c("a", "b"))

z[1]

#> [1] a

#> Levels: a b

z[1, drop = TRUE]

#> [1] a

#> Levels: a

• Matrix or array: if any of the dimensions has length 1, drops that
dimension.

a <- matrix(1:4, nrow = 2)

a[1, , drop = FALSE]

#> [,1] [,2]

#> [1,] 1 3
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a[1, ]

#> [1] 1 3

• Data frame: if output is a single column, returns a vector instead of
a data frame.

df <- data.frame(a = 1:2, b = 1:2)

str(df[1])

#> 'data.frame': 2 obs. of 1 variable:

#> $ a: int 1 2

str(df[[1]])

#> int [1:2] 1 2

str(df[, "a", drop = FALSE])

#> 'data.frame': 2 obs. of 1 variable:

#> $ a: int 1 2

str(df[, "a"])

#> int [1:2] 1 2

3.2.2 $

$ is a shorthand operator, where x$y is equivalent to x[["y", exact =

FALSE]]. It’s often used to access variables in a data frame, as in mt-

cars$cyl or diamonds$carat.

One common mistake with $ is to try and use it when you have the name
of a column stored in a variable:

var <- "cyl"

# Doesn't work - mtcars$var translated to mtcars[["var"]]

mtcars$var

#> NULL

# Instead use [[

mtcars[[var]]

#> [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8

#> [30] 6 8 4

There’s one important difference between $ and [[. $ does partial match-
ing:

x <- list(abc = 1)

x$a
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#> [1] 1

x[["a"]]

#> NULL

If you want to avoid this behaviour you can set the global option warn-

PartialMatchDollar to TRUE. Use with caution: it may affect behaviour
in other code you have loaded (e.g., from a package).

3.2.3 Missing/out of bounds indices

[ and [[ differ slightly in their behaviour when the index is out of bounds
(OOB), for example, when you try to extract the fifth element of a length
four vector, or subset a vector with NA or NULL:

x <- 1:4

str(x[5])

#> int NA

str(x[NA_real_])

#> int NA

str(x[NULL])

#> int(0)

The following table summarises the results of subsetting atomic vectors
and lists with [ and [[ and different types of OOB value.

Operator Index Atomic List
[ OOB NA list(NULL)

[ NA_real_ NA list(NULL)

[ NULL x[0] list(NULL)

[[ OOB Error Error
[[ NA_real_ Error NULL

[[ NULL Error Error

If the input vector is named, then the names of OOB, missing, or NULL

components will be "<NA>".
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3.2.4 Exercises
1. Given a linear model, e.g., mod <- lm(mpg ~ wt, data = mt-

cars), extract the residual degrees of freedom. Extract the R
squared from the model summary (summary(mod))

3.3 Subsetting and assignment

All subsetting operators can be combined with assignment to modify
selected values of the input vector.

x <- 1:5

x[c(1, 2)] <- 2:3

x

#> [1] 2 3 3 4 5

# The length of the LHS needs to match the RHS

x[-1] <- 4:1

x

#> [1] 2 4 3 2 1

# Note that there's no checking for duplicate indices

x[c(1, 1)] <- 2:3

x

#> [1] 3 4 3 2 1

# You can't combine integer indices with NA

x[c(1, NA)] <- c(1, 2)

#> Error in x[c(1, NA)] <- c(1, 2): NAs are not allowed in subscripted assignments

# But you can combine logical indices with NA

# (where they're treated as false).

x[c(T, F, NA)] <- 1

x

#> [1] 1 4 3 1 1

# This is mostly useful when conditionally modifying vectors

df <- data.frame(a = c(1, 10, NA))

df$a[df$a < 5] <- 0

df$a

#> [1] 0 10 NA
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Subsetting with nothing can be useful in conjunction with assignment
because it will preserve the original object class and structure. Compare
the following two expressions. In the first, mtcars will remain as a data
frame. In the second, mtcars will become a list.

mtcars[] <- lapply(mtcars, as.integer)

mtcars <- lapply(mtcars, as.integer)

With lists, you can use subsetting + assignment + NULL to remove com-
ponents from a list. To add a literal NULL to a list, use [ and list(NULL):

x <- list(a = 1, b = 2)

x[["b"]] <- NULL

str(x)

#> List of 1

#> $ a: num 1

y <- list(a = 1)

y["b"] <- list(NULL)

str(y)

#> List of 2

#> $ a: num 1

#> $ b: NULL

3.4 Applications

The basic principles described above give rise to a wide variety of useful
applications. Some of the most important are described below. Many of
these basic techniques are wrapped up into more concise functions (e.g.,
subset(), merge(), plyr::arrange()), but it is useful to understand how
they are implemented with basic subsetting. This will allow you to adapt
to new situations that are not dealt with by existing functions.

3.4.1 Lookup tables (character subsetting)

Character matching provides a powerful way to make lookup tables. Say
you want to convert abbreviations:
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x <- c("m", "f", "u", "f", "f", "m", "m")

lookup <- c(m = "Male", f = "Female", u = NA)

lookup[x]

#> m f u f f m

#> "Male" "Female" NA "Female" "Female" "Male"

#> m

#> "Male"

unname(lookup[x])

#> [1] "Male" "Female" NA "Female" "Female" "Male"

#> [7] "Male"

# Or with fewer output values

c(m = "Known", f = "Known", u = "Unknown")[x]

#> m f u f f m

#> "Known" "Known" "Unknown" "Known" "Known" "Known"

#> m

#> "Known"

If you don’t want names in the result, use unname() to remove them.

3.4.2 Matching and merging by hand (integer subsetting)

You may have a more complicated lookup table which has multiple
columns of information. Suppose we have a vector of integer grades,
and a table that describes their properties:

grades <- c(1, 2, 2, 3, 1)

info <- data.frame(

grade = 3:1,

desc = c("Excellent", "Good", "Poor"),

fail = c(F, F, T)

)

We want to duplicate the info table so that we have a row for each value
in grades. We can do this in two ways, either using match() and integer
subsetting, or rownames() and character subsetting:

grades

#> [1] 1 2 2 3 1
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# Using match

id <- match(grades, info$grade)

info[id, ]

#> grade desc fail

#> 3 1 Poor TRUE

#> 2 2 Good FALSE

#> 2.1 2 Good FALSE

#> 1 3 Excellent FALSE

#> 3.1 1 Poor TRUE

# Using rownames

rownames(info) <- info$grade

info[as.character(grades), ]

#> grade desc fail

#> 1 1 Poor TRUE

#> 2 2 Good FALSE

#> 2.1 2 Good FALSE

#> 3 3 Excellent FALSE

#> 1.1 1 Poor TRUE

If you have multiple columns to match on, you’ll need to first collapse
them to a single column (with interaction(), paste(), or plyr::id()).
You can also use merge() or plyr::join(), which do the same thing for
you — read the source code to see how.

3.4.3 Random samples/bootstrap (integer subsetting)

You can use integer indices to perform random sampling or bootstrap-
ping of a vector or data frame. sample() generates a vector of indices,
then subsetting to access the values:

df <- data.frame(x = rep(1:3, each = 2), y = 6:1, z = letters[1:6])

# Set seed for reproducibility

set.seed(10)

# Randomly reorder

df[sample(nrow(df)), ]

#> x y z

#> 4 2 3 d

#> 2 1 5 b

#> 5 3 2 e
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#> 3 2 4 c

#> 1 1 6 a

#> 6 3 1 f

# Select 3 random rows

df[sample(nrow(df), 3), ]

#> x y z

#> 2 1 5 b

#> 6 3 1 f

#> 3 2 4 c

# Select 6 bootstrap replicates

df[sample(nrow(df), 6, rep = T), ]

#> x y z

#> 3 2 4 c

#> 4 2 3 d

#> 4.1 2 3 d

#> 1 1 6 a

#> 4.2 2 3 d

#> 3.1 2 4 c

The arguments of sample() control the number of samples to extract,
and whether sampling is performed with or without replacement.

3.4.4 Ordering (integer subsetting)

order() takes a vector as input and returns an integer vector describing
how the subsetted vector should be ordered:

x <- c("b", "c", "a")

order(x)

#> [1] 3 1 2

x[order(x)]

#> [1] "a" "b" "c"

To break ties, you can supply additional variables to order(), and you
can change from ascending to descending order using decreasing = TRUE.
By default, any missing values will be put at the end of the vector;
however, you can remove them with na.last = NA or put at the front
with na.last = FALSE.

For two or more dimensions, order() and integer subsetting makes it
easy to order either the rows or columns of an object:
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# Randomly reorder df

df2 <- df[sample(nrow(df)), 3:1]

df2

#> z y x

#> 3 c 4 2

#> 1 a 6 1

#> 2 b 5 1

#> 4 d 3 2

#> 6 f 1 3

#> 5 e 2 3

df2[order(df2$x), ]

#> z y x

#> 1 a 6 1

#> 2 b 5 1

#> 3 c 4 2

#> 4 d 3 2

#> 6 f 1 3

#> 5 e 2 3

df2[, order(names(df2))]

#> x y z

#> 3 2 4 c

#> 1 1 6 a

#> 2 1 5 b

#> 4 2 3 d

#> 6 3 1 f

#> 5 3 2 e

More concise, but less flexible, functions are available for sorting vectors,
sort(), and data frames, plyr::arrange().

3.4.5 Expanding aggregated counts (integer subsetting)

Sometimes you get a data frame where identical rows have been collapsed
into one and a count column has been added. rep() and integer subset-
ting make it easy to uncollapse the data by subsetting with a repeated
row index:

df <- data.frame(x = c(2, 4, 1), y = c(9, 11, 6), n = c(3, 5, 1))

rep(1:nrow(df), df$n)

#> [1] 1 1 1 2 2 2 2 2 3

df[rep(1:nrow(df), df$n), ]
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#> x y n

#> 1 2 9 3

#> 1.1 2 9 3

#> 1.2 2 9 3

#> 2 4 11 5

#> 2.1 4 11 5

#> 2.2 4 11 5

#> 2.3 4 11 5

#> 2.4 4 11 5

#> 3 1 6 1

3.4.6 Removing columns from data frames (character
subsetting)

There are two ways to remove columns from a data frame. You can set
individual columns to NULL:

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df$z <- NULL

Or you can subset to return only the columns you want:

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df[c("x", "y")]

#> x y

#> 1 1 3

#> 2 2 2

#> 3 3 1

If you know the columns you don’t want, use set operations to work out
which colums to keep:

df[setdiff(names(df), "z")]

#> x y

#> 1 1 3

#> 2 2 2

#> 3 3 1
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3.4.7 Selecting rows based on a condition (logical subset-
ting)

Because it allows you to easily combine conditions from multiple
columns, logical subsetting is probably the most commonly used
technique for extracting rows out of a data frame.

mtcars[mtcars$gear == 5, ]

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

#> 29 15.8 8 351.0 264 4.22 3.17 14.5 0 1 5 4

#> 30 19.7 6 145.0 175 3.62 2.77 15.5 0 1 5 6

#> 31 15.0 8 301.0 335 3.54 3.57 14.6 0 1 5 8

mtcars[mtcars$gear == 5 & mtcars$cyl == 4, ]

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

Remember to use the vector boolean operators & and |, not the short-
circuiting scalar operators && and || which are more useful inside if
statements. Don’t forget De Morgan’s laws (http://en.wikipedia.org/
wiki/De_Morgan's_laws), which can be useful to simplify negations:

• !(X & Y) is the same as !X | !Y

• !(X | Y) is the same as !X & !Y

For example, !(X & !(Y | Z)) simplifies to !X | !!(Y|Z), and then to !X

| Y | Z.

subset() is a specialised shorthand function for subsetting data frames,
and saves some typing because you don’t need to repeat the name of the
data frame. You’ll learn how it works in Chapter 13.

subset(mtcars, gear == 5)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

#> 29 15.8 8 351.0 264 4.22 3.17 14.5 0 1 5 4

#> 30 19.7 6 145.0 175 3.62 2.77 15.5 0 1 5 6

#> 31 15.0 8 301.0 335 3.54 3.57 14.6 0 1 5 8

subset(mtcars, gear == 5 & cyl == 4)

http://en.wikipedia.org/wiki/De_Morgan's_laws
http://en.wikipedia.org/wiki/De_Morgan's_laws
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#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 27 26.0 4 120.3 91 4.43 2.14 16.7 0 1 5 2

#> 28 30.4 4 95.1 113 3.77 1.51 16.9 1 1 5 2

3.4.8 Boolean algebra vs. sets (logical & integer subset-
ting)

It’s useful to be aware of the natural equivalence between set operations
(integer subsetting) and boolean algebra (logical subsetting). Using set
operations is more effective when:

• You want to find the first (or last) TRUE.

• You have very few TRUEs and very many FALSEs; a set representation
may be faster and require less storage.

which() allows you to convert a boolean representation to an integer
representation. There’s no reverse operation in base R but we can easily
create one:

x <- sample(10) < 4

which(x)

#> [1] 3 7 10

unwhich <- function(x, n) {

out <- rep_len(FALSE, n)

out[x] <- TRUE

out

}

unwhich(which(x), 10)

#> [1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

#> [10] TRUE

Let’s create two logical vectors and their integer equivalents and then
explore the relationship between boolean and set operations.

(x1 <- 1:10 %% 2 == 0)

#> [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

#> [10] TRUE

(x2 <- which(x1))

#> [1] 2 4 6 8 10
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(y1 <- 1:10 %% 5 == 0)

#> [1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

#> [10] TRUE

(y2 <- which(y1))

#> [1] 5 10

# X & Y <-> intersect(x, y)

x1 & y1

#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

#> [10] TRUE

intersect(x2, y2)

#> [1] 10

# X | Y <-> union(x, y)

x1 | y1

#> [1] FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

#> [10] TRUE

union(x2, y2)

#> [1] 2 4 6 8 10 5

# X & !Y <-> setdiff(x, y)

x1 & !y1

#> [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

#> [10] FALSE

setdiff(x2, y2)

#> [1] 2 4 6 8

# xor(X, Y) <-> setdiff(union(x, y), intersect(x, y))

xor(x1, y1)

#> [1] FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE

#> [10] FALSE

setdiff(union(x2, y2), intersect(x2, y2))

#> [1] 2 4 6 8 5

When first learning subsetting, a common mistake is to use x[which(y)]

instead of x[y]. Here the which() achieves nothing: it switches from
logical to integer subsetting but the result will be exactly the same.
Also beware that x[-which(y)] is not equivalent to x[!y]: if y is all
FALSE, which(y) will be integer(0) and -integer(0) is still integer(0),
so you’ll get no values, instead of all values. In general, avoid switching
from logical to integer subsetting unless you want, for example, the first
or last TRUE value.
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3.4.9 Exercises

1. How would you randomly permute the columns of a data
frame? (This is an important technique in random forests.)
Can you simultaneously permute the rows and columns in one
step?

2. How would you select a random sample of m rows from a data
frame? What if the sample had to be contiguous (i.e., with
an initial row, a final row, and every row in between)?

3. How could you put the columns in a data frame in alphabetical
order?

3.5 Answers

1. Positive integers select elements at specific positions, negative
integers drop elements; logical vectors keep elements at posi-
tions corresponding to TRUE; character vectors select elements
with matching names.

2. [ selects sub-lists. It always returns a list; if you use it with a
single positive integer, it returns a list of length one. [[ selects
an element within a list. $ is a convenient shorthand: x$y is
equivalent to x[["y"]].

3. Use drop = FALSE if you are subsetting a matrix, array, or data
frame and you want to preserve the original dimensions. You
should almost always use it when subsetting inside a function.

4. If x is a matrix, x[] <- 0 will replace every element with 0,
keeping the same number of rows and columns. x <- 0 com-
pletely replaces the matrix with the value 0.

5. A named character vector can act as a simple lookup table:
c(x = 1, y = 2, z = 3)[c("y", "z", "x")]





4
Vocabulary

An important part of being fluent in R is having a good working vocab-
ulary. Below, I have listed the functions that I believe constitute such
a vocabulary. You don’t need to be intimately familiar with the details
of every function, but you should at least be aware that they all exist.
If there are functions in this list that you’ve never heard of, I strongly
recommend that you read their documentation.

I came up with this list by looking through all the functions in the base,
stats, and utils packages, and extracting those that I think are most
useful. The list also includes a few pointers to particularly important
functions in other packages, and some of the more important options().

4.1 The basics

# The first functions to learn

?

str

# Important operators and assignment

%in%, match

=, <-, <<-

$, [, [[, head, tail, subset

with

assign, get

# Comparison

all.equal, identical

!=, ==, >, >=, <, <=

is.na, complete.cases

is.finite
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# Basic math

*, +, -, /, ^, %%, %/%

abs, sign

acos, asin, atan, atan2

sin, cos, tan

ceiling, floor, round, trunc, signif

exp, log, log10, log2, sqrt

max, min, prod, sum

cummax, cummin, cumprod, cumsum, diff

pmax, pmin

range

mean, median, cor, sd, var

rle

# Functions to do with functions

function

missing

on.exit

return, invisible

# Logical & sets

&, |, !, xor

all, any

intersect, union, setdiff, setequal

which

# Vectors and matrices

c, matrix

# automatic coercion rules character > numeric > logical

length, dim, ncol, nrow

cbind, rbind

names, colnames, rownames

t

diag

sweep

as.matrix, data.matrix

# Making vectors

c

rep, rep_len

seq, seq_len, seq_along
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rev

sample

choose, factorial, combn

(is/as).(character/numeric/logical/...)

# Lists & data.frames

list, unlist

data.frame, as.data.frame

split

expand.grid

# Control flow

if, &&, || (short circuiting)

for, while

next, break

switch

ifelse

# Apply & friends

lapply, sapply, vapply

apply

tapply

replicate

4.2 Common data structures

# Date time

ISOdate, ISOdatetime, strftime, strptime, date

difftime

julian, months, quarters, weekdays

library(lubridate)

# Character manipulation

grep, agrep

gsub

strsplit

chartr

nchar

tolower, toupper
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substr

paste

library(stringr)

# Factors

factor, levels, nlevels

reorder, relevel

cut, findInterval

interaction

options(stringsAsFactors = FALSE)

# Array manipulation

array

dim

dimnames

aperm

library(abind)

4.3 Statistics

# Ordering and tabulating

duplicated, unique

merge

order, rank, quantile

sort

table, ftable

# Linear models

fitted, predict, resid, rstandard

lm, glm

hat, influence.measures

logLik, df, deviance

formula, ~, I

anova, coef, confint, vcov

contrasts

# Miscellaneous tests

apropos("\\.test$")
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# Random variables

(q, p, d, r) * (beta, binom, cauchy, chisq, exp, f, gamma, geom,

hyper, lnorm, logis, multinom, nbinom, norm, pois, signrank, t,

unif, weibull, wilcox, birthday, tukey)

# Matrix algebra

crossprod, tcrossprod

eigen, qr, svd

%*%, %o%, outer

rcond

solve

4.4 Working with R

# Workspace

ls, exists, rm

getwd, setwd

q

source

install.packages, library, require

# Help

help, ?

help.search

apropos

RSiteSearch

citation

demo

example

vignette

# Debugging

traceback

browser

recover

options(error = )

stop, warning, message

tryCatch, try
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4.5 I/O

# Output

print, cat

message, warning

dput

format

sink, capture.output

# Reading and writing data

data

count.fields

read.csv, write.csv

read.delim, write.delim

read.fwf

readLines, writeLines

readRDS, saveRDS

load, save

library(foreign)

# Files and directories

dir

basename, dirname, tools::file_ext

file.path

path.expand, normalizePath

file.choose

file.copy, file.create, file.remove, file.rename, dir.create

file.exists, file.info

tempdir, tempfile

download.file, library(downloader)
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Style guide

Good coding style is like using correct punctuation. You can manage
without it, but it sure makes things easier to read. As with styles of
punctuation, there are many possible variations. The following guide
describes the style that I use (in this book and elsewhere). It is based
on Google’s R style guide (http://google-styleguide.googlecode.com/
svn/trunk/google-r-style.html), with a few tweaks. You don’t have to
use my style, but you really should use a consistent style.
Good style is important because while your code only has one author, it’ll
usually have multiple readers. This is especially true when you’re writing
code with others. In that case, it’s a good idea to agree on a common
style up-front. Since no style is strictly better than another, working with
others may mean that you’ll need to sacrifice some preferred aspects of
your style.
The formatR package, by Yihui Xie, makes it easier to clean up poorly
formatted code. It can’t do everything, but it can quickly get your
code from terrible to pretty good. Make sure to read the introduction
(http://yihui.name/formatR/) before using it.

5.1 Notation and naming

5.1.1 File names

File names should be meaningful and end in .R.

# Good

fit-models.R

utility-functions.R

# Bad
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foo.r

stuff.r

If files need to be run in sequence, prefix them with numbers:

0-download.R

1-parse.R

2-explore.R

5.1.2 Object names

“There are only two hard things in Computer Science: cache invali-
dation and naming things.”
— Phil Karlton

Variable and function names should be lowercase. Use an underscore (_)
to separate words within a name. Generally, variable names should be
nouns and function names should be verbs. Strive for names that are
concise and meaningful (this is not easy!).

# Good

day_one

day_1

# Bad

first_day_of_the_month

DayOne

dayone

djm1

Where possible, avoid using names of existing functions and variables.
This will cause confusion for the readers of your code.

# Bad

T <- FALSE

c <- 10

mean <- function(x) sum(x)
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5.2 Syntax

5.2.1 Spacing

Place spaces around all infix operators (=, +, -, <-, etc.). The same
rule applies when using = in function calls. Always put a space after a
comma, and never before (just like in regular English).

# Good

average <- mean(feet / 12 + inches, na.rm = TRUE)

# Bad

average<-mean(feet/12+inches,na.rm=TRUE)

There’s a small exception to this rule: :, :: and ::: don’t need spaces
around them.

# Good

x <- 1:10

base::get

# Bad

x <- 1 : 10

base :: get

Place a space before left parentheses, except in a function call.

# Good

if (debug) do(x)

plot(x, y)

# Bad

if(debug)do(x)

plot (x, y)

Extra spacing (i.e., more than one space in a row) is ok if it improves
alignment of equal signs or assignments (<-).
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list(

total = a + b + c,

mean = (a + b + c) / n

)

Do not place spaces around code in parentheses or square brackets (un-
less there’s a comma, in which case see above).

# Good

if (debug) do(x)

diamonds[5, ]

# Bad

if ( debug ) do(x) # No spaces around debug

x[1,] # Needs a space after the comma

x[1 ,] # Space goes after comma not before

5.2.2 Curly braces

An opening curly brace should never go on its own line and should always
be followed by a new line. A closing curly brace should always go on its
own line, unless it’s followed by else.

Always indent the code inside curly braces.

# Good

if (y < 0 && debug) {

message("Y is negative")

}

if (y == 0) {

log(x)

} else {

y ^ x

}

# Bad

if (y < 0 && debug)

message("Y is negative")
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if (y == 0) {

log(x)

}

else {

y ^ x

}

It’s ok to leave very short statements on the same line:

if (y < 0 && debug) message("Y is negative")

5.2.3 Line length

Strive to limit your code to 80 characters per line. This fits comfortably
on a printed page with a reasonably sized font. If you find yourself run-
ning out of room, this is a good indication that you should encapsulate
some of the work in a separate function.

5.2.4 Indentation

When indenting your code, use two spaces. Never use tabs or mix tabs
and spaces.

The only exception is if a function definition runs over multiple lines. In
that case, indent the second line to where the definition starts:

long_function_name <- function(a = "a long argument",

b = "another argument",

c = "another long argument") {

# As usual code is indented by two spaces.

}

5.2.5 Assignment

Use <-, not =, for assignment.

# Good

x <- 5

# Bad

x = 5
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5.3 Organisation

5.3.1 Commenting guidelines

Comment your code. Each line of a comment should begin with the
comment symbol and a single space: #. Comments should explain the
why, not the what.

Use commented lines of - and = to break up your file into easily readable
chunks.

# Load data ---------------------------

# Plot data ---------------------------



6
Functions

Functions are a fundamental building block of R: to master many of the
more advanced techniques in this book, you need a solid foundation in
how functions work. You’ve probably already created many R functions,
and you’re familiar with the basics of how they work. The focus of this
chapter is to turn your existing, informal knowledge of functions into a
rigorous understanding of what functions are and how they work. You’ll
see some interesting tricks and techniques in this chapter, but most of
what you’ll learn will be more important as the building blocks for more
advanced techniques.

The most important thing to understand about R is that functions are
objects in their own right. You can work with them exactly the same
way you work with any other type of object. This theme will be explored
in depth in Chapter 10.

Quiz

Answer the following questions to see if you can safely skip this chapter.
You can find the answers at the end of the chapter in Section 6.7.

1. What are the three components of a function?
2. What does the following code return?

x <- 10

f1 <- function(x) {

function() {

x + 10

}

}

f1(1)()

3. How would you more typically write this code?

`+`(1, `*`(2, 3))
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4. How could you make this call easier to read?

mean(, TRUE, x = c(1:10, NA))

5. Does the following function throw an error when called?
Why/why not?

f2 <- function(a, b) {

a * 10

}

f2(10, stop("This is an error!"))

6. What is an infix function? How do you write it? What’s a
replacement function? How do you write it?

7. What function do you use to ensure that a cleanup action
occurs regardless of how a function terminates?

Outline

• Section 6.1 describes the three main components of a function.

• Section 6.2 teaches you how R finds values from names, the process of
lexical scoping.

• Section 6.3 shows you that everything that happens in R is a result of
a function call, even if it doesn’t look like it.

• Section 6.4 discusses the three ways of supplying arguments to a func-
tion, how to call a function given a list of arguments, and the impact
of lazy evaluation.

• Section 6.5 describes two special types of function: infix and replace-
ment functions.

• Section 6.6 discusses how and when functions return values, and how
you can ensure that a function does something before it exits.

Prerequisites

The only package you’ll need is pryr, which is used to explore
what happens when modifying vectors in place. Install it with
install.packages("pryr").
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6.1 Function components

All R functions have three parts:

• the body(), the code inside the function.

• the formals(), the list of arguments which controls how you can call
the function.

• the environment(), the “map” of the location of the function’s vari-
ables.

When you print a function in R, it shows you these three important com-
ponents. If the environment isn’t displayed, it means that the function
was created in the global environment.

f <- function(x) x^2

f

#> function(x) x^2

formals(f)

#> $x

body(f)

#> x^2

environment(f)

#> <environment: R_GlobalEnv>

The assignment forms of body(), formals(), and environment() can also
be used to modify functions.
Like all objects in R, functions can also possess any number of additional
attributes(). One attribute used by base R is “srcref”, short for source
reference, which points to the source code used to create the function.
Unlike body(), this contains code comments and other formatting. You
can also add attributes to a function. For example, you can set the
class() and add a custom print() method.

6.1.1 Primitive functions

There is one exception to the rule that functions have three components.
Primitive functions, like sum(), call C code directly with .Primitive()
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and contain no R code. Therefore their formals(), body(), and
environment() are all NULL:

sum

#> function (..., na.rm = FALSE) .Primitive("sum")

formals(sum)

#> NULL

body(sum)

#> NULL

environment(sum)

#> NULL

Primitive functions are only found in the base package, and since they
operate at a low level, they can be more efficient (primitive replacement
functions don’t have to make copies), and can have different rules for
argument matching (e.g., switch and call). This, however, comes at a
cost of behaving differently from all other functions in R. Hence the R
core team generally avoids creating them unless there is no other option.

6.1.2 Exercises

1. What function allows you to tell if an object is a function?
What function allows you to tell if a function is a primitive
function?

2. This code makes a list of all functions in the base package.

objs <- mget(ls("package:base"), inherits = TRUE)

funs <- Filter(is.function, objs)

Use it to answer the following questions:

a. Which base function has the most arguments?
b. How many base functions have no arguments? What’s

special about those functions?
c. How could you adapt the code to find all primitive func-

tions?
3. What are the three important components of a function?
4. When does printing a function not show what environment it

was created in?
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6.2 Lexical scoping

Scoping is the set of rules that govern how R looks up the value of a
symbol. In the example below, scoping is the set of rules that R applies
to go from the symbol x to its value 10:

x <- 10

x

#> [1] 10

Understanding scoping allows you to:

• build tools by composing functions, as described in Chapter 10.

• overrule the usual evaluation rules and do non-standard evaluation, as
described in Chapter 13.

R has two types of scoping: lexical scoping, implemented automati-
cally at the language level, and dynamic scoping, used in select func-
tions to save typing during interactive analysis. We discuss lexical scop-
ing here because it is intimately tied to function creation. Dynamic
scoping is described in more detail in Section 13.3.

Lexical scoping looks up symbol values based on how functions were
nested when they were created, not how they are nested when they are
called. With lexical scoping, you don’t need to know how the function
is called to figure out where the value of a variable will be looked up.
You just need to look at the function’s definition.

The “lexical” in lexical scoping doesn’t correspond to the usual English
definition (“of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction”) but comes from the
computer science term “lexing”, which is part of the process that con-
verts code represented as text to meaningful pieces that the program-
ming language understands.

There are four basic principles behind R’s implementation of lexical
scoping:

• name masking
• functions vs. variables
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• a fresh start
• dynamic lookup

You probably know many of these principles already, although you might
not have thought about them explicitly. Test your knowledge by men-
tally running through the code in each block before looking at the an-
swers.

6.2.1 Name masking

The following example illustrates the most basic principle of lexical scop-
ing, and you should have no problem predicting the output.

f <- function() {

x <- 1

y <- 2

c(x, y)

}

f()

rm(f)

If a name isn’t defined inside a function, R will look one level up.

x <- 2

g <- function() {

y <- 1

c(x, y)

}

g()

rm(x, g)

The same rules apply if a function is defined inside another function:
look inside the current function, then where that function was defined,
and so on, all the way up to the global environment, and then on to other
loaded packages. Run the following code in your head, then confirm the
output by running the R code.

x <- 1

h <- function() {

y <- 2
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i <- function() {

z <- 3

c(x, y, z)

}

i()

}

h()

rm(x, h)

The same rules apply to closures, functions created by other functions.
Closures will be described in more detail in Chapter 10; here we’ll just
look at how they interact with scoping. The following function, j(),
returns a function. What do you think this function will return when
we call it?

j <- function(x) {

y <- 2

function() {

c(x, y)

}

}

k <- j(1)

k()

rm(j, k)

This seems a little magical (how does R know what the value of y is
after the function has been called). It works because k preserves the en-
vironment in which it was defined and because the environment includes
the value of y. Chapter 8 gives some pointers on how you can dive in
and figure out what values are stored in the environment associated with
each function.

6.2.2 Functions vs. variables

The same principles apply regardless of the type of associated value —
finding functions works exactly the same way as finding variables:

l <- function(x) x + 1

m <- function() {

l <- function(x) x * 2

l(10)
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}

m()

#> [1] 20

rm(l, m)

For functions, there is one small tweak to the rule. If you are using
a name in a context where it’s obvious that you want a function (e.g.,
f(3)), R will ignore objects that are not functions while it is searching. In
the following example n takes on a different value depending on whether
R is looking for a function or a variable.

n <- function(x) x / 2

o <- function() {

n <- 10

n(n)

}

o()

#> [1] 5

rm(n, o)

However, using the same name for functions and other objects will make
for confusing code, and is generally best avoided.

6.2.3 A fresh start

What happens to the values in between invocations of a function? What
will happen the first time you run this function? What will happen the
second time? (If you haven’t seen exists() before: it returns TRUE if
there’s a variable of that name, otherwise it returns FALSE.)

j <- function() {

if (!exists("a")) {

a <- 1

} else {

a <- a + 1

}

print(a)

}

j()

rm(j)
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You might be surprised that it returns the same value, 1, every time.
This is because every time a function is called, a new environment is
created to host execution. A function has no way to tell what happened
the last time it was run; each invocation is completely independent.
(We’ll see some ways to get around this in Section 10.3.2.)

6.2.4 Dynamic lookup

Lexical scoping determines where to look for values, not when to look for
them. R looks for values when the function is run, not when it’s created.
This means that the output of a function can be different depending on
objects outside its environment:

f <- function() x

x <- 15

f()

#> [1] 15

x <- 20

f()

#> [1] 20

You generally want to avoid this behaviour because it means the function
is no longer self-contained. This is a common error — if you make a
spelling mistake in your code, you won’t get an error when you create
the function, and you might not even get one when you run the function,
depending on what variables are defined in the global environment.
One way to detect this problem is the findGlobals() function from
codetools. This function lists all the external dependencies of a function:

f <- function() x + 1

codetools::findGlobals(f)

#> [1] "+" "x"

Another way to try and solve the problem would be to manually change
the environment of the function to the emptyenv(), an environment which
contains absolutely nothing:

environment(f) <- emptyenv()

f()

#> Error in f(): could not find function "+"
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This doesn’t work because R relies on lexical scoping to find everything,
even the + operator. It’s never possible to make a function completely
self-contained because you must always rely on functions defined in base
R or other packages.

You can use this same idea to do other things that are extremely ill-
advised. For example, since all of the standard operators in R are func-
tions, you can override them with your own alternatives. If you ever are
feeling particularly evil, run the following code while your friend is away
from their computer:

`(` <- function(e1) {

if (is.numeric(e1) && runif(1) < 0.1) {

e1 + 1

} else {

e1

}

}

replicate(50, (1 + 2))

#> [1] 4 3 3 3 4 3 3 3 3 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 4 3 3

#> [30] 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3

rm("(")

This will introduce a particularly pernicious bug: 10% of the time, 1 will
be added to any numeric calculation inside parentheses. This is another
good reason to regularly restart with a clean R session!

6.2.5 Exercises

1. What does the following code return? Why? What does each
of the three c’s mean?

c <- 10

c(c = c)

2. What are the four principles that govern how R looks for val-
ues?

3. What does the following function return? Make a prediction
before running the code yourself.

f <- function(x) {

f <- function(x) {

f <- function(x) {
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x ^ 2

}

f(x) + 1

}

f(x) * 2

}

f(10)

6.3 Every operation is a function call

“To understand computations in R, two slogans are helpful:

• Everything that exists is an object.
• Everything that happens is a function call.”

— John Chambers

The previous example of redefining ( works because every operation in
R is a function call, whether or not it looks like one. This includes infix
operators like +, control flow operators like for, if, and while, subsetting
operators like [] and $, and even the curly brace {. This means that
each pair of statements in the following example is exactly equivalent.
Note that `, the backtick, lets you refer to functions or variables that
have otherwise reserved or illegal names:

x <- 10; y <- 5

x + y

#> [1] 15

`+`(x, y)

#> [1] 15

for (i in 1:2) print(i)

#> [1] 1

#> [1] 2

`for`(i, 1:2, print(i))

#> [1] 1

#> [1] 2

if (i == 1) print("yes!") else print("no.")
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#> [1] "no."

`if`(i == 1, print("yes!"), print("no."))

#> [1] "no."

x[3]

#> [1] NA

`[`(x, 3)

#> [1] NA

{ print(1); print(2); print(3) }

#> [1] 1

#> [1] 2

#> [1] 3

`{`(print(1), print(2), print(3))

#> [1] 1

#> [1] 2

#> [1] 3

It is possible to override the definitions of these special functions, but
this is almost certainly a bad idea. However, there are occasions when it
might be useful: it allows you to do something that would have otherwise
been impossible. For example, this feature makes it possible for the dplyr
package to translate R expressions into SQL expressions. Chapter 15
uses this idea to create domain specific languages that allow you to
concisely express new concepts using existing R constructs.

It’s more often useful to treat special functions as ordinary functions.
For example, we could use sapply() to add 3 to every element of a list
by first defining a function add(), like this:

add <- function(x, y) x + y

sapply(1:10, add, 3)

#> [1] 4 5 6 7 8 9 10 11 12 13

But we can also get the same effect using the built-in + function.

sapply(1:5, `+`, 3)

#> [1] 4 5 6 7 8

sapply(1:5, "+", 3)

#> [1] 4 5 6 7 8

Note the difference between `+` and "+". The first one is the value of the
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object called +, and the second is a string containing the character +. The
second version works because sapply can be given the name of a function
instead of the function itself: if you read the source of sapply(), you’ll
see the first line uses match.fun() to find functions given their names.

A more useful application is to combine lapply() or sapply() with sub-
setting:

x <- list(1:3, 4:9, 10:12)

sapply(x, "[", 2)

#> [1] 2 5 11

# equivalent to

sapply(x, function(x) x[2])

#> [1] 2 5 11

Remembering that everything that happens in R is a function call will
help you in Chapter 14.

6.4 Function arguments

It’s useful to distinguish between the formal arguments and the actual
arguments of a function. The formal arguments are a property of the
function, whereas the actual or calling arguments can vary each time
you call the function. This section discusses how calling arguments are
mapped to formal arguments, how you can call a function given a list of
arguments, how default arguments work, and the impact of lazy evalu-
ation.

6.4.1 Calling functions

When calling a function you can specify arguments by position, by com-
plete name, or by partial name. Arguments are matched first by exact
name (perfect matching), then by prefix matching, and finally by posi-
tion.

f <- function(abcdef, bcde1, bcde2) {

list(a = abcdef, b1 = bcde1, b2 = bcde2)
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}

str(f(1, 2, 3))

#> List of 3

#> $ a : num 1

#> $ b1: num 2

#> $ b2: num 3

str(f(2, 3, abcdef = 1))

#> List of 3

#> $ a : num 1

#> $ b1: num 2

#> $ b2: num 3

# Can abbreviate long argument names:

str(f(2, 3, a = 1))

#> List of 3

#> $ a : num 1

#> $ b1: num 2

#> $ b2: num 3

# But this doesn't work because abbreviation is ambiguous

str(f(1, 3, b = 1))

#> Error in f(1, 3, b = 1): argument 3 matches multiple formal arguments

Generally, you only want to use positional matching for the first one
or two arguments; they will be the most commonly used, and most
readers will know what they are. Avoid using positional matching for
less commonly used arguments, and only use readable abbreviations with
partial matching. (If you are writing code for a package that you want
to publish on CRAN you can not use partial matching, and must use
complete names.) Named arguments should always come after unnamed
arguments. If a function uses ... (discussed in more detail below), you
can only specify arguments listed after ... with their full name.

These are good calls:

mean(1:10)

mean(1:10, trim = 0.05)

This is probably overkill:

mean(x = 1:10)

And these are just confusing:
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mean(1:10, n = T)

mean(1:10, , FALSE)

mean(1:10, 0.05)

mean(, TRUE, x = c(1:10, NA))

6.4.2 Calling a function given a list of arguments

Suppose you had a list of function arguments:

args <- list(1:10, na.rm = TRUE)

How could you then send that list to mean()? You need do.call():

do.call(mean, list(1:10, na.rm = TRUE))

#> [1] 5.5

# Equivalent to

mean(1:10, na.rm = TRUE)

#> [1] 5.5

6.4.3 Default and missing arguments

Function arguments in R can have default values.

f <- function(a = 1, b = 2) {

c(a, b)

}

f()

#> [1] 1 2

Since arguments in R are evaluated lazily (more on that below), the
default value can be defined in terms of other arguments:

g <- function(a = 1, b = a * 2) {

c(a, b)

}

g()

#> [1] 1 2

g(10)

#> [1] 10 20
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Default arguments can even be defined in terms of variables created
within the function. This is used frequently in base R functions, but I
think it is bad practice, because you can’t understand what the default
values will be without reading the complete source code.

h <- function(a = 1, b = d) {

d <- (a + 1) ^ 2

c(a, b)

}

h()

#> [1] 1 4

h(10)

#> [1] 10 121

You can determine if an argument was supplied or not with the missing()
function.

i <- function(a, b) {

c(missing(a), missing(b))

}

i()

#> [1] TRUE TRUE

i(a = 1)

#> [1] FALSE TRUE

i(b = 2)

#> [1] TRUE FALSE

i(1, 2)

#> [1] FALSE FALSE

Sometimes you want to add a non-trivial default value, which might take
several lines of code to compute. Instead of inserting that code in the
function definition, you could use missing() to conditionally compute it
if needed. However, this makes it hard to know which arguments are
required and which are optional without carefully reading the documen-
tation. Instead, I usually set the default value to NULL and use is.null()

to check if the argument was supplied.

6.4.4 Lazy evaluation

By default, R function arguments are lazy — they’re only evaluated if
they’re actually used:
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f <- function(x) {

10

}

f(stop("This is an error!"))

#> [1] 10

If you want to ensure that an argument is evaluated you can use force():

f <- function(x) {

force(x)

10

}

f(stop("This is an error!"))

#> Error in force(x): This is an error!

This is important when creating closures with lapply() or a loop:

add <- function(x) {

function(y) x + y

}

adders <- lapply(1:10, add)

adders[[1]](10)

#> [1] 20

adders[[10]](10)

#> [1] 20

x is lazily evaluated the first time that you call one of the adder func-
tions. At this point, the loop is complete and the final value of x is
10. Therefore all of the adder functions will add 10 on to their input,
probably not what you wanted! Manually forcing evaluation fixes the
problem:

add <- function(x) {

force(x)

function(y) x + y

}

adders2 <- lapply(1:10, add)

adders2[[1]](10)

#> [1] 11

adders2[[10]](10)

#> [1] 20



86 Advanced R

This code is exactly equivalent to

add <- function(x) {

x

function(y) x + y

}

because the force function is defined as force <- function(x) x. How-
ever, using this function clearly indicates that you’re forcing evaluation,
not that you’ve accidentally typed x.

Default arguments are evaluated inside the function. This means that if
the expression depends on the current environment the results will differ
depending on whether you use the default value or explicitly provide
one.

f <- function(x = ls()) {

a <- 1

x

}

# ls() evaluated inside f:

f()

#> [1] "a" "x"

# ls() evaluated in global environment:

f(ls())

#> [1] "add" "adders" "adders2" "args" "f"

#> [6] "funs" "g" "h" "i" "objs"

#> [11] "x" "y"

More technically, an unevaluated argument is called a promise, or (less
commonly) a thunk. A promise is made up of two parts:

• The expression which gives rise to the delayed computation. (It can
be accessed with substitute(). See Chapter 13 for more details.)

• The environment where the expression was created and where it should
be evaluated.

The first time a promise is accessed the expression is evaluated in the en-
vironment where it was created. This value is cached, so that subsequent
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access to the evaluated promise does not recompute the value (but the
original expression is still associated with the value, so substitute() can
continue to access it). You can find more information about a promise
using pryr::promise_info(). This uses some C++ code to extract infor-
mation about the promise without evaluating it, which is impossible to
do in pure R code.

Laziness is useful in if statements — the second statement below will
be evaluated only if the first is true. If it wasn’t, the statement would
return an error because NULL > 0 is a logical vector of length 0 and not
a valid input to if.

x <- NULL

if (!is.null(x) && x > 0) {

}

We could implement “&&” ourselves:

`&&` <- function(x, y) {

if (!x) return(FALSE)

if (!y) return(FALSE)

TRUE

}

a <- NULL

!is.null(a) && a > 0

#> [1] FALSE

This function would not work without lazy evaluation because both x

and y would always be evaluated, testing a > 0 even when a was NULL.

Sometimes you can also use laziness to eliminate an if statement alto-
gether. For example, instead of:

if (is.null(a)) stop("a is null")

#> Error in eval(expr, envir, enclos): a is null

You could write:

!is.null(a) || stop("a is null")

#> Error in eval(expr, envir, enclos): a is null
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6.4.5 ...

There is a special argument called ... . This argument will match any
arguments not otherwise matched, and can be easily passed on to other
functions. This is useful if you want to collect arguments to call another
function, but you don’t want to prespecify their possible names. ... is
often used in conjunction with S3 generic functions to allow individual
methods to be more flexible.
One relatively sophisticated user of ... is the base plot() function.
plot() is a generic method with arguments x, y and ... . To understand
what ... does for a given function we need to read the help: “Arguments
to be passed to methods, such as graphical parameters”. Most simple
invocations of plot() end up calling plot.default() which has many
more arguments, but also has ... . Again, reading the documentation
reveals that ... accepts “other graphical parameters”, which are listed
in the help for par(). This allows us to write code like:

plot(1:5, col = "red")

plot(1:5, cex = 5, pch = 20)

This illustrates both the advantages and disadvantages of ...: it makes
plot() very flexible, but to understand how to use it, we have to carefully
read the documentation. Additionally, if we read the source code for
plot.default, we can discover undocumented features. It’s possible to
pass along other arguments to Axis() and box():

plot(1:5, bty = "u")

plot(1:5, labels = FALSE)

To capture ... in a form that is easier to work with, you can use
list(...). (See Section 13.5.2 for other ways to capture ... without
evaluating the arguments.)

f <- function(...) {

names(list(...))

}

f(a = 1, b = 2)

#> [1] "a" "b"

Using ... comes at a price — any misspelled arguments will not raise
an error, and any arguments after ... must be fully named. This makes
it easy for typos to go unnoticed:
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sum(1, 2, NA, na.mr = TRUE)

#> [1] NA

It’s often better to be explicit rather than implicit, so you might instead
ask users to supply a list of additional arguments. That’s certainly easier
if you’re trying to use ... with multiple additional functions.

6.4.6 Exercises

1. Clarify the following list of odd function calls:

x <- sample(replace = TRUE, 20, x = c(1:10, NA))

y <- runif(min = 0, max = 1, 20)

cor(m = "k", y = y, u = "p", x = x)

2. What does this function return? Why? Which principle does
it illustrate?

f1 <- function(x = {y <- 1; 2}, y = 0) {

x + y

}

f1()

3. What does this function return? Why? Which principle does
it illustrate?

f2 <- function(x = z) {

z <- 100

x

}

f2()

6.5 Special calls

R supports two additional syntaxes for calling special types of functions:
infix and replacement functions.
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6.5.1 Infix functions

Most functions in R are “prefix” operators: the name of the function
comes before the arguments. You can also create infix functions where
the function name comes in between its arguments, like + or -. All user-
created infix functions must start and end with %. R comes with the fol-
lowing infix functions predefined: %%, %*%, %/%, %in%, %o%, %x%. (The com-
plete list of built-in infix operators that don’t need % is: ::, :::, $, @,

ˆ, *, /, +, -, >, >=, <, <=, ==, !=, !, &, &&, |, ||, ~, <-, <<-)

For example, we could create a new operator that pastes together strings:

`%+%` <- function(a, b) paste0(a, b)

"new" %+% " string"

#> [1] "new string"

Note that when creating the function, you have to put the name in
backticks because it’s a special name. This is just a syntactic sugar for
an ordinary function call; as far as R is concerned there is no difference
between these two expressions:

"new" %+% " string"

#> [1] "new string"

`%+%`("new", " string")

#> [1] "new string"

Or indeed between

1 + 5

#> [1] 6

`+`(1, 5)

#> [1] 6

The names of infix functions are more flexible than regular R functions:
they can contain any sequence of characters (except “%”, of course). You
will need to escape any special characters in the string used to define
the function, but not when you call it:

`% %` <- function(a, b) paste(a, b)

`%'%` <- function(a, b) paste(a, b)

`%/\\%` <- function(a, b) paste(a, b)
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"a" % % "b"

#> [1] "a b"

"a" %'% "b"

#> [1] "a b"

"a" %/\% "b"

#> [1] "a b"

R’s default precedence rules mean that infix operators are composed
from left to right:

`%-%` <- function(a, b) paste0("(", a, " %-% ", b, ")")

"a" %-% "b" %-% "c"

#> [1] "((a %-% b) %-% c)"

There’s one infix function that I use very often. It’s inspired by Ruby’s
|| logical or operator, although it works a little differently in R because
Ruby has a more flexible definition of what evaluates to TRUE in an if
statement. It’s useful as a way of providing a default value in case the
output of another function is NULL:

`%||%` <- function(a, b) if (!is.null(a)) a else b

function_that_might_return_null() %||% default value

6.5.2 Replacement functions

Replacement functions act like they modify their arguments in place, and
have the special name xxx<-. They typically have two arguments (x and
value), although they can have more, and they must return the modified
object. For example, the following function allows you to modify the
second element of a vector:

`second<-` <- function(x, value) {

x[2] <- value

x

}

x <- 1:10

second(x) <- 5L

x

#> [1] 1 5 3 4 5 6 7 8 9 10
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When R evaluates the assignment second(x) <- 5, it notices that the
left hand side of the <- is not a simple name, so it looks for a function
named second<- to do the replacement.

I say they “act” like they modify their arguments in place, because
they actually create a modified copy. We can see that by using
pryr::address() to find the memory address of the underlying object.

library(pryr)

x <- 1:10

address(x)

#> [1] "0x7fe05f9df0e8"

second(x) <- 6L

address(x)

#> [1] "0x7fe05e8a66e8"

Built-in functions that are implemented using .Primitive() will modify
in place:

x <- 1:10

address(x)

#> [1] "0x103945110"

x[2] <- 7L

address(x)

#> [1] "0x103945110"

It’s important to be aware of this behaviour since it has important per-
formance implications.

If you want to supply additional arguments, they go in between x and
value:

`modify<-` <- function(x, position, value) {

x[position] <- value

x

}

modify(x, 1) <- 10

x

#> [1] 10 6 3 4 5 6 7 8 9 10

When you call modify(x, 1) <- 10, behind the scenes R turns it into:
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x <- `modify<-`(x, 1, 10)

This means you can’t do things like:

modify(get("x"), 1) <- 10

because that gets turned into the invalid code:

get("x") <- `modify<-`(get("x"), 1, 10)

It’s often useful to combine replacement and subsetting:

x <- c(a = 1, b = 2, c = 3)

names(x)

#> [1] "a" "b" "c"

names(x)[2] <- "two"

names(x)

#> [1] "a" "two" "c"

This works because the expression names(x)[2] <- "two" is evaluated as
if you had written:

`*tmp*` <- names(x)

`*tmp*`[2] <- "two"

names(x) <- `*tmp*`

(Yes, it really does create a local variable named *tmp*, which is removed
afterwards.)

6.5.3 Exercises

1. Create a list of all the replacement functions found in the base
package. Which ones are primitive functions?

2. What are valid names for user-created infix functions?
3. Create an infix xor() operator.
4. Create infix versions of the set functions intersect(), union(),

and setdiff().
5. Create a replacement function that modifies a random location

in a vector.
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6.6 Return values

The last expression evaluated in a function becomes the return value,
the result of invoking the function.

f <- function(x) {

if (x < 10) {

0

} else {

10

}

}

f(5)

#> [1] 0

f(15)

#> [1] 10

Generally, I think it’s good style to reserve the use of an explicit return()
for when you are returning early, such as for an error, or a simple case
of the function. This style of programming can also reduce the level of
indentation, and generally make functions easier to understand because
you can reason about them locally.

f <- function(x, y) {

if (!x) return(y)

# complicated processing here

}

Functions can return only a single object. But this is not a limitation
because you can return a list containing any number of objects.

The functions that are the easiest to understand and reason about are
pure functions: functions that always map the same input to the same
output and have no other impact on the workspace. In other words,
pure functions have no side effects: they don’t affect the state of the
world in any way apart from the value they return.

R protects you from one type of side effect: most R objects have copy-on-
modify semantics. So modifying a function argument does not change
the original value:
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f <- function(x) {

x$a <- 2

x

}

x <- list(a = 1)

f(x)

#> $a

#> [1] 2

x$a

#> [1] 1

(There are two important exceptions to the copy-on-modify rule: envi-
ronments and reference classes. These can be modified in place, so extra
care is needed when working with them.)

This is notably different to languages like Java where you can modify
the inputs of a function. This copy-on-modify behaviour has important
performance consequences which are discussed in depth in Chapter 17.
(Note that the performance consequences are a result of R’s implementa-
tion of copy-on-modify semantics; they are not true in general. Clojure
is a new language that makes extensive use of copy-on-modify semantics
with limited performance consequences.)

Most base R functions are pure, with a few notable exceptions:

• library() which loads a package, and hence modifies the search path.

• setwd(), Sys.setenv(), Sys.setlocale() which change the working di-
rectory, environment variables, and the locale, respectively.

• plot() and friends which produce graphical output.

• write(), write.csv(), saveRDS(), etc. which save output to disk.

• options() and par() which modify global settings.

• S4 related functions which modify global tables of classes and methods.

• Random number generators which produce different numbers each time
you run them.

It’s generally a good idea to minimise the use of side effects, and where
possible, to minimise the footprint of side effects by separating pure from
impure functions. Pure functions are easier to test (because all you need
to worry about are the input values and the output), and are less likely
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to work differently on different versions of R or on different platforms.
For example, this is one of the motivating principles of ggplot2: most
operations work on an object that represents a plot, and only the final
print or plot call has the side effect of actually drawing the plot.

Functions can return invisible values, which are not printed out by
default when you call the function.

f1 <- function() 1

f2 <- function() invisible(1)

f1()

#> [1] 1

f2()

f1() == 1

#> [1] TRUE

f2() == 1

#> [1] TRUE

You can force an invisible value to be displayed by wrapping it in paren-
theses:

(f2())

#> [1] 1

The most common function that returns invisibly is <-:

a <- 2

(a <- 2)

#> [1] 2

This is what makes it possible to assign one value to multiple variables:

a <- b <- c <- d <- 2

because this is parsed as:

(a <- (b <- (c <- (d <- 2))))

#> [1] 2
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6.6.1 On exit

As well as returning a value, functions can set up other triggers to occur
when the function is finished using on.exit(). This is often used as a
way to guarantee that changes to the global state are restored when
the function exits. The code in on.exit() is run regardless of how the
function exits, whether with an explicit (early) return, an error, or simply
reaching the end of the function body.

in_dir <- function(dir, code) {

old <- setwd(dir)

on.exit(setwd(old))

force(code)

}

getwd()

#> [1] "/Users/hadley/Documents/adv-r/adv-r"

in_dir("~", getwd())

#> [1] "/Users/hadley"

The basic pattern is simple:

• We first set the directory to a new location, capturing the current
location from the output of setwd().

• We then use on.exit() to ensure that the working directory is returned
to the previous value regardless of how the function exits.

• Finally, we explicitly force evaluation of the code. (We don’t actually
need force() here, but it makes it clear to readers what we’re doing.)

Caution: If you’re using multiple on.exit() calls within a function,
make sure to set add = TRUE. Unfortunately, the default in on.exit() is
add = FALSE, so that every time you run it, it overwrites existing exit
expressions. Because of the way on.exit() is implemented, it’s not pos-
sible to create a variant with add = TRUE, so you must be careful when
using it.

6.6.2 Exercises

1. How does the chdir parameter of source() compare to
in_dir()? Why might you prefer one approach to the other?
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2. What function undoes the action of library()? How do you
save and restore the values of options() and par()?

3. Write a function that opens a graphics device, runs the sup-
plied code, and closes the graphics device (always, regardless
of whether or not the plotting code worked).

4. We can use on.exit() to implement a simple version of
capture.output().

capture.output2 <- function(code) {

temp <- tempfile()

on.exit(file.remove(temp), add = TRUE)

sink(temp)

on.exit(sink(), add = TRUE)

force(code)

readLines(temp)

}

capture.output2(cat("a", "b", "c", sep = "\n"))

#> [1] "a" "b" "c"

Compare capture.output() to capture.output2(). How do the
functions differ? What features have I removed to make the
key ideas easier to see? How have I rewritten the key ideas to
be easier to understand?

6.7 Quiz answers

1. The three components of a function are its body, arguments,
and environment.

2. f1(1)() returns 11.
3. You’d normally write it in infix style: 1 + (2 * 3).
4. Rewriting the call to mean(c(1:10, NA), na.rm = TRUE) is eas-

ier to understand.
5. No, it does not throw an error because the second argument

is never used so it’s never evaluated.
6. See Section 6.5.1 and Section 6.5.2.
7. You use on.exit(); see Section 6.6.1 for details.
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OO field guide

This chapter is a field guide for recognising and working with R’s objects
in the wild. R has three object oriented systems (plus the base types),
so it can be a bit intimidating. The goal of this guide is not to make
you an expert in all four systems, but to help you identify which system
you’re working with and to help you use it effectively.

Central to any object-oriented system are the concepts of class and
method. A class defines the behaviour of objects by describing their
attributes and their relationship to other classes. The class is also used
when selecting methods, functions that behave differently depending
on the class of their input. Classes are usually organised in a hierarchy:
if a method does not exist for a child, then the parent’s method is used
instead; the child inherits behaviour from the parent.

R’s three OO systems differ in how classes and methods are defined:

• S3 implements a style of OO programming called generic-function
OO. This is different from most programming languages, like Java,
C++, and C#, which implement message-passing OO. With message-
passing, messages (methods) are sent to objects and the object de-
termines which function to call. Typically, this object has a special
appearance in the method call, usually appearing before the name of
the method/message: e.g., canvas.drawRect("blue"). S3 is different.
While computations are still carried out via methods, a special type
of function called a generic function decides which method to call,
e.g., drawRect(canvas, "blue"). S3 is a very casual system. It has no
formal definition of classes.

• S4 works similarly to S3, but is more formal. There are two major
differences to S3. S4 has formal class definitions, which describe the
representation and inheritance for each class, and has special helper
functions for defining generics and methods. S4 also has multiple dis-
patch, which means that generic functions can pick methods based on
the class of any number of arguments, not just one.

99
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• Reference classes, called RC for short, are quite different from S3
and S4. RC implements message-passing OO, so methods belong to
classes, not functions. $ is used to separate objects and methods, so
method calls look like canvas$drawRect("blue"). RC objects are also
mutable: they don’t use R’s usual copy-on-modify semantics, but are
modified in place. This makes them harder to reason about, but allows
them to solve problems that are difficult to solve with S3 or S4.

There’s also one other system that’s not quite OO, but it’s important to
mention here:

• base types, the internal C-level types that underlie the other OO
systems. Base types are mostly manipulated using C code, but they’re
important to know about because they provide the building blocks for
the other OO systems.

The following sections describe each system in turn, starting with base
types. You’ll learn how to recognise the OO system that an object
belongs to, how method dispatch works, and how to create new objects,
classes, generics, and methods for that system. The chapter concludes
with a few remarks on when to use each system.

Prerequisites

You’ll need the pryr package, install.packages("pryr"), to access useful
functions for examining OO properties.

Quiz

Think you know this material already? If you can answer the following
questions correctly, you can safely skip this chapter. Find the answers
at the end of the chapter in Section 7.6.

1. How do you tell what OO system (base, S3, S4, or RC) an
object is associated with?

2. How do you determine the base type (like integer or list) of
an object?

3. What is a generic function?
4. What are the main differences between S3 and S4? What are

the main differences between S4 & RC?
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Outline

• Section 7.1 teaches you about R’s base object system. Only R-core
can add new classes to this system, but it’s important to know about
because it underpins the three other systems.

• Section 7.2 shows you the basics of the S3 object system. It’s the
simplest and most commonly used OO system.

• Section 7.3 discusses the more formal and rigorous S4 system.

• Section 7.4 teaches you about R’s newest OO system: reference classes,
or RC for short.

• Section 7.5 advises on which OO system to use if you’re starting a new
project.

7.1 Base types

Underlying every R object is a C structure (or struct) that describes
how that object is stored in memory. The struct includes the contents of
the object, the information needed for memory management, and, most
importantly for this section, a type. This is the base type of an R
object. Base types are not really an object system because only the R
core team can create new types. As a result, new base types are added
very rarely: the most recent change, in 2011, added two exotic types
that you never see in R, but are useful for diagnosing memory problems
(NEWSXP and FREESXP). Prior to that, the last type added was a special
base type for S4 objects (S4SXP) in 2005.

Chapter 2 explains the most common base types (atomic vectors and
lists), but base types also encompass functions, environments, and other
more exotic objects likes names, calls, and promises that you’ll learn
about later in the book. You can determine an object’s base type with
typeof(). Unfortunately the names of base types are not used consis-
tently throughout R, and type and the corresponding “is” function may
use different names:

# The type of a function is "closure"

f <- function() {}

typeof(f)
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#> [1] "closure"

is.function(f)

#> [1] TRUE

# The type of a primitive function is "builtin"

typeof(sum)

#> [1] "builtin"

is.primitive(sum)

#> [1] TRUE

You may have heard of mode() and storage.mode(). I recommend ignor-
ing these functions because they’re just aliases of the names returned by
typeof(), and exist solely for S compatibility. Read their source code if
you want to understand exactly what they do.
Functions that behave differently for different base types are almost al-
ways written in C, where dispatch occurs using switch statements (e.g.,
switch(TYPEOF(x))). Even if you never write C code, it’s important to
understand base types because everything else is built on top of them: S3
objects can be built on top of any base type, S4 objects use a special base
type, and RC objects are a combination of S4 and environments (another
base type). To see if an object is a pure base type, i.e., it doesn’t also
have S3, S4, or RC behaviour, check that is.object(x) returns FALSE.

7.2 S3

S3 is R’s first and simplest OO system. It is the only OO system used in
the base and stats packages, and it’s the most commonly used system in
CRAN packages. S3 is informal and ad hoc, but it has a certain elegance
in its minimalism: you can’t take away any part of it and still have a
useful OO system.

7.2.1 Recognising objects, generic functions, and meth-
ods

Most objects that you encounter are S3 objects. But unfortunately
there’s no simple way to test if an object is an S3 object in base R. The
closest you can come is is.object(x) & !isS4(x), i.e., it’s an object, but
not S4. An easier way is to use pryr::otype():
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library(pryr)

df <- data.frame(x = 1:10, y = letters[1:10])

otype(df) # A data frame is an S3 class

#> [1] "S3"

otype(df$x) # A numeric vector isn't

#> [1] "base"

otype(df$y) # A factor is

#> [1] "S3"

In S3, methods belong to functions, called generic functions, or gener-
ics for short. S3 methods do not belong to objects or classes. This is
different from most other programming languages, but is a legitimate
OO style.

To determine if a function is an S3 generic, you can inspect its source
code for a call to UseMethod(): that’s the function that figures out the
correct method to call, the process of method dispatch. Similar to
otype(), pryr also provides ftype() which describes the object system,
if any, associated with a function:

mean

#> function (x, ...)

#> UseMethod("mean")

#> <bytecode: 0x7f8004dfeb90>

#> <environment: namespace:base>

ftype(mean)

#> [1] "s3" "generic"

Some S3 generics, like [, sum(), and cbind(), don’t call UseMethod() be-
cause they are implemented in C. Instead, they call the C functions
DispatchGroup() or DispatchOrEval(). Functions that do method dis-
patch in C code are called internal generics and are documented in
?"internal generic". ftype() knows about these special cases too.

Given a class, the job of an S3 generic is to call the right S3 method.
You can recognise S3 methods by their names, which look like
generic.class(). For example, the Date method for the mean() generic
is called mean.Date(), and the factor method for print() is called
print.factor().

This is the reason that most modern style guides discourage the use of .
in function names: it makes them look like S3 methods. For example, is
t.test() the test method for t objects? Similarly, the use of . in class
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names can also be confusing: is print.data.frame() the print() method
for data.frames, or the print.data() method for frames? pryr::ftype()

knows about these exceptions, so you can use it to figure out if a function
is an S3 method or generic:

ftype(t.data.frame) # data frame method for t()

#> [1] "s3" "method"

ftype(t.test) # generic function for t tests

#> [1] "s3" "generic"

You can see all the methods that belong to a generic with methods():

methods("mean")

#> [1] mean.Date mean.default mean.difftime mean.POSIXct

#> [5] mean.POSIXlt

methods("t.test")

#> [1] t.test.default* t.test.formula*

#>

#> Non-visible functions are asterisked

(Apart from methods defined in the base package, most S3 methods will
not be visible: use getS3method() to read their source code.)

You can also list all generics that have a method for a given class:

methods(class = "ts")

#> [1] [.ts* [<-.ts* aggregate.ts

#> [4] as.data.frame.ts cbind.ts* cycle.ts*

#> [7] diff.ts* diffinv.ts* kernapply.ts*

#> [10] lines.ts* monthplot.ts* na.omit.ts*

#> [13] Ops.ts* plot.ts print.ts*

#> [16] t.ts* time.ts* window.ts*

#> [19] window<-.ts*

#>

#> Non-visible functions are asterisked

There’s no way to list all S3 classes, as you’ll learn in the following
section.
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7.2.2 Defining classes and creating objects

S3 is a simple and ad hoc system; it has no formal definition of a class.
To make an object an instance of a class, you just take an existing base
object and set the class attribute. You can do that during creation with
structure(), or after the fact with class<-():

# Create and assign class in one step

foo <- structure(list(), class = "foo")

# Create, then set class

foo <- list()

class(foo) <- "foo"

S3 objects are usually built on top of lists, or atomic vectors with at-
tributes. (You can refresh your memory of attributes with Section 2.2.)
You can also turn functions into S3 objects. Other base types are either
rarely seen in R, or have unusual semantics that don’t work well with
attributes.

You can determine the class of any object using class(x), and see if an
object inherits from a specific class using inherits(x, "classname").

class(foo)

#> [1] "foo"

inherits(foo, "foo")

#> [1] TRUE

The class of an S3 object can be a vector, which describes behaviour
from most to least specific. For example, the class of the glm() object
is c("glm", "lm") indicating that generalised linear models inherit be-
haviour from linear models. Class names are usually lower case, and you
should avoid .. Otherwise, opinion is mixed whether to use underscores
(my_class) or CamelCase (MyClass) for multi-word class names.

Most S3 classes provide a constructor function:

foo <- function(x) {

if (!is.numeric(x)) stop("X must be numeric")

structure(list(x), class = "foo")

}
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You should use it if it’s available (like for factor() and data.frame()).
This ensures that you’re creating the class with the correct components.
Constructor functions usually have the same name as the class.
Apart from developer supplied constructor functions, S3 has no checks
for correctness. This means you can change the class of existing objects:

# Create a linear model

mod <- lm(log(mpg) ~ log(disp), data = mtcars)

class(mod)

#> [1] "lm"

print(mod)

#>

#> Call:

#> lm(formula = log(mpg) ~ log(disp), data = mtcars)

#>

#> Coefficients:

#> (Intercept) log(disp)

#> 5.381 -0.459

# Turn it into a data frame (?!)

class(mod) <- "data.frame"

# But unsurprisingly this doesn't work very well

print(mod)

#> [1] coefficients residuals effects rank

#> [5] fitted.values assign qr df.residual

#> [9] xlevels call terms model

#> <0 rows> (or 0-length row.names)

# However, the data is still there

mod$coefficients

#> (Intercept) log(disp)

#> 5.381 -0.459

If you’ve used other OO languages, this might make you feel queasy. But
surprisingly, this flexibility causes few problems: while you can change
the type of an object, you never should. R doesn’t protect you from
yourself: you can easily shoot yourself in the foot. As long as you don’t
aim the gun at your foot and pull the trigger, you won’t have a problem.

7.2.3 Creating new methods and generics

To add a new generic, create a function that calls UseMethod().
UseMethod() takes two arguments: the name of the generic function,
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and the argument to use for method dispatch. If you omit the second
argument it will dispatch on the first argument to the function. There’s
no need to pass any of the arguments of the generic to UseMethod() and
you shouldn’t do so. UseMethod() uses black magic to find them out for
itself.

f <- function(x) UseMethod("f")

A generic isn’t useful without some methods. To add a method, you just
create a regular function with the correct (generic.class) name:

f.a <- function(x) "Class a"

a <- structure(list(), class = "a")

class(a)

#> [1] "a"

f(a)

#> [1] "Class a"

Adding a method to an existing generic works in the same way:

mean.a <- function(x) "a"

mean(a)

#> [1] "a"

As you can see, there’s no check to make sure that the method returns
the class compatible with the generic. It’s up to you to make sure that
your method doesn’t violate the expectations of existing code.

7.2.4 Method dispatch

S3 method dispatch is relatively simple. UseMethod() creates a vector of
function names, like paste0("generic", ".", c(class(x), "default"))

and looks for each in turn. The “default” class makes it possible to set
up a fall back method for otherwise unknown classes.

f <- function(x) UseMethod("f")

f.a <- function(x) "Class a"

f.default <- function(x) "Unknown class"
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f(structure(list(), class = "a"))

#> [1] "Class a"

# No method for b class, so uses method for a class

f(structure(list(), class = c("b", "a")))

#> [1] "Class a"

# No method for c class, so falls back to default

f(structure(list(), class = "c"))

#> [1] "Unknown class"

Group generic methods add a little more complexity. Group generics
make it possible to implement methods for multiple generics with one
function. The four group generics and the functions they include are:

• Math: abs, sign, sqrt, floor, cos, sin, log, exp, …
• Ops: +, -, *, /, ˆ, %%, %/%, &, |, !, ==, !=, <, <=, >=, >
• Summary: all, any, sum, prod, min, max, range
• Complex: Arg, Conj, Im, Mod, Re

Group generics are a relatively advanced technique and are beyond
the scope of this chapter but you can find out more about them in
?groupGeneric. The most important thing to take away from this is to
recognise that Math, Ops, Summary, and Complex aren’t real functions, but
instead represent groups of functions. Note that inside a group generic
function a special variable .Generic provides the actual generic function
called.

If you have complex class hierarchies it’s sometimes useful to call the
“parent” method. It’s a little bit tricky to define exactly what that
means, but it’s basically the method that would have been called if the
current method did not exist. Again, this is an advanced technique: you
can read about it in ?NextMethod.

Because methods are normal R functions, you can call them directly:

c <- structure(list(), class = "c")

# Call the correct method:

f.default(c)

#> [1] "Unknown class"

# Force R to call the wrong method:

f.a(c)

#> [1] "Class a"

However, this is just as dangerous as changing the class of an object, so
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you shouldn’t do it. Please don’t point the loaded gun at your foot! The
only reason to call the method directly is that sometimes you can get
considerable performance improvements by skipping method dispatch.
See Section 17.5 for details.

You can also call an S3 generic with a non-S3 object. Non-internal S3
generics will dispatch on the implicit class of base types. (Internal
generics don’t do that for performance reasons.) The rules to determine
the implicit class of a base type are somewhat complex, but are shown
in the function below:

iclass <- function(x) {

if (is.object(x)) {

stop("x is not a primitive type", call. = FALSE)

}

c(

if (is.matrix(x)) "matrix",

if (is.array(x) && !is.matrix(x)) "array",

if (is.double(x)) "double",

if (is.integer(x)) "integer",

mode(x)

)

}

iclass(matrix(1:5))

#> [1] "matrix" "integer" "numeric"

iclass(array(1.5))

#> [1] "array" "double" "numeric"

7.2.5 Exercises

1. Read the source code for t() and t.test() and confirm that
t.test() is an S3 generic and not an S3 method. What hap-
pens if you create an object with class test and call t() with
it?

2. What classes have a method for the Math group generic in base
R? Read the source code. How do the methods work?

3. R has two classes for representing date time data, POSIXct and
POSIXlt, which both inherit from POSIXt. Which generics have
different behaviours for the two classes? Which generics share
the same behaviour?
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4. Which base generic has the greatest number of defined meth-
ods?

5. UseMethod() calls methods in a special way. Predict what the
following code will return, then run it and read the help for
UseMethod() to figure out what’s going on. Write down the
rules in the simplest form possible.

y <- 1

g <- function(x) {

y <- 2

UseMethod("g")

}

g.numeric <- function(x) y

g(10)

h <- function(x) {

x <- 10

UseMethod("h")

}

h.character <- function(x) paste("char", x)

h.numeric <- function(x) paste("num", x)

h("a")

6. Internal generics don’t dispatch on the implicit class of base
types. Carefully read ?"internal generic" to determine why
the length of f and g is different in the example below. What
function helps distinguish between the behaviour of f and g?

f <- function() 1

g <- function() 2

class(g) <- "function"

class(f)

class(g)

length.function <- function(x) "function"

length(f)

length(g)
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7.3 S4

S4 works in a similar way to S3, but it adds formality and rigour. Meth-
ods still belong to functions, not classes, but:

• Classes have formal definitions which describe their fields and inheri-
tance structures (parent classes).

• Method dispatch can be based on multiple arguments to a generic
function, not just one.

• There is a special operator, @, for extracting slots (aka fields) from an
S4 object.

All S4 related code is stored in the methods package. This package is
always available when you’re running R interactively, but may not be
available when running R in batch mode. For this reason, it’s a good
idea to include an explicit library(methods) whenever you’re using S4.

S4 is a rich and complex system. There’s no way to explain it fully in a
few pages. Here I’ll focus on the key ideas underlying S4 so you can use
existing S4 objects effectively. To learn more, some good references are:

• S4 system development in Bioconductor (http://www.bioconductor.
org/help/course-materials/2010/AdvancedR/S4InBioconductor.pdf)

• John Chambers’ Software for Data Analysis (http://amzn.com/
0387759352?tag=devtools-20)

• Martin Morgan’s answers to S4 questions on stackoverflow
(http://stackoverflow.com/search?tab=votes&q=user%3a547331%
20%5bs4%5d%20is%3aanswe)

7.3.1 Recognising objects, generic functions, and meth-
ods

Recognising S4 objects, generics, and methods is easy. You can identify
an S4 object because str() describes it as a “formal” class, isS4() returns
TRUE, and pryr::otype() returns “S4”. S4 generics and methods are also
easy to identify because they are S4 objects with well defined classes.

http://www.bioconductor.org/help/course-materials/2010/AdvancedR/S4InBioconductor.pdf
http://www.bioconductor.org/help/course-materials/2010/AdvancedR/S4InBioconductor.pdf
http://amzn.com/0387759352?tag=devtools-20
http://amzn.com/0387759352?tag=devtools-20
http://stackoverflow.com/search?tab=votes&q=user%3a547331%20%5bs4%5d%20is%3aanswe
http://stackoverflow.com/search?tab=votes&q=user%3a547331%20%5bs4%5d%20is%3aanswe
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There aren’t any S4 classes in the commonly used base packages (stats,
graphics, utils, datasets, and base), so we’ll start by creating an S4
object from the built-in stats4 package, which provides some S4 classes
and methods associated with maximum likelihood estimation:

library(stats4)

# From example(mle)

y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

nLL <- function(lambda) - sum(dpois(y, lambda, log = TRUE))

fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))

# An S4 object

isS4(fit)

#> [1] TRUE

otype(fit)

#> [1] "S4"

# An S4 generic

isS4(nobs)

#> [1] TRUE

ftype(nobs)

#> [1] "s4" "generic"

# Retrieve an S4 method, described later

mle_nobs <- method_from_call(nobs(fit))

isS4(mle_nobs)

#> [1] TRUE

ftype(mle_nobs)

#> [1] "s4" "method"

Use is() with one argument to list all classes that an object inherits
from. Use is() with two arguments to test if an object inherits from a
specific class.

is(fit)

#> [1] "mle"

is(fit, "mle")

#> [1] TRUE

You can get a list of all S4 generics with getGenerics(), and a list of
all S4 classes with getClasses(). This list includes shim classes for S3
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classes and base types. You can list all S4 methods with showMethods(),
optionally restricting selection either by generic or by class (or both).
It’s also a good idea to supply where = search() to restrict the search
to methods available in the global environment.

7.3.2 Defining classes and creating objects

In S3, you can turn any object into an object of a particular class just
by setting the class attribute. S4 is much stricter: you must define the
representation of a class with setClass(), and create a new object with
new(). You can find the documentation for a class with a special syntax:
class?className, e.g., class?mle.

An S4 class has three key properties:

• A name: an alpha-numeric class identifier. By convention, S4 class
names use UpperCamelCase.

• A named list of slots (fields), which defines slot names and permit-
ted classes. For example, a person class might be represented by a
character name and a numeric age: list(name = "character", age =

"numeric").

• A string giving the class it inherits from, or, in S4 terminology, that it
contains. You can provide multiple classes for multiple inheritance,
but this is an advanced technique which adds much complexity.

In slots and contains you can use S4 classes, S3 classes registered with
setOldClass(), or the implicit class of a base type. In slots you can also
use the special class ANY which does not restrict the input.

S4 classes have other optional properties like a validity method that
tests if an object is valid, and a prototype object that defines default
slot values. See ?setClass for more details.

The following example creates a Person class with fields name and age,
and an Employee class that inherits from Person. The Employee class
inherits the slots and methods from the Person, and adds an additional
slot, boss. To create objects we call new() with the name of the class,
and name-value pairs of slot values.

setClass("Person",

slots = list(name = "character", age = "numeric"))

setClass("Employee",
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slots = list(boss = "Person"),

contains = "Person")

alice <- new("Person", name = "Alice", age = 40)

john <- new("Employee", name = "John", age = 20, boss = alice)

Most S4 classes also come with a constructor function with the same
name as the class: if that exists, use it instead of calling new() directly.

To access slots of an S4 object use @ or slot():

alice@age

#> [1] 40

slot(john, "boss")

#> An object of class "Person"

#> Slot "name":

#> [1] "Alice"

#>

#> Slot "age":

#> [1] 40

(@ is equivalent to $, and slot() to [[.)

If an S4 object contains (inherits from) an S3 class or a base type, it will
have a special .Data slot which contains the underlying base type or S3
object:

setClass("RangedNumeric",

contains = "numeric",

slots = list(min = "numeric", max = "numeric"))

rn <- new("RangedNumeric", 1:10, min = 1, max = 10)

rn@min

#> [1] 1

rn@.Data

#> [1] 1 2 3 4 5 6 7 8 9 10

Since R is an interactive programming language, it’s possible to create
new classes or redefine existing classes at any time. This can be a prob-
lem when you’re interactively experimenting with S4. If you modify a
class, make sure you also recreate any objects of that class, otherwise
you’ll end up with invalid objects.
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7.3.3 Creating new methods and generics

S4 provides special functions for creating new generics and methods.
setGeneric() creates a new generic or converts an existing function into
a generic. setMethod() takes the name of the generic, the classes the
method should be associated with, and a function that implements the
method. For example, we could take union(), which usually just works
on vectors, and make it work with data frames:

setGeneric("union")

#> [1] "union"

setMethod("union",

c(x = "data.frame", y = "data.frame"),

function(x, y) {

unique(rbind(x, y))

}

)

#> [1] "union"

If you create a new generic from scratch, you need to supply a function
that calls standardGeneric():

setGeneric("myGeneric", function(x) {

standardGeneric("myGeneric")

})

#> [1] "myGeneric"

standardGeneric() is the S4 equivalent to UseMethod().

7.3.4 Method dispatch

If an S4 generic dispatches on a single class with a single parent, then
S4 method dispatch is the same as S3 dispatch. The main difference is
how you set up default values: S4 uses the special class ANY to match
any class and “missing” to match a missing argument. Like S3, S4 also
has group generics, documented in ?S4groupGeneric, and a way to call
the “parent” method, callNextMethod().

Method dispatch becomes considerably more complicated if you dispatch
on multiple arguments, or if your classes use multiple inheritance. The
rules are described in ?Methods, but they are complicated and it’s diffi-
cult to predict which method will be called. For this reason, I strongly
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recommend avoiding multiple inheritance and multiple dispatch unless
absolutely necessary.

Finally, there are two methods that find which method gets called given
the specification of a generic call:

# From methods: takes generic name and class names

selectMethod("nobs", list("mle"))

# From pryr: takes an unevaluated function call

method_from_call(nobs(fit))

7.3.5 Exercises

1. Which S4 generic has the most methods defined for it? Which
S4 class has the most methods associated with it?

2. What happens if you define a new S4 class that doesn’t “con-
tain” an existing class? (Hint: read about virtual classes in
?Classes.)

3. What happens if you pass an S4 object to an S3 generic? What
happens if you pass an S3 object to an S4 generic? (Hint: read
?setOldClass for the second case.)

7.4 RC

Reference classes (or RC for short) are the newest OO system in R. They
were introduced in version 2.12. They are fundamentally different to S3
and S4 because:

• RC methods belong to objects, not functions

• RC objects are mutable: the usual R copy-on-modify semantics do not
apply

These properties make RC objects behave more like objects do in most
other programming languages, e.g., Python, Ruby, Java, and C#. Ref-
erence classes are implemented using R code: they are a special S4 class
that wraps around an environment.
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7.4.1 Defining classes and creating objects

Since there aren’t any reference classes provided by the base R packages,
we’ll start by creating one. RC classes are best used for describing
stateful objects, objects that change over time, so we’ll create a simple
class to model a bank account.

Creating a new RC class is similar to creating a new S4 class, but you use
setRefClass() instead of setClass(). The first, and only required argu-
ment, is an alphanumeric name. While you can use new() to create new
RC objects, it’s good style to use the object returned by setRefClass()

to generate new objects. (You can also do that with S4 classes, but it’s
less common.)

Account <- setRefClass("Account")

Account$new()

#> Reference class object of class "Account"

setRefClass() also accepts a list of name-class pairs that define class
fields (equivalent to S4 slots). Additional named arguments passed to
new() will set initial values of the fields. You can get and set field values
with $:

Account <- setRefClass("Account",

fields = list(balance = "numeric"))

a <- Account$new(balance = 100)

a$balance

#> [1] 100

a$balance <- 200

a$balance

#> [1] 200

Instead of supplying a class name for the field, you can provide a sin-
gle argument function which will act as an accessor method. This al-
lows you to add custom behaviour when getting or setting a field. See
?setRefClass for more details.

Note that RC objects are mutable, i.e., they have reference semantics,
and are not copied-on-modify:

b <- a

b$balance
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#> [1] 200

a$balance <- 0

b$balance

#> [1] 0

For this reason, RC objects come with a copy() method that allow you
to make a copy of the object:

c <- a$copy()

c$balance

#> [1] 0

a$balance <- 100

c$balance

#> [1] 0

An object is not very useful without some behaviour defined by meth-
ods. RC methods are associated with a class and can modify its fields in
place. In the following example, note that you access the value of fields
with their name, and modify them with <<-. You’ll learn more about
<<- in Section 8.4.

Account <- setRefClass("Account",

fields = list(balance = "numeric"),

methods = list(

withdraw = function(x) {

balance <<- balance - x

},

deposit = function(x) {

balance <<- balance + x

}

)

)

You call an RC method in the same way as you access a field:

a <- Account$new(balance = 100)

a$deposit(100)

a$balance

#> [1] 200

The final important argument to setRefClass() is contains. This is the
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name of the parent RC class to inherit behaviour from. The follow-
ing example creates a new type of bank account that returns an error
preventing the balance from going below 0.

NoOverdraft <- setRefClass("NoOverdraft",

contains = "Account",

methods = list(

withdraw = function(x) {

if (balance < x) stop("Not enough money")

balance <<- balance - x

}

)

)

accountJohn <- NoOverdraft$new(balance = 100)

accountJohn$deposit(50)

accountJohn$balance

#> [1] 150

accountJohn$withdraw(200)

#> Error in accountJohn$withdraw(200): Not enough money

All reference classes eventually inherit from envRefClass. It provides
useful methods like copy() (shown above), callSuper() (to call the parent
field), field() (to get the value of a field given its name), export()

(equivalent to as()), and show() (overridden to control printing). See
the inheritance section in setRefClass() for more details.

7.4.2 Recognising objects and methods

You can recognise RC objects because they are S4 objects (isS4(x)) that
inherit from “refClass” (is(x, "refClass")). pryr::otype() will return
“RC”. RC methods are also S4 objects, with class refMethodDef.

7.4.3 Method dispatch

Method dispatch is very simple in RC because methods are associated
with classes, not functions. When you call x$f(), R will look for a
method f in the class of x, then in its parent, then its parent’s parent,
and so on. From within a method, you can call the parent method
directly with callSuper(...).



120 Advanced R

7.4.4 Exercises

1. Use a field function to prevent the account balance from being
directly manipulated. (Hint: create a “hidden” .balance field,
and read the help for the fields argument in setRefClass().)

2. I claimed that there aren’t any RC classes in base R, but that
was a bit of a simplification. Use getClasses() and find which
classes extend() from envRefClass. What are the classes used
for? (Hint: recall how to look up the documentation for a
class.)

7.5 Picking a system

Three OO systems is a lot for one language, but for most R programming,
S3 suffices. In R you usually create fairly simple objects and methods
for pre-existing generic functions like print(), summary(), and plot().
S3 is well suited to this task, and the majority of OO code that I have
written in R is S3. S3 is a little quirky, but it gets the job done with a
minimum of code.

If you are creating more complicated systems of interrelated objects, S4
may be more appropriate. A good example is the Matrix package by
Douglas Bates and Martin Maechler. It is designed to efficiently store
and compute with many different types of sparse matrices. As of ver-
sion 1.1.3, it defines 102 classes and 20 generic functions. The package
is well written and well commented, and the accompanying vignette
(vignette("Intro2Matrix", package = "Matrix")) gives a good overview
of the structure of the package. S4 is also used extensively by Biocon-
ductor packages, which need to model complicated interrelationships
between biological objects. Bioconductor provides many good resources
(https://www.google.com/search?q=bioconductor+s4) for learning S4. If
you’ve mastered S3, S4 is relatively easy to pick up; the ideas are all the
same, it is just more formal, more strict, and more verbose.

If you’ve programmed in a mainstream OO language, RC will seem very
natural. But because they can introduce side effects through mutable
state, they are harder to understand. For example, when you usually
call f(a, b) in R you can assume that a and b will not be modified.
But if a and b are RC objects, they might be modified in the place.
Generally, when using RC objects you want to minimise side effects as

https://www.google.com/search?q=bioconductor+s4
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much as possible, and use them only where mutable states are absolutely
required. The majority of functions should still be “functional”, and free
of side effects. This makes code easier to reason about and easier for
other R programmers to understand.

7.6 Quiz answers

1. To determine the OO system of an object, you use a process of
elimination. If !is.object(x), it’s a base object. If !isS4(x),
it’s S3. If !is(x, "refClass"), it’s S4; otherwise it’s RC.

2. Use typeof() to determine the base class of an object.
3. A generic function calls specific methods depending on the

class of it inputs. In S3 and S4 object systems, methods belong
to generic functions, not classes like in other programming
languages.

4. S4 is more formal than S3, and supports multiple inheritance
and multiple dispatch. RC objects have reference semantics,
and methods belong to classes, not functions.





8
Environments

The environment is the data structure that powers scoping. This chapter
dives deep into environments, describing their structure in depth, and
using them to improve your understanding of the four scoping rules
described in Section 6.2.
Environments can also be useful data structures in their own right be-
cause they have reference semantics. When you modify a binding in
an environment, the environment is not copied; it’s modified in place.
Reference semantics are not often needed, but can be extremely useful.

Quiz

If you can answer the following questions correctly, you already know
the most important topics in this chapter. You can find the answers at
the end of the chapter in Section 8.6.

1. List at least three ways that an environment is different to a
list.

2. What is the parent of the global environment? What is the
only environment that doesn’t have a parent?

3. What is the enclosing environment of a function? Why is it
important?

4. How do you determine the environment from which a function
was called?

5. How are <- and <<- different?

Outline

• Section 8.1 introduces you to the basic properties of an environment
and shows you how to create your own.

• Section 8.2 provides a function template for computing with environ-
ments, illustrating the idea with a useful function.

123
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• Section 8.3 revises R’s scoping rules in more depth, showing how they
correspond to four types of environment associated with each function.

• Section 8.4 describes the rules that names must follow (and how to
bend them), and shows some variations on binding a name to a value.

• Section 8.5 discusses three problems where environments are useful
data structures in their own right, independent of the role they place
in scoping.

Prerequisites

This chapter uses many functions from the pryr package to pry open R
and look inside at the messy details. You can install pryr by running
install.packages("pryr")

8.1 Environment basics

The job of an environment is to associate, or bind, a set of names to a
set of values. You can think of an environment as a bag of names:

Each name points to an object stored elsewhere in memory:

e <- new.env()

e$a <- FALSE

e$b <- "a"

e$c <- 2.3

e$d <- 1:3
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The objects don’t live in the environment so multiple names can point
to the same object:

e$a <- e$d

Confusingly they can also point to different objects that have the same
value:

e$a <- 1:3

If an object has no names pointing to it, it gets automatically deleted
by the garbage collector. This process is described in more detail in
Section 18.2.
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Every environment has a parent, another environment. In diagrams, I’ll
represent the pointer to parent with a small black circle. The parent is
used to implement lexical scoping: if a name is not found in an environ-
ment, then R will look in its parent (and so on). Only one environment
doesn’t have a parent: the empty environment.

We use the metaphor of a family to refer to environments. The grandpar-
ent of an environment is the parent’s parent, and the ancestors include
all parent environments up to the empty environment. It’s rare to talk
about the children of an environment because there are no back links:
given an environment we have no way to find its children.
Generally, an environment is similar to a list, with four important ex-
ceptions:

• Every object in an environment has a unique name.

• The objects in an environment are not ordered (i.e., it doesn’t make
sense to ask what the first object in an environment is).

• An environment has a parent.

• Environments have reference semantics.

More technically, an environment is made up of two components, the
frame, which contains the name-object bindings (and behaves much
like a named list), and the parent environment. Unfortunately “frame”
is used inconsistently in R. For example, parent.frame() doesn’t give
you the parent frame of an environment. Instead, it gives you the calling
environment. This is discussed in more detail in Section 8.3.4.
There are four special environments:

• The globalenv(), or global environment, is the interactive workspace.
This is the environment in which you normally work. The parent of
the global environment is the last package that you attached with
library() or require().
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• The baseenv(), or base environment, is the environment of the base
package. Its parent is the empty environment.

• The emptyenv(), or empty environment, is the ultimate ancestor of all
environments, and the only environment without a parent.

• The environment() is the current environment.

search() lists all parents of the global environment. This is called the
search path because objects in these environments can be found from
the top-level interactive workspace. It contains one environment for
each attached package and any other objects that you’ve attach()ed. It
also contains a special environment called Autoloads which is used to
save memory by only loading package objects (like big datasets) when
needed.

You can access any environment on the search list using as.environment().

search()

#> [1] ".GlobalEnv" "package:stats" "package:graphics"

#> [4] "package:grDevices" "package:utils" "package:datasets"

#> [7] "package:methods" "Autoloads" "package:base"

as.environment("package:stats")

#> <environment: package:stats>

globalenv(), baseenv(), the environments on the search path, and
emptyenv() are connected as shown below. Each time you load a new
package with library() it is inserted between the global environment
and the package that was previously at the top of the search path.

To create an environment manually, use new.env(). You can list the
bindings in the environment’s frame with ls() and see its parent with
parent.env().
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e <- new.env()

# the default parent provided by new.env() is environment from

# which it is called - in this case that's the global environment.

parent.env(e)

#> <environment: R_GlobalEnv>

ls(e)

#> character(0)

The easiest way to modify the bindings in an environment is to treat it
like a list:

e$a <- 1

e$b <- 2

ls(e)

#> [1] "a" "b"

e$a

#> [1] 1

By default, ls() only shows names that don’t begin with .. Use
all.names = TRUE to show all bindings in an environment:

e$.a <- 2

ls(e)

#> [1] "a" "b"

ls(e, all.names = TRUE)

#> [1] ".a" "a" "b"

Another useful way to view an environment is ls.str(). It is more useful
than str() because it shows each object in the environment. Like ls(),
it also has an all.names argument.

str(e)

#> <environment: 0x7ff93aee1590>

ls.str(e)

#> a : num 1

#> b : num 2

Given a name, you can extract the value to which it is bound with $, [[,
or get():

• $ and [[ look only in one environment and return NULL if there is no
binding associated with the name.
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• get() uses the regular scoping rules and throws an error if the binding
is not found.

e$c <- 3

e$c

#> [1] 3

e[["c"]]

#> [1] 3

get("c", envir = e)

#> [1] 3

Deleting objects from environments works a little differently from lists.
With a list you can remove an entry by setting it to NULL. In environ-
ments, that will create a new binding to NULL. Instead, use rm() to remove
the binding.

e <- new.env()

e$a <- 1

e$a <- NULL

ls(e)

#> [1] "a"

rm("a", envir = e)

ls(e)

#> character(0)

You can determine if a binding exists in an environment with exists().
Like get(), its default behaviour is to follow the regular scoping rules
and look in parent environments. If you don’t want this behavior, use
inherits = FALSE:

x <- 10

exists("x", envir = e)

#> [1] TRUE

exists("x", envir = e, inherits = FALSE)

#> [1] FALSE

To compare environments, you must use identical() not ==:

identical(globalenv(), environment())

#> [1] TRUE

globalenv() == environment()

#> Error in globalenv() == environment(): comparison (1) is possible only for atomic and list types
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8.1.1 Exercises

1. List three ways in which an environment differs from a list.
2. If you don’t supply an explicit environment, where do ls()

and rm() look? Where does <- make bindings?
3. Using parent.env() and a loop (or a recursive function), ver-

ify that the ancestors of globalenv() include baseenv() and
emptyenv(). Use the same basic idea to implement your own
version of search().

8.2 Recursing over environments

Environments form a tree, so it’s often convenient to write a recursive
function. This section shows you how by applying your new knowledge of
environments to understand the helpful pryr::where(). Given a name,
where() finds the environment where that name is defined, using R’s
regular scoping rules:

library(pryr)

x <- 5

where("x")

#> <environment: R_GlobalEnv>

where("mean")

#> <environment: base>

The definition of where() is straightforward. It has two arguments: the
name to look for (as a string), and the environment in which to start
the search. (We’ll learn later why parent.frame() is a good default in
Section 8.3.4.)

where <- function(name, env = parent.frame()) {

if (identical(env, emptyenv())) {

# Base case

stop("Can't find ", name, call. = FALSE)

} else if (exists(name, envir = env, inherits = FALSE)) {

# Success case

env
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} else {

# Recursive case

where(name, parent.env(env))

}

}

There are three cases:

• The base case: we’ve reached the empty environment and haven’t
found the binding. We can’t go any further, so we throw an error.

• The successful case: the name exists in this environment, so we return
the environment.

• The recursive case: the name was not found in this environment, so
try the parent.

It’s easier to see what’s going on with an example. Imagine you have
two environments as in the following diagram:

• If you’re looking for a, where() will find it in the first environment.

• If you’re looking for b, it’s not in the first environment, so where() will
look in its parent and find it there.

• If you’re looking for c, it’s not in the first environment, or the second
environment, so where() reaches the empty environment and throws
an error.

It’s natural to work with environments recursively, so where() provides a
useful template. Removing the specifics of where() shows the structure
more clearly:

f <- function(..., env = parent.frame()) {

if (identical(env, emptyenv())) {

# base case
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} else if (success) {

# success case

} else {

# recursive case

f(..., env = parent.env(env))

}

}

Iteration vs. recursion

It’s possible to use a loop instead of recursion. This might run slightly
faster (because we eliminate some function calls), but I think it’s
harder to understand. I include it because you might find it easier to
see what’s happening if you’re less familiar with recursive functions.

is_empty <- function(x) identical(x, emptyenv())

f2 <- function(..., env = parent.frame()) {

while(!is_empty(env)) {

if (success) {

# success case

return()

}

# inspect parent

env <- parent.env(env)

}

# base case

}

8.2.1 Exercises

1. Modify where() to find all environments that contain a binding
for name.

2. Write your own version of get() using a function written in
the style of where().

3. Write a function called fget() that finds only function objects.
It should have two arguments, name and env, and should obey
the regular scoping rules for functions: if there’s an object with



Environments 133

a matching name that’s not a function, look in the parent.
For an added challenge, also add an inherits argument which
controls whether the function recurses up the parents or only
looks in one environment.

4. Write your own version of exists(inherits = FALSE) (Hint:
use ls().) Write a recursive version that behaves like
exists(inherits = TRUE).

8.3 Function environments

Most environments are not created by you with new.env() but are created
as a consequence of using functions. This section discusses the four
types of environments associated with a function: enclosing, binding,
execution, and calling.

The enclosing environment is the environment where the function was
created. Every function has one and only one enclosing environment.
For the three other types of environment, there may be 0, 1, or many
environments associated with each function:

• Binding a function to a name with <- defines a binding environment.

• Calling a function creates an ephemeral execution environment that
stores variables created during execution.

• Every execution environment is associated with a calling environment,
which tells you where the function was called.

The following sections will explain why each of these environments is
important, how to access them, and how you might use them.

8.3.1 The enclosing environment

When a function is created, it gains a reference to the environment where
it was made. This is the enclosing environment and is used for lexical
scoping. You can determine the enclosing environment of a function by
calling environment() with a function as its first argument:
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y <- 1

f <- function(x) x + y

environment(f)

#> <environment: R_GlobalEnv>

In diagrams, I’ll depict functions as rounded rectangles. The enclosing
environment of a function is given by a small black circle:

8.3.2 Binding environments

The previous diagram is too simple because functions don’t have names.
Instead, the name of a function is defined by a binding. The binding
environments of a function are all the environments which have a binding
to it. The following diagram better reflects this relationship because the
enclosing environment contains a binding from f to the function:

In this case the enclosing and binding environments are the same. They
will be different if you assign a function into a different environment:

e <- new.env()

e$g <- function() 1
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The enclosing environment belongs to the function, and never changes,
even if the function is moved to a different environment. The enclos-
ing environment determines how the function finds values; the binding
environments determine how we find the function.

The distinction between the binding environment and the enclosing en-
vironment is important for package namespaces. Package namespaces
keep packages independent. For example, if package A uses the base
mean() function, what happens if package B creates its own mean() func-
tion? Namespaces ensure that package A continues to use the base
mean() function, and that package A is not affected by package B (un-
less explicitly asked for).

Namespaces are implemented using environments, taking advantage of
the fact that functions don’t have to live in their enclosing environments.
For example, take the base function sd(). It’s binding and enclosing
environments are different:

environment(sd)

#> <environment: namespace:stats>

where("sd")

#> <environment: package:stats>

The definition of sd() uses var(), but if we make our own version of
var() it doesn’t affect sd():

x <- 1:10

sd(x)

#> [1] 3.03

var <- function(x, na.rm = TRUE) 100

sd(x)

#> [1] 3.03

This works because every package has two environments associated with
it: the package environment and the namespace environment. The
package environment contains every publicly accessible function, and
is placed on the search path. The namespace environment contains all
functions (including internal functions), and its parent environment is
a special imports environment that contains bindings to all the func-
tions that the package needs. Every exported function in a package is
bound into the package environment, but enclosed by the namespace en-
vironment. This complicated relationship is illustrated by the following
diagram:
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When we type var into the console, it’s found first in the global envi-
ronment. When sd() looks for var() it finds it first in its namespace
environment so never looks in the globalenv().

8.3.3 Execution environments

What will the following function return the first time it’s run? What
about the second?

g <- function(x) {

if (!exists("a", inherits = FALSE)) {

message("Defining a")

a <- 1

} else {

a <- a + 1

}

a

}

g(10)

g(10)

This function returns the same value every time it is called because of
the fresh start principle, described in Section 6.2.3. Each time a function
is called, a new environment is created to host execution. The parent of
the execution environment is the enclosing environment of the function.
Once the function has completed, this environment is thrown away.
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Let’s depict that graphically with a simpler function. I draw execution
environments around the function they belong to with a dotted border.

h <- function(x) {

a <- 2

x + a

}

y <- h(1)

When you create a function inside another function, the enclosing envi-
ronment of the child function is the execution environment of the parent,
and the execution environment is no longer ephemeral. The following
example illustrates that idea with a function factory, plus(). We use
that factory to create a function called plus_one(). The enclosing envi-
ronment of plus_one() is the execution environment of plus() where x

is bound to the value 1.
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plus <- function(x) {

function(y) x + y

}

plus_one <- plus(1)

identical(parent.env(environment(plus_one)), environment(plus))

#> [1] TRUE

You’ll learn more about function factories in Chapter 10.

8.3.4 Calling environments

Look at the following code. What do you expect i() to return when the
code is run?

h <- function() {

x <- 10

function() {

x

}

}

i <- h()

x <- 20

i()

The top-level x (bound to 20) is a red herring: using the regular scoping
rules, h() looks first where it is defined and finds that the value asso-
ciated with x is 10. However, it’s still meaningful to ask what value x

is associated within the environment where i() is called: x is 10 in the
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environment where h() is defined, but it is 20 in the environment where
h() is called.

We can access this environment using the unfortunately named
parent.frame(). This function returns the environment where the
function was called. We can also use this function to look up the value
of names in that environment:

f2 <- function() {

x <- 10

function() {

def <- get("x", environment())

cll <- get("x", parent.frame())

list(defined = def, called = cll)

}

}

g2 <- f2()

x <- 20

str(g2())

#> List of 2

#> $ defined: num 10

#> $ called : num 20

In more complicated scenarios, there’s not just one parent call, but a
sequence of calls which lead all the way back to the initiating function,
called from the top-level. The following code generates a call stack three
levels deep. The open-ended arrows represent the calling environment
of each execution environment.

x <- 0

y <- 10

f <- function() {

x <- 1

g()

}

g <- function() {

x <- 2

h()

}

h <- function() {

x <- 3

x + y

}
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f()

#> [1] 13

Note that each execution environment has two parents: a calling envi-
ronment and an enclosing environment. R’s regular scoping rules only
use the enclosing parent; parent.frame() allows you to access the calling
parent.

Looking up variables in the calling environment rather than in the en-
closing environment is called dynamic scoping. Few languages im-
plement dynamic scoping (Emacs Lisp is a notable exception (http:
//www.gnu.org/software/emacs/emacs-paper.html#SEC15).) This is be-
cause dynamic scoping makes it much harder to reason about how a
function operates: not only do you need to know how it was defined,
you also need to know in what context it was called. Dynamic scop-
ing is primarily useful for developing functions that aid interactive data
analysis. It is one of the topics discussed in Chapter 13.

8.3.5 Exercises

1. List the four environments associated with a function. What
does each one do? Why is the distinction between enclosing
and binding environments particularly important?

2. Draw a diagram that shows the enclosing environments of this
function:

f1 <- function(x1) {

f2 <- function(x2) {

f3 <- function(x3) {

x1 + x2 + x3

}

http://www.gnu.org/software/emacs/emacs-paper.html#SEC15
http://www.gnu.org/software/emacs/emacs-paper.html#SEC15
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f3(3)

}

f2(2)

}

f1(1)

3. Expand your previous diagram to show function bindings.
4. Expand it again to show the execution and calling environ-

ments.
5. Write an enhanced version of str() that provides more infor-

mation about functions. Show where the function was found
and what environment it was defined in.

8.4 Binding names to values

Assignment is the act of binding (or rebinding) a name to a value in
an environment. It is the counterpart to scoping, the set of rules that
determines how to find the value associated with a name. Compared
to most languages, R has extremely flexible tools for binding names to
values. In fact, you can not only bind values to names, but you can also
bind expressions (promises) or even functions, so that every time you
access the value associated with a name, you get something different!

You’ve probably used regular assignment in R thousands of times. Reg-
ular assignment creates a binding between a name and an object in the
current environment. Names usually consist of letters, digits, . and _,
and can’t begin with _. If you try to use a name that doesn’t follow
these rules, you get an error:

_abc <- 1

# Error: unexpected input in "_"

Reserved words (like TRUE, NULL, if, and function) follow the rules but
are reserved by R for other purposes:

if <- 10

#> Error: unexpected assignment in "if <-"
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A complete list of reserved words can be found in ?Reserved.

It’s possible to override the usual rules and use a name with any sequence
of characters by surrounding the name with backticks:

`a + b` <- 3

`:)` <- "smile"

` ` <- "spaces"

ls()

# [1] " " ":)" "a + b"

`:)`

# [1] "smile"

Quotes

You can also create non-syntactic bindings using single and double
quotes instead of backticks, but I don’t recommend it. The ability to
use strings on the left hand side of the assignment arrow is a historical
artefact, used before R supported backticks.

The regular assignment arrow, <-, always creates a variable in the current
environment. The deep assignment arrow, <<-, never creates a variable
in the current environment, but instead modifies an existing variable
found by walking up the parent environments. You can also do deep
binding with assign(): name <<- value is equivalent to assign("name",

value, inherits = TRUE).

x <- 0

f <- function() {

x <<- 1

}

f()

x

#> [1] 1

If <<- doesn’t find an existing variable, it will create one in the global
environment. This is usually undesirable, because global variables in-
troduce non-obvious dependencies between functions. <<- is most often
used in conjunction with a closure, as described in Section 10.3.

There are two other special types of binding, delayed and active:
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• Rather than assigning the result of an expression immediately, a de-
layed binding creates and stores a promise to evaluate the expression
when needed. We can create delayed bindings with the special assign-
ment operator %<d-%, provided by the pryr package.

library(pryr)

system.time(b %<d-% {Sys.sleep(1); 1})

#> user system elapsed

#> 0.000 0.000 0.001

system.time(b)

#> user system elapsed

#> 0.000 0.000 1.001

%<d-% is a wrapper around the base delayedAssign() function, which
you may need to use directly if you need more control. Delayed bind-
ings are used to implement autoload(), which makes R behave as if
the package data is in memory, even though it’s only loaded from disk
when you ask for it.

• Active are not bound to a constant object. Instead, they’re
re-computed every time they’re accessed:

x %<a-% runif(1)

x

#> [1] 0.0808

x

#> [1] 0.834

rm(x)

%<a-% is a wrapper for the base function makeActiveBinding(). You
may want to use this function directly if you want more control. Active
bindings are used to implement reference class fields.

8.4.1 Exercises

1. What does this function do? How does it differ from <<- and
why might you prefer it?

rebind <- function(name, value, env = parent.frame()) {

if (identical(env, emptyenv())) {

stop("Can't find ", name, call. = FALSE)

} else if (exists(name, envir = env, inherits = FALSE)) {

assign(name, value, envir = env)

} else {
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rebind(name, value, parent.env(env))

}

}

rebind("a", 10)

#> Error: Can't find a

a <- 5

rebind("a", 10)

a

#> [1] 10

2. Create a version of assign() that will only bind new names,
never re-bind old names. Some programming languages
only do this, and are known as single assignment languages
(http://en.wikipedia.org/wiki/Assignment_(computer_
science)#Single_assignment).

3. Write an assignment function that can do active, delayed, and
locked bindings. What might you call it? What arguments
should it take? Can you guess which sort of assignment it
should do based on the input?

8.5 Explicit environments

As well as powering scoping, environments are also useful data structures
in their own right because they have reference semantics. Unlike most
objects in R, when you modify an environment, it does not make a copy.
For example, look at this modify() function.

modify <- function(x) {

x$a <- 2

invisible()

}

If you apply it to a list, the original list is not changed because modifying
a list actually creates and modifies a copy.

x_l <- list()

x_l$a <- 1

modify(x_l)

http://en.wikipedia.org/wiki/Assignment_(computer_science)#Single_assignment
http://en.wikipedia.org/wiki/Assignment_(computer_science)#Single_assignment
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x_l$a

#> [1] 1

However, if you apply it to an environment, the original environment is
modified:

x_e <- new.env()

x_e$a <- 1

modify(x_e)

x_e$a

#> [1] 2

Just as you can use a list to pass data between functions, you can also
use an environment. When creating your own environment, note that
you should set its parent environment to be the empty environment.
This ensures you don’t accidentally inherit objects from somewhere else:

x <- 1

e1 <- new.env()

get("x", envir = e1)

#> [1] 1

e2 <- new.env(parent = emptyenv())

get("x", envir = e2)

#> Error in get("x", envir = e2): object 'x' not found

Environments are data structures useful for solving three common prob-
lems:

• Avoiding copies of large data.
• Managing state within a package.
• Efficiently looking up values from names.

These are described in turn below.

8.5.1 Avoiding copies

Since environments have reference semantics, you’ll never accidentally
create a copy. This makes it a useful vessel for large objects. It’s a com-
mon technique for bioconductor packages which often have to manage
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large genomic objects. Changes to R 3.1.0 have made this use substan-
tially less important because modifying a list no longer makes a deep
copy. Previously, modifying a single element of a list would cause every
element to be copied, an expensive operation if some elements are large.
Now, modifying a list efficiently reuses existing vectors, saving much
time.

8.5.2 Package state

Explicit environments are useful in packages because they allow you to
maintain state across function calls. Normally, objects in a package are
locked, so you can’t modify them directly. Instead, you can do something
like this:

my_env <- new.env(parent = emptyenv())

my_env$a <- 1

get_a <- function() {

my_env$a

}

set_a <- function(value) {

old <- my_env$a

my_env$a <- value

invisible(old)

}

Returning the old value from setter functions is a good pattern because it
makes it easier to reset the previous value in conjunction with on.exit()

(see more in Section 6.6.1).

8.5.3 As a hashmap

A hashmap is a data structure that takes constant, O(1), time to find
an object based on its name. Environments provide this behaviour by
default, so can be used to simulate a hashmap. See the CRAN package
hash for a complete development of this idea.
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8.6 Quiz answers

1. There are four ways: every object in an environment must
have a name; order doesn’t matter; environments have par-
ents; environments have reference semantics.

2. The parent of the global environment is the last package that
you loaded. The only environment that doesn’t have a parent
is the empty environment.

3. The enclosing environment of a function is the environment
where it was created. It determines where a function looks for
variables.

4. Use parent.frame().
5. <- always creates a binding in the current environment; <<-

rebinds an existing name in a parent of the current environ-
ment.





9
Debugging, condition handling, and
defensive programming

What happens when something goes wrong with your R code? What do
you do? What tools do you have to address the problem? This chapter
will teach you how to fix unanticipated problems (debugging), show you
how functions can communicate problems and how you can take action
based on those communications (condition handling), and teach you how
to avoid common problems before they occur (defensive programming).

Debugging is the art and science of fixing unexpected problems in your
code. In this section you’ll learn the tools and techniques that help
you get to the root cause of an error. You’ll learn general strategies
for debugging, useful R functions like traceback() and browser(), and
interactive tools in RStudio.

Not all problems are unexpected. When writing a function, you can
often anticipate potential problems (like a non-existent file or the wrong
type of input). Communicating these problems to the user is the job of
conditions: errors, warnings, and messages.

• Fatal errors are raised by stop() and force all execution to terminate.
Errors are used when there is no way for a function to continue.

• Warnings are generated by warning() and are used to display potential
problems, such as when some elements of a vectorised input are invalid,
like log(-1:2).

• Messages are generated by message() and are used to give infor-
mative output in a way that can easily be suppressed by the user
(?suppressMessages()). I often use messages to let the user know what
value the function has chosen for an important missing argument.

Conditions are usually displayed prominently, in a bold font or coloured
red depending on your R interface. You can tell them apart because
errors always start with “Error” and warnings with “Warning message”.

149
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Function authors can also communicate with their users with print()

or cat(), but I think that’s a bad idea because it’s hard to capture and
selectively ignore this sort of output. Printed output is not a condition,
so you can’t use any of the useful condition handling tools you’ll learn
about below.
Condition handling tools, like withCallingHandlers(), tryCatch(), and
try() allow you to take specific actions when a condition occurs. For
example, if you’re fitting many models, you might want to continue
fitting the others even if one fails to converge. R offers an exceptionally
powerful condition handling system based on ideas from Common Lisp,
but it’s currently not very well documented or often used. This chapter
will introduce you to the most important basics, but if you want to learn
more, I recommend the following two sources:

• A prototype of a condition system for R (http://homepage.stat.
uiowa.edu/~luke/R/exceptions/simpcond.html) by Robert Gentleman
and Luke Tierney. This describes an early version of R’s condition
system. While the implementation has changed somewhat since this
document was written, it provides a good overview of how the pieces
fit together, and some motivation for its design.

• Beyond Exception Handling: Conditions and Restarts (http:
//www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html) by Peter Seibel. This describes exception
handling in Lisp, which happens to be very similar to R’s ap-
proach. It provides useful motivation and more sophisticated
examples. I have provided an R translation of the chapter at
http://adv-r.had.co.nz/beyond-exception-handling.html.

The chapter concludes with a discussion of “defensive” programming:
ways to avoid common errors before they occur. In the short run you’ll
spend more time writing code, but in the long run you’ll save time
because error messages will be more informative and will let you narrow
in on the root cause more quickly. The basic principle of defensive
programming is to “fail fast”, to raise an error as soon as something goes
wrong. In R, this takes three particular forms: checking that inputs are
correct, avoiding non-standard evaluation, and avoiding functions that
can return different types of output.

Quiz

Want to skip this chapter? Go for it, if you can answer the questions
below. Find the answers at the end of the chapter in Section 9.5.

http://homepage.stat.uiowa.edu/~luke/R/exceptions/simpcond.html
http://homepage.stat.uiowa.edu/~luke/R/exceptions/simpcond.html
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-and-restarts.html
http://adv-r.had.co.nz/beyond-exception-handling.html
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1. How can you find out where an error occured?
2. What does browser() do? List the five useful single-key com-

mands that you can use inside of a browser() environment.
3. What function do you use to ignore errors in block of code?
4. Why might you want to create an error with a custom S3

class?

Outline

1. Section 9.1 outlines a general approach for finding and resolv-
ing bugs.

2. Section 9.2 introduces you to the R functions and Rstudio
features that help you locate exactly where an error occurred.

3. Section 9.3 shows you how you can catch conditions (errors,
warnings, and messages) in your own code. This allows you
to create code that’s both more robust and more informative
in the presence of errors.

4. Section 9.4 introduces you to some important techniques for
defensive programming, techniques that help prevent bugs
from occurring in the first place.

9.1 Debugging techniques

“Finding your bug is a process of confirming the many things that
you believe are true — until you find one which is not true.”
—Norm Matloff

Debugging code is challenging. Many bugs are subtle and hard to find.
Indeed, if a bug was obvious, you probably would’ve been able to avoid
it in the first place. While it’s true that with a good technique, you
can productively debug a problem with just print(), there are times
when additional help would be welcome. In this section, we’ll discuss
some useful tools, which R and RStudio provide, and outline a general
procedure for debugging.
While the procedure below is by no means foolproof, it will hopefully
help you to organise your thoughts when debugging. There are four
steps:
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1. Realise that you have a bug
If you’re reading this chapter, you’ve probably already com-
pleted this step. It is a surprisingly important one: you can’t
fix a bug until you know it exists. This is one reason why
automated test suites are important when producing high-
quality code. Unfortunately, automated testing is outside
the scope of this book, but you can read more about it at
http://r-pkgs.had.co.nz/tests.html.

2. Make it repeatable
Once you’ve determined you have a bug, you need to be able
to reproduce it on command. Without this, it becomes ex-
tremely difficult to isolate its cause and to confirm that you’ve
successfully fixed it.
Generally, you will start with a big block of code that you
know causes the error and then slowly whittle it down to get
to the smallest possible snippet that still causes the error.
Binary search is particularly useful for this. To do a binary
search, you repeatedly remove half of the code until you find
the bug. This is fast because, with each step, you reduce the
amount of code to look through by half.
If it takes a long time to generate the bug, it’s also worthwhile
to figure out how to generate it faster. The quicker you can
do this, the quicker you can figure out the cause.
As you work on creating a minimal example, you’ll also dis-
cover similar inputs that don’t trigger the bug. Make note of
them: they will be helpful when diagnosing the cause of the
bug.
If you’re using automated testing, this is also a good time to
create an automated test case. If your existing test coverage is
low, take the opportunity to add some nearby tests to ensure
that existing good behaviour is preserved. This reduces the
chances of creating a new bug.

3. Figure out where it is
If you’re lucky, one of the tools in the following section will
help you to quickly identify the line of code that’s causing the
bug. Usually, however, you’ll have to think a bit more about
the problem. It’s a great idea to adopt the scientific method.
Generate hypotheses, design experiments to test them, and
record your results. This may seem like a lot of work, but
a systematic approach will end up saving you time. I often

http://r-pkgs.had.co.nz/tests.html
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waste a lot of time relying on my intuition to solve a bug
(“oh, it must be an off-by-one error, so I’ll just subtract 1
here”), when I would have been better off taking a systematic
approach.

4. Fix it and test it
Once you’ve found the bug, you need to figure out how to
fix it and to check that the fix actually worked. Again, it’s
very useful to have automated tests in place. Not only does
this help to ensure that you’ve actually fixed the bug, it also
helps to ensure you haven’t introduced any new bugs in the
process. In the absence of automated tests, make sure to care-
fully record the correct output, and check against the inputs
that previously failed.

9.2 Debugging tools

To implement a strategy of debugging, you’ll need tools. In this section,
you’ll learn about the tools provided by R and the RStudio IDE. RStu-
dio’s integrated debugging support makes life easier by exposing existing
R tools in a user friendly way. I’ll show you both the R and RStudio
ways so that you can work with whatever environment you use. You
may also want to refer to the official RStudio debugging documenta-
tion (http://www.rstudio.com/ide/docs/debugging/overview) which al-
ways reflects the tools in the latest version of RStudio.

There are three key debugging tools:

• RStudio’s error inspector and traceback() which list the sequence of
calls that lead to the error.

• RStudio’s “Rerun with Debug” tool and options(error = browser)

which open an interactive session where the error occurred.

• RStudio’s breakpoints and browser() which open an interactive session
at an arbitrary location in the code.

I’ll explain each tool in more detail below.

You shouldn’t need to use these tools when writing new functions. If
you find yourself using them frequently with new code, you may want

http://www.rstudio.com/ide/docs/debugging/overview
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to reconsider your approach. Instead of trying to write one big function
all at once, work interactively on small pieces. If you start small, you
can quickly identify why something doesn’t work. But if you start large,
you may end up struggling to identify the source of the problem.

9.2.1 Determining the sequence of calls

The first tool is the call stack, the sequence of calls that lead up to an
error. Here’s a simple example: you can see that f() calls g() calls h()

calls i() which adds together a number and a string creating a error:

f <- function(a) g(a)

g <- function(b) h(b)

h <- function(c) i(c)

i <- function(d) "a" + d

f(10)

When we run this code in Rstudio we see:

Two options appear to the right of the error message: “Show Traceback”
and “Rerun with Debug”. If you click “Show traceback” you see:

If you’re not using Rstudio, you can use traceback() to get the same
information:

traceback()

# 4: i(c) at exceptions-example.R#3

# 3: h(b) at exceptions-example.R#2

# 2: g(a) at exceptions-example.R#1

# 1: f(10)
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Read the call stack from bottom to top: the initial call is f(), which calls
g(), then h(), then i(), which triggers the error. If you’re calling code
that you source()d into R, the traceback will also display the location
of the function, in the form filename.r#linenumber. These are clickable
in Rstudio, and will take you to the corresponding line of code in the
editor.
Sometimes this is enough information to let you track down the error and
fix it. However, it’s usually not. traceback() shows you where the error
occurred, but not why. The next useful tool is the interactive debug-
ger, which allows you to pause execution of a function and interactively
explore its state.

9.2.2 Browsing on error

The easiest way to enter the interactive debugger is through RStudio’s
“Rerun with Debug” tool. This reruns the command that created the
error, pausing execution where the error occurred. You’re now in an
interactive state inside the function, and you can interact with any object
defined there. You’ll see the corresponding code in the editor (with
the statement that will be run next highlighted), objects in the current
environment in the “Environment” pane, the call stack in a “Traceback”
pane, and you can run arbitrary R code in the console.
As well as any regular R function, there are a few special commands
you can use in debug mode. You can access them either with the Rstu-
dio toolbar ( ) or with the key-
board:

• Next, n: executes the next step in the function. Be careful if you have
a variable named n; to print it you’ll need to do print(n).

• Step into, or s: works like next, but if the next step is a function,
it will step into that function so you can work through each line.

• Finish, or f: finishes execution of the current loop or function.

• Continue, c: leaves interactive debugging and continues regular exe-
cution of the function. This is useful if you’ve fixed the bad state and
want to check that the function proceeds correctly.

• Stop, Q: stops debugging, terminates the function, and returns to the
global workspace. Use this once you’ve figured out where the problem
is, and you’re ready to fix it and reload the code.
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There are two other slightly less useful commands that aren’t available
in the toolbar:

• Enter: repeats the previous command. I find this too easy to activate
accidentally, so I turn it off using options(browserNLdisabled = TRUE).

• where: prints stack trace of active calls (the interactive equivalent of
traceback).

To enter this style of debugging outside of RStudio, you can use the
error option which specifies a function to run when an error occurs. The
function most similar to Rstudio’s debug is browser(): this will start an
interactive console in the environment where the error occurred. Use
options(error = browser) to turn it on, re-run the previous command,
then use options(error = NULL) to return to the default error behaviour.
You could automate this with the browseOnce() function as defined be-
low:

browseOnce <- function() {

old <- getOption("error")

function() {

options(error = old)

browser()

}

}

options(error = browseOnce())

f <- function() stop("!")

# Enters browser

f()

# Runs normally

f()

(You’ll learn more about functions that return functions in Chapter 10.)

There are two other useful functions that you can use with the error

option:

• recover is a step up from browser, as it allows you to enter the envi-
ronment of any of the calls in the call stack. This is useful because
often the root cause of the error is a number of calls back.
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• dump.frames is an equivalent to recover for non-interactive code. It
creates a last.dump.rda file in the current working directory. Then,
in a later interactive R session, you load that file, and use debugger()

to enter an interactive debugger with the same interface as recover().
This allows interactive debugging of batch code.

# In batch R process ----

dump_and_quit <- function() {

# Save debugging info to file last.dump.rda

dump.frames(to.file = TRUE)

# Quit R with error status

q(status = 1)

}

options(error = dump_and_quit)

# In a later interactive session ----

load("last.dump.rda")

debugger()

To reset error behaviour to the default, use options(error = NULL). Then
errors will print a message and abort function execution.

9.2.3 Browsing arbitrary code

As well as entering an interactive console on error, you can enter it
at an arbitrary code location by using either an Rstudio breakpoint or
browser(). You can set a breakpoint in Rstudio by clicking to the left
of the line number, or pressing Shift + F9. Equivalently, add browser()

where you want execution to pause. Breakpoints behave similarly to
browser() but they are easier to set (one click instead of nine key presses),
and you don’t run the risk of accidentally including a browser() state-
ment in your source code. There are two small downsides to breakpoints:

• There are a few unusual situations in which breakpoints will not work:
read breakpoint troubleshooting (http://www.rstudio.com/ide/docs/
debugging/breakpoint-troubleshooting) for more details.

• RStudio currently does not support conditional breakpoints, whereas
you can always put browser() inside an if statement.

As well as adding browser() yourself, there are two other functions that
will add it to code:

http://www.rstudio.com/ide/docs/debugging/breakpoint-troubleshooting
http://www.rstudio.com/ide/docs/debugging/breakpoint-troubleshooting
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• debug() inserts a browser statement in the first line of the specified
function. undebug() removes it. Alternatively, you can use debugonce()
to browse only on the next run.

• utils::setBreakpoint() works similarly, but instead of taking a func-
tion name, it takes a file name and line number and finds the appro-
priate function for you.

These two functions are both special cases of trace(), which inserts arbi-
trary code at any position in an existing function. trace() is occasionally
useful when you’re debugging code that you don’t have the source for.
To remove tracing from a function, use untrace(). You can only perform
one trace per function, but that one trace can call multiple functions.

9.2.4 The call stack: traceback(), where, and recover()

Unfortunately the call stacks printed by traceback(), browser() + where,
and recover() are not consistent. The following table shows how the call
stacks from a simple nested set of calls are displayed by the three tools.

traceback() where recover()

4: stop("Error") where 1: stop("Error") 1: f()

3: h(x) where 2: h(x) 2: g(x)

2: g(x) where 3: g(x) 3: h(x)

1: f() where 4: f()

Note that numbering is different between traceback() and where, and
that recover() displays calls in the opposite order, and omits the call
to stop(). RStudio displays calls in the same order as traceback() but
omits the numbers.

9.2.5 Other types of failure

There are other ways for a function to fail apart from throwing an error
or returning an incorrect result.

• A function may generate an unexpected warning. The easiest way to
track down warnings is to convert them into errors with options(warn
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= 2) and use the regular debugging tools. When you do this you’ll
see some extra calls in the call stack, like doWithOneRestart(),
withOneRestart(), withRestarts(), and .signalSimpleWarning().
Ignore these: they are internal functions used to turn warnings into
errors.

• A function may generate an unexpected message. There’s no built-in
tool to help solve this problem, but it’s possible to create one:

message2error <- function(code) {

withCallingHandlers(code, message = function(e) stop(e))

}

f <- function() g()

g <- function() message("Hi!")

g()

# Error in message("Hi!"): Hi!

message2error(g())

traceback()

# 10: stop(e) at #2

# 9: (function (e) stop(e))(list(message = "Hi!\n",

# call = message("Hi!")))

# 8: signalCondition(cond)

# 7: doWithOneRestart(return(expr), restart)

# 6: withOneRestart(expr, restarts[[1L]])

# 5: withRestarts()

# 4: message("Hi!") at #1

# 3: g()

# 2: withCallingHandlers(code, message = function(e) stop(e))

# at #2

# 1: message2error(g())

As with warnings, you’ll need to ignore some of the calls on the trace-
back (i.e., the first two and the last seven).

• A function might never return. This is particularly hard to debug
automatically, but sometimes terminating the function and looking
at the call stack is informative. Otherwise, use the basic debugging
strategies described above.

• The worst scenario is that your code might crash R completely, leaving
you with no way to interactively debug your code. This indicates a
bug in the underlying C code. This is hard to debug. Sometimes an
interactive debugger, like gdb, can be useful, but describing how to use
it is beyond the scope of this book.
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If the crash is caused by base R code, post a reproducible example to
R-help. If it’s in a package, contact the package maintainer. If it’s your
own C or C++ code, you’ll need to use numerous print() statements
to narrow down the location of the bug, and then you’ll need to use
many more print statements to figure out which data structure doesn’t
have the properties that you expect.

9.3 Condition handling

Unexpected errors require interactive debugging to figure out what went
wrong. Some errors, however, are expected, and you want to handle
them automatically. In R, expected errors crop up most frequently when
you’re fitting many models to different datasets, such as bootstrap repli-
cates. Sometimes the model might fail to fit and throw an error, but you
don’t want to stop everything. Instead, you want to fit as many models
as possible and then perform diagnostics after the fact.

In R, there are three tools for handling conditions (including errors)
programmatically:

• try() gives you the ability to continue execution even when an error
occurs.

• tryCatch() lets you specify handler functions that control what hap-
pens when a condition is signalled.

• withCallingHandlers() is a variant of tryCatch() that runs its handlers
in a different context. It’s rarely needed, but is useful to be aware of.

The following sections describe these tools in more detail.

9.3.1 Ignore errors with try

try() allows execution to continue even after an error has occurred.
For example, normally if you run a function that throws an error, it
terminates immediately and doesn’t return a value:

f1 <- function(x) {

log(x)
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10

}

f1("x")

#> Error in log(x): non-numeric argument to mathematical function

However, if you wrap the statement that creates the error in try(), the
error message will be printed but execution will continue:

f2 <- function(x) {

try(log(x))

10

}

f2("a")

#> Error in log(x) : non-numeric argument to mathematical function

#> [1] 10

You can suppress the message with try(..., silent = TRUE).

To pass larger blocks of code to try(), wrap them in {}:

try({

a <- 1

b <- "x"

a + b

})

You can also capture the output of the try() function. If successful, it
will be the last result evaluated in the block (just like a function). If
unsuccessful it will be an (invisible) object of class “try-error”:

success <- try(1 + 2)

failure <- try("a" + "b")

class(success)

#> [1] "numeric"

class(failure)

#> [1] "try-error"

try() is particularly useful when you’re applying a function to multiple
elements in a list:

elements <- list(1:10, c(-1, 10), c(T, F), letters)
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results <- lapply(elements, log)

#> Warning in lapply(elements, log): NaNs produced

#> Error in FUN(X[[4L]], ...): non-numeric argument to mathematical function

results <- lapply(elements, function(x) try(log(x)))

#> Warning in log(x): NaNs produced

There isn’t a built-in function to test for the try-error class, so we’ll define
one. Then you can easily find the locations of errors with sapply() (as
discussed in Chapter 11), and extract the successes or look at the inputs
that lead to failures.

is.error <- function(x) inherits(x, "try-error")

succeeded <- !sapply(results, is.error)

# look at successful results

str(results[succeeded])

#> List of 3

#> $ : num [1:10] 0 0.693 1.099 1.386 1.609 ...

#> $ : num [1:2] NaN 2.3

#> $ : num [1:2] 0 -Inf

# look at inputs that failed

str(elements[!succeeded])

#> List of 1

#> $ : chr [1:26] "a" "b" "c" "d" ...

Another useful try() idiom is using a default value if an expression fails.
Simply assign the default value outside the try block, and then run the
risky code:

default <- NULL

try(default <- read.csv("possibly-bad-input.csv"), silent = TRUE)

There is also plyr::failwith(), which makes this strategy even easier to
implement. See Section 12.2 for more details.

9.3.2 Handle conditions with tryCatch()

tryCatch() is a general tool for handling conditions: in addition to errors,
you can take different actions for warnings, messages, and interrupts.
You’ve seen errors (made by stop()), warnings (warning()) and messages
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(message()) before, but interrupts are new. They can’t be generated
directly by the programmer, but are raised when the user attempts to
terminate execution by pressing Ctrl + Break, Escape, or Ctrl + C
(depending on the platform).

With tryCatch() you map conditions to handlers, named functions
that are called with the condition as an input. If a condition is sig-
nalled, tryCatch() will call the first handler whose name matches one
of the classes of the condition. The only useful built-in names are
error, warning, message, interrupt, and the catch-all condition. A
handler function can do anything, but typically it will either return
a value or create a more informative error message. For example, the
show_condition() function below sets up handlers that return the type
of condition signalled:

show_condition <- function(code) {

tryCatch(code,

error = function(c) "error",

warning = function(c) "warning",

message = function(c) "message"

)

}

show_condition(stop("!"))

#> [1] "error"

show_condition(warning("?!"))

#> [1] "warning"

show_condition(message("?"))

#> [1] "message"

# If no condition is captured, tryCatch returns the

# value of the input

show_condition(10)

#> [1] 10

You can use tryCatch() to implement try(). A simple implementation
is shown below. base::try() is more complicated in order to make the
error message look more like what you’d see if tryCatch() wasn’t used.
Note the use of conditionMessage() to extract the message associated
with the original error.

try2 <- function(code, silent = FALSE) {

tryCatch(code, error = function(c) {

msg <- conditionMessage(c)



164 Advanced R

if (!silent) message(c)

invisible(structure(msg, class = "try-error"))

})

}

try2(1)

#> [1] 1

try2(stop("Hi"))

try2(stop("Hi"), silent = TRUE)

As well as returning default values when a condition is signalled, handlers
can be used to make more informative error messages. For example, by
modifying the message stored in the error condition object, the following
function wraps read.csv() to add the file name to any errors:

read.csv2 <- function(file, ...) {

tryCatch(read.csv(file, ...), error = function(c) {

c$message <- paste0(c$message, " (in ", file, ")")

stop(c)

})

}

read.csv("code/dummy.csv")

#> Error in file(file, "rt"): cannot open the connection

read.csv2("code/dummy.csv")

#> Error in file(file, "rt"): cannot open the connection (in code/dummy.csv)

Catching interrupts can be useful if you want to take special action when
the user tries to abort running code. But be careful, it’s easy to create
a loop that you can never escape (unless you kill R)!

# Don't let the user interrupt the code

i <- 1

while(i < 3) {

tryCatch({

Sys.sleep(0.5)

message("Try to escape")

}, interrupt = function(x) {

message("Try again!")

i <<- i + 1

})

}
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tryCatch() has one other argument: finally. It specifies a block of
code (not a function) to run regardless of whether the initial expression
succeeds or fails. This can be useful for clean up (e.g., deleting files,
closing connections). This is functionally equivalent to using on.exit()

but it can wrap smaller chunks of code than an entire function.

9.3.3 withCallingHandlers()

An alternative to tryCatch() is withCallingHandlers(). There are two
main differences between these functions:

• The return value of tryCatch() handlers is returned by tryCatch(),
whereas the return value of withCallingHandlers() handlers is ignored:

f <- function() stop("!")

tryCatch(f(), error = function(e) 1)

#> [1] 1

withCallingHandlers(f(), error = function(e) 1)

#> Error in f(): !

• The handlers in withCallingHandlers() are called in the context of the
call that generated the condition whereas the handlers in tryCatch()

are called in the context of tryCatch(). This is shown here with
sys.calls(), which is the run-time equivalent of traceback() — it
lists all calls leading to the current function.

f <- function() g()

g <- function() h()

h <- function() stop("!")

tryCatch(f(), error = function(e) print(sys.calls()))

# [[1]] tryCatch(f(), error = function(e) print(sys.calls()))

# [[2]] tryCatchList(expr, classes, parentenv, handlers)

# [[3]] tryCatchOne(expr, names, parentenv, handlers[[1L]])

# [[4]] value[[3L]](cond)

withCallingHandlers(f(), error = function(e) print(sys.calls()))

# [[1]] withCallingHandlers(f(),

# error = function(e) print(sys.calls()))

# [[2]] f()

# [[3]] g()

# [[4]] h()
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# [[5]] stop("!")

# [[6]] .handleSimpleError(

# function (e) print(sys.calls()), "!", quote(h()))

# [[7]] h(simpleError(msg, call))

This also affects the order in which on.exit() is called.

These subtle differences are rarely useful, except when you’re trying to
capture exactly what went wrong and pass it on to another function. For
most purposes, you should never need to use withCallingHandlers().

9.3.4 Custom signal classes

One of the challenges of error handling in R is that most functions just
call stop() with a string. That means if you want to figure out if a par-
ticular error occurred, you have to look at the text of the error message.
This is error prone, not only because the text of the error might change
over time, but also because many error messages are translated, so the
message might be completely different to what you expect.

R has a little known and little used feature to solve this problem. Con-
ditions are S3 classes, so you can define your own classes if you want to
distinguish different types of error. Each condition signalling function,
stop(), warning(), and message(), can be given either a list of strings,
or a custom S3 condition object. Custom condition objects are not used
very often, but are very useful because they make it possible for the user
to respond to different errors in different ways. For example, “expected”
errors (like a model failing to converge for some input datasets) can be
silently ignored, while unexpected errors (like no disk space available)
can be propagated to the user.

R doesn’t come with a built-in constructor function for conditions, but
we can easily add one. Conditions must contain message and call com-
ponents, and may contain other useful components. When creating a
new condition, it should always inherit from condition and one of error,
warning, or message.

condition <- function(subclass, message, call = sys.call(-1), ...) {

structure(

class = c(subclass, "condition"),

list(message = message, call = call),

...

)
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}

is.condition <- function(x) inherits(x, "condition")

You can signal an arbitrary condition with signalCondition(), but noth-
ing will happen unless you’ve instantiated a custom signal handler (with
tryCatch() or withCallingHandlers()). Instead, use stop(), warning(),
or message() as appropriate to trigger the usual handling. R won’t com-
plain if the class of your condition doesn’t match the function, but you
should avoid this in real code.

c <- condition(c("my_error", "error"), "This is an error")

signalCondition(c)

# NULL

stop(c)

# Error: This is an error

warning(c)

# Warning message: This is an error

message(c)

# This is an error

You can then use tryCatch() to take different actions for different types
of errors. In this example we make a convenient custom_stop() function
that allows us to signal error conditions with arbitrary classes. In a
real application, it would be better to have individual S3 constructor
functions that you could document, describing the error classes in more
detail.

custom_stop <- function(subclass, message, call = sys.call(-1),

...) {

c <- condition(c(subclass, "error"), message, call = call, ...)

stop(c)

}

my_log <- function(x) {

if (!is.numeric(x))

custom_stop("invalid_class", "my_log() needs numeric input")

if (any(x < 0))

custom_stop("invalid_value", "my_log() needs positive inputs")

log(x)

}

tryCatch(
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my_log("a"),

invalid_class = function(c) "class",

invalid_value = function(c) "value"

)

#> [1] "class"

Note that when using tryCatch() with multiple handlers and custom
classes, the first handler to match any class in the signal’s class hierarchy
is called, not the best match. For this reason, you need to make sure to
put the most specific handlers first:

tryCatch(customStop("my_error", "!"),

error = function(c) "error",

my_error = function(c) "my_error"

)

#> [1] "error"

tryCatch(custom_stop("my_error", "!"),

my_error = function(c) "my_error",

error = function(c) "error"

)

#> [1] "my_error"

9.3.5 Exercises

• Compare the following two implementations of message2error().
What is the main advantage of withCallingHandlers() in this
scenario? (Hint: look carefully at the traceback.)

message2error <- function(code) {

withCallingHandlers(code, message = function(e) stop(e))

}

message2error <- function(code) {

tryCatch(code, message = function(e) stop(e))

}

9.4 Defensive programming

Defensive programming is the art of making code fail in a well-defined
manner even when something unexpected occurs. A key principle of
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defensive programming is to “fail fast”: as soon as something wrong is
discovered, signal an error. This is more work for the author of the
function (you!), but it makes debugging easier for users because they
get errors earlier rather than later, after unexpected input has passed
through several functions.
In R, the “fail fast” principle is implemented in three ways:

• Be strict about what you accept. For example, if your function is
not vectorised in its inputs, but uses functions that are, make sure
to check that the inputs are scalars. You can use stopifnot(), the
assertthat (https://github.com/hadley/assertthat) package, or simple
if statements and stop().

• Avoid functions that use non-standard evaluation, like subset,
transform, and with. These functions save time when used interac-
tively, but because they make assumptions to reduce typing, when
they fail, they often fail with uninformative error messages. You can
learn more about non-standard evaluation in Chapter 13.

• Avoid functions that return different types of output depending on
their input. The two biggest offenders are [ and sapply(). Whenever
subsetting a data frame in a function, you should always use drop =

FALSE, otherwise you will accidentally convert 1-column data frames
into vectors. Similarly, never use sapply() inside a function: always
use the stricter vapply() which will throw an error if the inputs are
incorrect types and return the correct type of output even for zero-
length inputs.

There is a tension between interactive analysis and programming. When
you’re working interactively, you want R to do what you mean. If it
guesses wrong, you want to discover that right away so you can fix
it. When you’re programming, you want functions that signal errors if
anything is even slightly wrong or underspecified. Keep this tension in
mind when writing functions. If you’re writing functions to facilitate
interactive data analysis, feel free to guess what the analyst wants and
recover from minor misspecifications automatically. If you’re writing
functions for programming, be strict. Never try to guess what the caller
wants.

9.4.1 Exercises

• The goal of the col_means() function defined below is to compute the
means of all numeric columns in a data frame.

https://github.com/hadley/assertthat
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col_means <- function(df) {

numeric <- sapply(df, is.numeric)

numeric_cols <- df[, numeric]

data.frame(lapply(numeric_cols, mean))

}

However, the function is not robust to unusual inputs. Look at the fol-
lowing results, decide which ones are incorrect, and modify col_means()

to be more robust. (Hint: there are two function calls in col_means()

that are particularly prone to problems.)

col_means(mtcars)

col_means(mtcars[, 0])

col_means(mtcars[0, ])

col_means(mtcars[, "mpg", drop = F])

col_means(1:10)

col_means(as.matrix(mtcars))

col_means(as.list(mtcars))

mtcars2 <- mtcars

mtcars2[-1] <- lapply(mtcars2[-1], as.character)

col_means(mtcars2)

• The following function “lags” a vector, returning a version of x that is n
values behind the original. Improve the function so that it (1) returns
a useful error message if n is not a vector, and (2) has reasonable
behaviour when n is 0 or longer than x.

lag <- function(x, n = 1L) {

xlen <- length(x)

c(rep(NA, n), x[seq_len(xlen - n)])

}

9.5 Quiz answers

1. The most useful tool to determine where a error occured is
traceback(). Or use Rstudio, which displays it automatically
where an error occurs.
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2. browser() pauses execution at the specified line and allows
you to enter an interactive environment. In that environment,
there are five useful commands: n, execute the next command;
s, step into the next function; f, finish the current loop or
function; c, continue execution normally; Q, stop the function
and return to the console.

3. You could use try() or tryCatch().
4. Because you can then capture specific types of error with

tryCatch(), rather than relying on the comparison of error
strings, which is risky, especially when messages are trans-
lated.
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10
Functional programming

R, at its heart, is a functional programming (FP) language. This means
that it provides many tools for the creation and manipulation of func-
tions. In particular, R has what’s known as first class functions. You
can do anything with functions that you can do with vectors: you can
assign them to variables, store them in lists, pass them as arguments to
other functions, create them inside functions, and even return them as
the result of a function.

The chapter starts by showing a motivating example, removing redun-
dancy and duplication in code used to clean and summarise data. Then
you’ll learn about the three building blocks of functional programming:
anonymous functions, closures (functions written by functions), and lists
of functions. These pieces are twined together in the conclusion which
shows how to build a suite of tools for numerical integration, starting
from very simple primitives. This is a recurring theme in FP: start with
small, easy-to-understand building blocks, combine them into more com-
plex structures, and apply them with confidence.

The discussion of functional programming continues in the following two
chapters: Chapter 11 explores functions that take functions as arguments
and return vectors as output, and Chapter 12 explores functions that
take functions as input and return them as output.

Outline

• Section 10.1 motivates functional programming using a common prob-
lem: cleaning and summarising data before serious analysis.

• Section 10.2 shows you a side of functions that you might not have
known about: you can use functions without giving them a name.

• Section 10.3 introduces the closure, a function written by another func-
tion. A closure can access its own arguments, and variables defined in
its parent.

175
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• Section 10.4 shows how to put functions in a list, and explains why
you might care.

• Section 10.5 concludes the chapter with a case study that uses anony-
mous functions, closures and lists of functions to build a flexible toolkit
for numerical integration.

Prequisites

You should be familiar with the basic rules of lexical scoping, as de-
scribed in Section 6.2. Make sure you’ve installed the pryr package with
install.packages("pryr")

10.1 Motivation

Imagine you’ve loaded a data file, like the one below, that uses −99 to
represent missing values. You want to replace all the −99s with NAs.

# Generate a sample dataset

set.seed(1014)

df <- data.frame(replicate(6, sample(c(1:10, -99), 6, rep = TRUE)))

names(df) <- letters[1:6]

df

#> a b c d e f

#> 1 1 6 1 5 -99 1

#> 2 10 4 4 -99 9 3

#> 3 7 9 5 4 1 4

#> 4 2 9 3 8 6 8

#> 5 1 10 5 9 8 6

#> 6 6 2 1 3 8 5

When you first started writing R code, you might have solved the prob-
lem with copy-and-paste:

df$a[df$a == -99] <- NA

df$b[df$b == -99] <- NA

df$c[df$c == -98] <- NA

df$d[df$d == -99] <- NA
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df$e[df$e == -99] <- NA

df$f[df$g == -99] <- NA

One problem with copy-and-paste is that it’s easy to make mistakes.
Can you spot the two in the block above? These mistakes are inconsis-
tencies that arose because we didn’t have an authorative description of
the desired action (replace −99 with NA). Duplicating an action makes
bugs more likely and makes it harder to change code. For example, if
the code for a missing value changes from −99 to 9999, you’d need to
make the change in multiple places.

To prevent bugs and to make more flexible code, adopt the “do not
repeat yourself”, or DRY, principle. Popularised by the “pragmatic pro-
grammers” (http://pragprog.com/about), Dave Thomas and Andy Hunt,
this principle states: “every piece of knowledge must have a single, un-
ambiguous, authoritative representation within a system”. FP tools are
valuable because they provide tools to reduce duplication.

We can start applying FP ideas by writing a function that fixes the
missing values in a single vector:

fix_missing <- function(x) {

x[x == -99] <- NA

x

}

df$a <- fix_missing(df$a)

df$b <- fix_missing(df$b)

df$c <- fix_missing(df$c)

df$d <- fix_missing(df$d)

df$e <- fix_missing(df$e)

df$f <- fix_missing(df$e)

This reduces the scope of possible mistakes, but it doesn’t eliminate
them: you can no longer accidentally type -98 instead of -99, but you
can still mess up the name of variable. The next step is to remove
this possible source of error by combining two functions. One function,
fix_missing(), knows how to fix a single vector; the other, lapply(),
knows how to do something to each column in a data frame.

lapply() takes three inputs: x, a list; f, a function; and ..., other
arguments to pass to f(). It applies the function to each element of
the list and returns a new list. lapply(x, f, ...) is equivalent to the
following for loop:

http://pragprog.com/about
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out <- vector("list", length(x))

for (i in seq_along(x)) {

out[[i]] <- f(x[[i]], ...)

}

The real lapply() is rather more complicated since it’s implemented in
C for efficiency, but the essence of the algorithm is the same. lapply() is
called a functional, because it takes a function as an argument. Func-
tionals are an important part of functional programming. You’ll learn
more about them in Chapter 11.

We can apply lapply() to this problem because data frames are lists.
We just need a neat little trick to make sure we get back a data frame,
not a list. Instead of assigning the results of lapply() to df, we’ll assign
them to df[]. R’s usual rules ensure that we get a data frame, not a
list. (If this comes as a surprise, you might want to read Section 3.3.)
Putting these pieces together gives us:

fix_missing <- function(x) {

x[x == -99] <- NA

x

}

df[] <- lapply(df, fix_missing)

This code has five advantages over copy and paste:

• It’s more compact.

• If the code for a missing value changes, it only needs to be updated in
one place.

• It works for any number of columns. There is no way to accidentally
miss a column.

• There is no way to accidentally treat one column differently than an-
other.

• It is easy to generalise this technique to a subset of columns:

df[1:5] <- lapply(df[1:5], fix_missing)

The key idea is function composition. Take two simple functions, one
which does something to every column and one which fixes missing val-
ues, and combine them to fix missing values in every column. Writing
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simple functions that can be understood in isolation and then composed
is a powerful technique.

What if different columns used different codes for missing values? You
might be tempted to copy-and-paste:

fix_missing_99 <- function(x) {

x[x == -99] <- NA

x

}

fix_missing_999 <- function(x) {

x[x == -999] <- NA

x

}

fix_missing_9999 <- function(x) {

x[x == -999] <- NA

x

}

As before, it’s easy to create bugs. Instead we could use closures, func-
tions that make and return functions. Closures allow us to make func-
tions based on a template:

missing_fixer <- function(na_value) {

function(x) {

x[x == na_value] <- NA

x

}

}

fix_missing_99 <- missing_fixer(-99)

fix_missing_999 <- missing_fixer(-999)

fix_missing_99(c(-99, -999))

#> [1] NA -999

fix_missing_999(c(-99, -999))

#> [1] -99 NA
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Extra argument

In this case, you could argue that we should just add another argu-
ment:

fix_missing <- function(x, na.value) {

x[x == na.value] <- NA

x

}

That’s a reasonable solution here, but it doesn’t always work well
in every situation. We’ll see more compelling uses for closures in
Section 11.5.

Now consider a related problem. Once you’ve cleaned up your data, you
might want to compute the same set of numerical summaries for each
variable. You could write code like this:

mean(df$a)

median(df$a)

sd(df$a)

mad(df$a)

IQR(df$a)

mean(df$b)

median(df$b)

sd(df$b)

mad(df$b)

IQR(df$b)

But again, you’d be better off identifying and removing duplicate items.
Take a minute or two to think about how you might tackle this problem
before reading on.

One approach would be to write a summary function and then apply it
to each column:

summary <- function(x) {

c(mean(x), median(x), sd(x), mad(x), IQR(x))

}

lapply(df, summary)
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That’s a great start, but there’s still some duplication. It’s easier to see
if we make the summary function more realistic:

summary <- function(x) {

c(mean(x, na.rm = TRUE),

median(x, na.rm = TRUE),

sd(x, na.rm = TRUE),

mad(x, na.rm = TRUE),

IQR(x, na.rm = TRUE))

}

All five functions are called with the same arguments (x and na.rm)
repeated five times. As always, duplication makes our code fragile: it’s
easier to introduce bugs and harder to adapt to changing requirements.

To remove this source of duplication, you can take advantage of another
functional programming technique: storing functions in lists.

summary <- function(x) {

funs <- c(mean, median, sd, mad, IQR)

lapply(funs, function(f) f(x, na.rm = TRUE))

}

This chapter discusses these techniques in more detail. But before you
can start learning them, you need to learn the simplest FP tool, the
anonymous function.

10.2 Anonymous functions

In R, functions are objects in their own right. They aren’t automatically
bound to a name. Unlike many languages (e.g., C, C++, Python, and
Ruby), R doesn’t have a special syntax for creating a named function:
when you create a function, you use the regular assignment operator to
give it a name. If you choose not to give the function a name, you get
an anonymous function.

You use an anonymous function when it’s not worth the effort to give it
a name:
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lapply(mtcars, function(x) length(unique(x)))

Filter(function(x) !is.numeric(x), mtcars)

integrate(function(x) sin(x) ^ 2, 0, pi)

Like all functions in R, anonymous functions have formals(), a body(),
and a parent environment():

formals(function(x = 4) g(x) + h(x))

#> $x

#> [1] 4

body(function(x = 4) g(x) + h(x))

#> g(x) + h(x)

environment(function(x = 4) g(x) + h(x))

#> <environment: R_GlobalEnv>

You can call an anonymous function without giving it a name, but the
code is a little tricky to read because you must use parentheses in two
different ways: first, to call a function, and second to make it clear that
you want to call the anonymous function itself, as opposed to calling a
(possibly invalid) function inside the anonymous function:

# This does not call the anonymous function.

# (Note that "3" is not a valid function.)

function(x) 3()

#> function(x) 3()

# With appropriate parenthesis, the function is called:

(function(x) 3)()

#> [1] 3

# So this anonymous function syntax

(function(x) x + 3)(10)

#> [1] 13

# behaves exactly the same as

f <- function(x) x + 3

f(10)

#> [1] 13

You can call anonymous functions with named arguments, but doing so
is a good sign that your function needs a name.
One of the most common uses for anonymous functions is to create
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closures, functions made by other functions. Closures are described in
the next section.

10.2.1 Exercises

1. Given a function, like "mean", match.fun() lets you find a func-
tion. Given a function, can you find its name? Why doesn’t
that make sense in R?

2. Use lapply() and an anonymous function to find the coeffi-
cient of variation (the standard deviation divided by the mean)
for all columns in the mtcars dataset.

3. Use integrate() and an anonymous function to find the area
under the curve for the following functions. Use Wolfram Al-
pha (http://www.wolframalpha.com/) to check your answers.
1. y = x ˆ 2 - x, x in [0, 10]
2. y = sin(x) + cos(x), x in [-π, π]
3. y = exp(x) / x, x in [10, 20]

4. A good rule of thumb is that an anonymous function should fit
on one line and shouldn’t need to use {}. Review your code.
Where could you have used an anonymous function instead
of a named function? Where should you have used a named
function instead of an anonymous function?

10.3 Closures

“An object is data with functions. A closure is a function with data.”
— John D. Cook

One use of anonymous functions is to create small functions that are not
worth naming. Another important use is to create closures, functions
written by functions. Closures get their name because they enclose the
environment of the parent function and can access all its variables. This
is useful because it allows us to have two levels of parameters: a parent
level that controls operation and a child level that does the work.
The following example uses this idea to generate a family of power func-
tions in which a parent function (power()) creates two child functions
(square() and cube()).

http://www.wolframalpha.com/
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power <- function(exponent) {

function(x) {

x ^ exponent

}

}

square <- power(2)

square(2)

#> [1] 4

square(4)

#> [1] 16

cube <- power(3)

cube(2)

#> [1] 8

cube(4)

#> [1] 64

When you print a closure, you don’t see anything terribly useful:

square

#> function(x) {

#> x ^ exponent

#> }

#> <environment: 0x7fda09128f20>

cube

#> function(x) {

#> x ^ exponent

#> }

#> <environment: 0x7fda04748a60>

That’s because the function itself doesn’t change. The difference is the
enclosing environment, environment(square). One way to see the con-
tents of the environment is to convert it to a list:

as.list(environment(square))

#> $exponent

#> [1] 2

as.list(environment(cube))

#> $exponent

#> [1] 3
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Another way to see what’s going on is to use pryr::unenclose(). This
function replaces variables defined in the enclosing environment with
their values:

library(pryr)

unenclose(square)

#> function (x)

#> {

#> x^2

#> }

unenclose(cube)

#> function (x)

#> {

#> x^3

#> }

The parent environment of a closure is the execution environment of the
function that created it, as shown by this code:

power <- function(exponent) {

print(environment())

function(x) x ^ exponent

}

zero <- power(0)

#> <environment: 0x7fda04cc0b18>

environment(zero)

#> <environment: 0x7fda04cc0b18>

The execution environment normally disappears after the function re-
turns a value. However, functions capture their enclosing environments.
This means when function a returns function b, function b captures and
stores the execution environment of function a, and it doesn’t disappear.
(This has important consequences for memory use, see Section 18.2 for
details.)
In R, almost every function is a closure. All functions remember the
environment in which they were created, typically either the global envi-
ronment, if it’s a function that you’ve written, or a package environment,
if it’s a function that someone else has written. The only exception is
primitive functions, which call C code directly and don’t have an asso-
ciated environment.
Closures are useful for making function factories, and are one way to
manage mutable state in R.
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10.3.1 Function factories

A function factory is a factory for making new functions. We’ve already
seen two examples of function factories, missing_fixer() and power().
You call it with arguments that describe the desired actions, and it
returns a function that will do the work for you. For missing_fixer()

and power(), there’s not much benefit in using a function factory instead
of a single function with multiple arguments. Function factories are most
useful when:

• The different levels are more complex, with multiple arguments and
complicated bodies.

• Some work only needs to be done once, when the function is generated.

Function factories are particularly well suited to maximum likelihood
problems, and you’ll see a more compelling use of them in Section 11.5.

10.3.2 Mutable state

Having variables at two levels allows you to maintain state across func-
tion invocations. This is possible because while the execution environ-
ment is refreshed every time, the enclosing environment is constant. The
key to managing variables at different levels is the double arrow assign-
ment operator (<<-). Unlike the usual single arrow assignment (<-) that
always assigns in the current environment, the double arrow operator
will keep looking up the chain of parent environments until it finds a
matching name. (Section 8.4 has more details on how it works.)

Together, a static parent environment and <<- make it possible to main-
tain state across function calls. The following example shows a counter
that records how many times a function has been called. Each time
new_counter is run, it creates an environment, initialises the counter i

in this environment, and then creates a new function.

new_counter <- function() {

i <- 0

function() {

i <<- i + 1

i

}

}
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The new function is a closure, and its enclosing environment is the en-
vironment created when new_counter() is run. Ordinarily, function ex-
ecution environments are temporary, but a closure maintains access to
the environment in which it was created. In the example below, closures
counter_one() and counter_two() each get their own enclosing environ-
ments when run, so they can maintain different counts.

counter_one <- new_counter()

counter_two <- new_counter()

counter_one()

#> [1] 1

counter_one()

#> [1] 2

counter_two()

#> [1] 1

The counters get around the “fresh start” limitation by not modifying
variables in their local environment. Since the changes are made in the
unchanging parent (or enclosing) environment, they are preserved across
function calls.

What happens if you don’t use a closure? What happens if you use <-

instead of <<-? Make predictions about what will happen if you replace
new_counter() with the variants below, then run the code and check your
predictions.

i <- 0

new_counter2 <- function() {

i <<- i + 1

i

}

new_counter3 <- function() {

i <- 0

function() {

i <- i + 1

i

}

}

Modifying values in a parent environment is an important technique
because it is one way to generate “mutable state” in R. Mutable state
is normally hard because every time it looks like you’re modifying an
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object, you’re actually creating and then modifying a copy. However,
if you do need mutable objects and your code is not very simple, it’s
usually better to use reference classes, as described in Section 7.4.
The power of closures is tightly coupled with the more advanced ideas
in Chapter 11 and Chapter 12. You’ll see many more closures in those
two chapters. The following section discusses the third technique of
functional programming in R: the ability to store functions in a list.

10.3.3 Exercises

1. Why are functions created by other functions called closures?
2. What does the following statistical function do? What would

be a better name for it? (The existing name is a bit of a hint.)

bc <- function(lambda) {

if (lambda == 0) {

function(x) log(x)

} else {

function(x) (x ^ lambda - 1) / lambda

}

}

3. What does approxfun() do? What does it return?
4. What does ecdf() do? What does it return?
5. Create a function that creates functions that compute the

ith central moment (http://en.wikipedia.org/wiki/Central_
moment) of a numeric vector. You can test it by running the
following code:

m1 <- moment(1)

m2 <- moment(2)

x <- runif(100)

stopifnot(all.equal(m1(x), 0))

stopifnot(all.equal(m2(x), var(x) * 99 / 100))

6. Create a function pick() that takes an index, i, as an argu-
ment and returns a function with an argument x that subsets
x with i.

lapply(mtcars, pick(5))

# should do the same as this

lapply(mtcars, function(x) x[[5]])

http://en.wikipedia.org/wiki/Central_moment
http://en.wikipedia.org/wiki/Central_moment
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10.4 Lists of functions

In R, functions can be stored in lists. This makes it easier to work with
groups of related functions, in the same way a data frame makes it easier
to work with groups of related vectors.

We’ll start with a simple benchmarking example. Imagine you are com-
paring the performance of multiple ways of computing the arithmetic
mean. You could do this by storing each approach (function) in a list:

compute_mean <- list(

base = function(x) mean(x),

sum = function(x) sum(x) / length(x),

manual = function(x) {

total <- 0

n <- length(x)

for (i in seq_along(x)) {

total <- total + x[i] / n

}

total

}

)

Calling a function from a list is straightforward. You extract it then call
it:

x <- runif(1e5)

system.time(compute_mean$base(x))

#> user system elapsed

#> 0.000 0.000 0.001

system.time(compute_mean[[2]](x))

#> user system elapsed

#> 0 0 0

system.time(compute_mean[["manual"]](x))

#> user system elapsed

#> 0.071 0.004 0.082

To call each function (e.g., to check that they all return the same results),
use lapply(). We’ll need either an anonymous function or a new named
function, since there isn’t a built-in function to handle this situation.
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lapply(compute_mean, function(f) f(x))

#> $base

#> [1] 0.499

#>

#> $sum

#> [1] 0.499

#>

#> $manual

#> [1] 0.499

call_fun <- function(f, ...) f(...)

lapply(compute_mean, call_fun, x)

#> $base

#> [1] 0.499

#>

#> $sum

#> [1] 0.499

#>

#> $manual

#> [1] 0.499

To time each function, we can combine lapply() and system.time():

lapply(compute_mean, function(f) system.time(f(x)))

#> $base

#> user system elapsed

#> 0.001 0.000 0.000

#>

#> $sum

#> user system elapsed

#> 0 0 0

#>

#> $manual

#> user system elapsed

#> 0.054 0.002 0.058

Another use for a list of functions is to summarise an object in multiple
ways. To do that, we could store each summary function in a list, and
then run them all with lapply():

x <- 1:10

funs <- list(
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sum = sum,

mean = mean,

median = median

)

lapply(funs, function(f) f(x))

#> $sum

#> [1] 55

#>

#> $mean

#> [1] 5.5

#>

#> $median

#> [1] 5.5

What if we wanted our summary functions to automatically remove miss-
ing values? One approach would be make a list of anonymous functions
that call our summary functions with the appropriate arguments:

funs2 <- list(

sum = function(x, ...) sum(x, ..., na.rm = TRUE),

mean = function(x, ...) mean(x, ..., na.rm = TRUE),

median = function(x, ...) median(x, ..., na.rm = TRUE)

)

lapply(funs2, function(f) f(x))

#> $sum

#> [1] 55

#>

#> $mean

#> [1] 5.5

#>

#> $median

#> [1] 5.5

This, however, leads to a lot of duplication. Apart from a different
function name, each function is almost identical. A better approach
would be to modify our lapply() call to include the extra argument:

lapply(funs, function(f) f(x, na.rm = TRUE))

10.4.1 Moving lists of functions to the global environment

From time to time you may create a list of functions that you want to be
available without having to use a special syntax. For example, imagine
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you want to create HTML code by mapping each tag to an R function.
The following example uses a function factory to create functions for the
tags <p> (paragraph), <b> (bold), and <i> (italics).

simple_tag <- function(tag) {

force(tag)

function(...) {

paste0("<", tag, ">", paste0(...), "</", tag, ">")

}

}

tags <- c("p", "b", "i")

html <- lapply(setNames(tags, tags), simple_tag)

I’ve put the functions in a list because I don’t want them to be available
all the time. The risk of a conflict between an existing R function and an
HTML tag is high. But keeping them in a list makes code more verbose:

html$p("This is ", html$b("bold"), " text.")

#> [1] "<p>This is <b>bold</b> text.</p>"

Depending on how long we want the effect to last, you have three options
to eliminate the use of html$:

• For a very temporary effect, you can use with():

with(html, p("This is ", b("bold"), " text."))

#> [1] "<p>This is <b>bold</b> text.</p>"

• For a longer effect, you can attach() the functions to the search path,
then detach() when you’re done:

attach(html)

p("This is ", b("bold"), " text.")

#> [1] "<p>This is <b>bold</b> text.</p>"

detach(html)

• Finally, you could copy the functions to the global environment with
list2env(). You can undo this by deleting the functions after you’re
done.

list2env(html, environment())

#> <environment: R_GlobalEnv>

p("This is ", b("bold"), " text.")

#> [1] "<p>This is <b>bold</b> text.</p>"

rm(list = names(html), envir = environment())
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I recommend the first option, using with(), because it makes it very clear
when code is being executed in a special context and what that context
is.

10.4.2 Exercises

1. Implement a summary function that works like base::summary(),
but uses a list of functions. Modify the function so it returns
a closure, making it possible to use it as a function factory.

2. Which of the following commands is equivalent to with(x,

f(z))?

(a) x$f(x$z).
(b) f(x$z).
(c) x$f(z).
(d) f(z).
(e) It depends.

10.5 Case study: numerical integration

To conclude this chapter, I’ll develop a simple numerical integration tool
using first-class functions. Each step in the development of the tool is
driven by a desire to reduce duplication and to make the approach more
general.

The idea behind numerical integration is simple: find the area under a
curve by approximating the curve with simpler components. The two
simplest approaches are the midpoint and trapezoid rules. The mid-
point rule approximates a curve with a rectangle. The trapezoid rule
uses a trapezoid. Each takes the function we want to integrate, f, and a
range of values, from a to b, to integrate over. For this example, I’ll try
to integrate sin x from 0 to π. This is a good choice for testing because
it has a simple answer: 2.

midpoint <- function(f, a, b) {

(b - a) * f((a + b) / 2)

}
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trapezoid <- function(f, a, b) {

(b - a) / 2 * (f(a) + f(b))

}

midpoint(sin, 0, pi)

#> [1] 3.14

trapezoid(sin, 0, pi)

#> [1] 1.92e-16

Neither of these functions gives a very good approximation. To make
them more accurate using the idea that underlies calculus: we’ll break
up the range into smaller pieces and integrate each piece using one of
the simple rules. This is called composite integration. I’ll implement
it using two new functions:

midpoint_composite <- function(f, a, b, n = 10) {

points <- seq(a, b, length = n + 1)

h <- (b - a) / n

area <- 0

for (i in seq_len(n)) {

area <- area + h * f((points[i] + points[i + 1]) / 2)

}

area

}

trapezoid_composite <- function(f, a, b, n = 10) {

points <- seq(a, b, length = n + 1)

h <- (b - a) / n

area <- 0

for (i in seq_len(n)) {

area <- area + h / 2 * (f(points[i]) + f(points[i + 1]))

}

area

}

midpoint_composite(sin, 0, pi, n = 10)

#> [1] 2.01

midpoint_composite(sin, 0, pi, n = 100)

#> [1] 2

trapezoid_composite(sin, 0, pi, n = 10)

#> [1] 1.98
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trapezoid_composite(sin, 0, pi, n = 100)

#> [1] 2

You’ll notice that there’s a lot of duplication between midpoint_composite()

and trapezoid_composite(). Apart from the internal rule used to in-
tegrate over a range, they are basically the same. From these specific
functions you can extract a more general composite integration function:

composite <- function(f, a, b, n = 10, rule) {

points <- seq(a, b, length = n + 1)

area <- 0

for (i in seq_len(n)) {

area <- area + rule(f, points[i], points[i + 1])

}

area

}

composite(sin, 0, pi, n = 10, rule = midpoint)

#> [1] 2.01

composite(sin, 0, pi, n = 10, rule = trapezoid)

#> [1] 1.98

This function takes two functions as arguments: the function to inte-
grate and the integration rule. We can now add even better rules for
integrating over smaller ranges:

simpson <- function(f, a, b) {

(b - a) / 6 * (f(a) + 4 * f((a + b) / 2) + f(b))

}

boole <- function(f, a, b) {

pos <- function(i) a + i * (b - a) / 4

fi <- function(i) f(pos(i))

(b - a) / 90 *

(7 * fi(0) + 32 * fi(1) + 12 * fi(2) + 32 * fi(3) + 7 * fi(4))

}

composite(sin, 0, pi, n = 10, rule = simpson)

#> [1] 2
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composite(sin, 0, pi, n = 10, rule = boole)

#> [1] 2

It turns out that the midpoint, trapezoid, Simpson, and Boole rules are
all examples of a more general family called Newton-Cotes rules (http:
//en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas). (They are
polynomials of increasing complexity.) We can use this common struc-
ture to write a function that can generate any general Newton-Cotes
rule:

newton_cotes <- function(coef, open = FALSE) {

n <- length(coef) + open

function(f, a, b) {

pos <- function(i) a + i * (b - a) / n

points <- pos(seq.int(0, length(coef) - 1))

(b - a) / sum(coef) * sum(f(points) * coef)

}

}

boole <- newton_cotes(c(7, 32, 12, 32, 7))

milne <- newton_cotes(c(2, -1, 2), open = TRUE)

composite(sin, 0, pi, n = 10, rule = milne)

#> [1] 1.99

Mathematically, the next step in improving numerical integration is to
move from a grid of evenly spaced points to a grid where the points are
closer together near the end of the range, such as Gaussian quadrature.
That’s beyond the scope of this case study, but you could implement it
with similar techniques.

10.5.1 Exercises

1. Instead of creating individual functions (e.g., midpoint(),
trapezoid(), simpson(), etc.), we could store them in a list.
If we did that, how would that change the code? Can you
create the list of functions from a list of coefficients for the
Newton-Cotes formulae?

2. The trade-off between integration rules is that more complex
rules are slower to compute, but need fewer pieces. For sin()

http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas
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in the range [0, π], determine the number of pieces needed so
that each rule will be equally accurate. Illustrate your results
with a graph. How do they change for different functions?
sin(1 / xˆ2) is particularly challenging.





11
Functionals

“To become significantly more reliable, code must become more
transparent. In particular, nested conditions and loops must be
viewed with great suspicion. Complicated control flows confuse
programmers. Messy code often hides bugs.”
— Bjarne Stroustrup

A higher-order function is a function that takes a function as an input
or returns a function as output. We’ve already seen one type of higher
order function: closures, functions returned by another function. The
complement to a closure is a functional, a function that takes a function
as an input and returns a vector as output. Here’s a simple functional: it
calls the function provided as input with 1000 random uniform numbers.

randomise <- function(f) f(runif(1e3))

randomise(mean)

#> [1] 0.506

randomise(mean)

#> [1] 0.501

randomise(sum)

#> [1] 489

The chances are that you’ve already used a functional: the three most
frequently used are lapply(), apply(), and tapply(). All three take a
function as input (among other things) and return a vector as output.

A common use of functionals is as an alternative to for loops. For loops
have a bad rap in R. They have a reputation for being slow (although
that reputation is only partly true, see Section 18.4 for more details).
But the real downside of for loops is that they’re not very expressive. A
for loop conveys that it’s iterating over something, but doesn’t clearly
convey a high level goal. Instead of using a for loop, it’s better to use
a functional. Each functional is tailored for a specific task, so when

199
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you recognise the functional you know immediately why it’s being used.
Functionals play other roles as well as replacements for for-loops. They
are useful for encapsulating common data manipulation tasks like split-
apply-combine, for thinking “functionally”, and for working with math-
ematical functions.

Functionals reduce bugs in your code by better communicating intent.
Functionals implemented in base R are well tested (i.e., bug-free) and
efficient, because they’re used by so many people. Many are written
in C, and use special tricks to enhance performance. That said, using
functionals will not always produce the fastest code. Instead, it helps you
clearly communicate and build tools that solve a wide range of problems.
It’s a mistake to focus on speed until you know it’ll be a problem. Once
you have clear, correct code you can make it fast using the techniques
you’ll learn in Chapter 17.

Outline

• Section 11.1 introduces your first functional: lapply().

• Section 11.2 shows you variants of lapply() that produce different
outputs, take different inputs, and distribute computation in different
ways.

• Section 11.3 discusses functionals that work with more complex data
structures like matrices and arrays.

• Section 11.4 teaches you about the powerful Reduce() and Filter()

functions which are useful for working with lists.

• Section 11.5 discusses functionals that you might be familiar with from
mathematics, like root finding, integration, and optimisation.

• Section 11.6 provides some important caveats about when you
shouldn’t attempt to convert a loop into a functional.

• Section 11.7 finishes off the chapter by showing you how functionals
can take a simple building block and use it to create a set of powerful
and consistent tools.

Prerequisites

You’ll use closures frequently used in conjunction with functionals. If
you need a refresher, review Section 10.3.
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11.1 My first functional: lapply()

The simplest functional is lapply(), which you may already be familiar
with. lapply() takes a function, applies it to each element in a list, and
returns the results in the form of a list. lapply() is the building block for
many other functionals, so it’s important to understand how it works.
Here’s a pictorial representation:

lapply() is written in C for performance, but we can create a simple R
implementation that does the same thing:

lapply2 <- function(x, f, ...) {

out <- vector("list", length(x))

for (i in seq_along(x)) {

out[[i]] <- f(x[[i]], ...)

}

out

}

From this code, you can see that lapply() is a wrapper for a common
for loop pattern: create a container for output, apply f() to each com-
ponent of a list, and fill the container with the results. All other for loop
functionals are variations on this theme: they simply use different types
of input or output.

lapply() makes it easier to work with lists by eliminating much of the
boilerplate associated with looping. This allows you to focus on the
function that you’re applying:
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# Create some random data

l <- replicate(20, runif(sample(1:10, 1)), simplify = FALSE)

# With a for loop

out <- vector("list", length(l))

for (i in seq_along(l)) {

out[[i]] <- length(l[[i]])

}

unlist(out)

#> [1] 3 1 1 2 2 10 5 9 7 2 4 10 8 2 9 7 3 2 2

#> [20] 8

# With lapply

unlist(lapply(l, length))

#> [1] 3 1 1 2 2 10 5 9 7 2 4 10 8 2 9 7 3 2 2

#> [20] 8

(I’m using unlist() to convert the output from a list to a vector to make
it more compact. We’ll see other ways of making the output a vector
shortly.)

Since data frames are also lists, lapply() is also useful when you want
to do something to each column of a data frame:

# What class is each column?

unlist(lapply(mtcars, class))

#> mpg cyl disp hp drat wt

#> "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"

#> qsec vs am gear carb

#> "numeric" "numeric" "numeric" "numeric" "numeric"

# Divide each column by the mean

mtcars[] <- lapply(mtcars, function(x) x / mean(x))

The pieces of x are always supplied as the first argument to f. If you
want to vary a different argument, you can use an anonymous function.
The following example varies the amount of trimming applied when com-
puting the mean of a fixed x.

trims <- c(0, 0.1, 0.2, 0.5)

x <- rcauchy(1000)

unlist(lapply(trims, function(trim) mean(x, trim = trim)))

#> [1] 0.2879 0.0790 0.0535 0.0502
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11.1.1 Looping patterns

It’s useful to remember that there are three basic ways to loop over a
vector:

1. loop over the elements: for (x in xs)

2. loop over the numeric indices: for (i in seq_along(xs))

3. loop over the names: for (nm in names(xs))

The first form is usually not a good choice for a for loop because it leads
to inefficient ways of saving output. With this form it’s very natural to
save the output by extending a datastructure, like in this example:

xs <- runif(1e3)

res <- c()

for (x in xs) {

# This is slow!

res <- c(res, sqrt(x))

}

This is slow because each time you extend the vector, R has to copy
all of the existing elements. Section 17.7 discusses this problem in more
depth. Instead, it’s much better to create the space you’ll need for the
output and then fill it in. This is easiest with the second form:

res <- numeric(length(xs))

for (i in seq_along(xs)) {

res[i] <- sqrt(xs[i])

}

Just as there are three basic ways to use a for loop, there are three basic
ways to use lapply():

lapply(xs, function(x) {})

lapply(seq_along(xs), function(i) {})

lapply(names(xs), function(nm) {})

Typically you’d use the first form because lapply() takes care of saving
the output for you. However, if you need to know the position or name
of the element you’re working with, you should use the second or third
form. Both give you an element’s position (i, nm) and value (xs[[i]],
xs[[nm]]). If you’re struggling to solve a problem using one form, you
might find it easier with another.
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11.1.2 Exercises

1. Why are the following two invocations of lapply() equivalent?

trims <- c(0, 0.1, 0.2, 0.5)

x <- rcauchy(100)

lapply(trims, function(trim) mean(x, trim = trim))

lapply(trims, mean, x = x)

2. The function below scales a vector so it falls in the range [0,
1]. How would you apply it to every column of a data frame?
How would you apply it to every numeric column in a data
frame?

scale01 <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rng[1]) / (rng[2] - rng[1])

}

3. Use both for loops and lapply() to fit linear models to the
mtcars using the formulas stored in this list:

formulas <- list(

mpg ~ disp,

mpg ~ I(1 / disp),

mpg ~ disp + wt,

mpg ~ I(1 / disp) + wt

)

4. Fit the model mpg ~ disp to each of the bootstrap replicates
of mtcars in the list below by using a for loop and lapply().
Can you do it without an anonymous function?

bootstraps <- lapply(1:10, function(i) {

rows <- sample(1:nrow(mtcars), rep = TRUE)

mtcars[rows, ]

})

5. For each model in the previous two exercises, extract R2 using
the function below.

rsq <- function(mod) summary(mod)$r.squared



Functionals 205

11.2 For loop functionals: friends of lapply()

The key to using functionals in place of for loops is recognising that
common looping patterns are already implemented in existing base func-
tionals. Once you’ve mastered these existing functionals, the next step
is to start writing your own: if you discover you’re duplicating the same
looping pattern in many places, you should extract it out into its own
function.

The following sections build on lapply() and discuss:

• sapply() and vapply(), variants of lapply() that produce vectors, ma-
trices, and arrays as output, instead of lists.

• Map() and mapply() which iterate over multiple input data structures
in parallel.

• mclapply() and mcMap(), parallel versions of lapply() and Map().

• Writing a new function, rollapply(), to solve a new problem.

11.2.1 Vector output: sapply and vapply

sapply() and vapply() are very similar to lapply() except they simplify
their output to produce an atomic vector. While sapply() guesses,
vapply() takes an additional argument specifying the output type.
sapply() is great for interactive use because it saves typing, but if
you use it inside your functions you’ll get weird errors if you supply
the wrong type of input. vapply() is more verbose, but gives more
informative error messages and never fails silently. It is better suited
for use inside other functions.

The following example illustrates these differences. When given a data
frame, sapply() and vapply() return the same results. When given an
empty list, sapply() returns another empty list instead of the more cor-
rect zero-length logical vector.

sapply(mtcars, is.numeric)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

vapply(mtcars, is.numeric, logical(1))
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#> mpg cyl disp hp drat wt qsec vs am gear carb

#> TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

sapply(list(), is.numeric)

#> list()

vapply(list(), is.numeric, logical(1))

#> logical(0)

If the function returns results of different types or lengths, sapply() will
silently return a list, while vapply() will throw an error. sapply() is
fine for interactive use because you’ll normally notice if something goes
wrong, but it’s dangerous when writing functions.

The following example illustrates a possible problem when extracting the
class of columns in a data frame: if you falsely assume that class only
has one value and use sapply(), you won’t find out about the problem
until some future function is given a list instead of a character vector.

df <- data.frame(x = 1:10, y = letters[1:10])

sapply(df, class)

#> x y

#> "integer" "factor"

vapply(df, class, character(1))

#> x y

#> "integer" "factor"

df2 <- data.frame(x = 1:10, y = Sys.time() + 1:10)

sapply(df2, class)

#> $x

#> [1] "integer"

#>

#> $y

#> [1] "POSIXct" "POSIXt"

vapply(df2, class, character(1))

#> Error in vapply(df2, class, character(1)): values must be length 1,

#> but FUN(X[[2]]) result is length 2

sapply() is a thin wrapper around lapply() that transforms a list into a
vector in the final step. vapply() is an implementation of lapply() that
assigns results to a vector (or matrix) of appropriate type instead of as
a list. The following code shows a pure R implementation of the essence
of sapply() and vapply() (the real functions have better error handling
and preserve names, among other things).
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sapply2 <- function(x, f, ...) {

res <- lapply2(x, f, ...)

simplify2array(res)

}

vapply2 <- function(x, f, f.value, ...) {

out <- matrix(rep(f.value, length(x)), nrow = length(x))

for (i in seq_along(x)) {

res <- f(x[i], ...)

stopifnot(

length(res) == length(f.value),

typeof(res) == typeof(f.value)

)

out[i, ] <- res

}

out

}

vapply() and sapply() have different outputs from lapply(). The fol-
lowing section discusses Map(), which has different inputs.

11.2.2 Multiple inputs: Map (and mapply)

With lapply(), only one argument to the function varies; the others are
fixed. This makes it poorly suited for some problems. For example,
how would you find a weighted mean when you have two lists, one of
observations and the other of weights?

# Generate some sample data

xs <- replicate(5, runif(10), simplify = FALSE)

ws <- replicate(5, rpois(10, 5) + 1, simplify = FALSE)
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It’s easy to use lapply() to compute the unweighted means:

unlist(lapply(xs, mean))

#> [1] 0.678 0.445 0.427 0.469 0.560

But how could we supply the weights to weighted.mean()? lapply(x,

means, w) won’t work because the additional arguments to lapply() are
passed to every call. We could change looping forms:

unlist(lapply(seq_along(xs), function(i) {

weighted.mean(xs[[i]], ws[[i]])

}))

#> [1] 0.695 0.464 0.403 0.501 0.521

This works, but it’s a little clumsy. A cleaner alternative is to use Map,
a variant of lapply(), where all arguments can vary. This lets us write:

unlist(Map(weighted.mean, xs, ws))

#> [1] 0.695 0.464 0.403 0.501 0.521

Note that the order of arguments is a little different: function is the first
argument for Map() and the second for lapply().

This is equivalent to:

stopifnot(length(xs) == length(ws))

out <- vector("list", length(xs))

for (i in seq_along(xs)) {

out[[i]] <- weighted.mean(xs[[i]], ws[[i]])

}

There’s a natural equivalence between Map() and lapply() because you
can always convert a Map() to an lapply() that iterates over indices.
But using Map() is more concise, and more clearly indicates what you’re
trying to do.

Map is useful whenever you have two (or more) lists (or data frames) that
you need to process in parallel. For example, another way of standardis-
ing columns is to first compute the means and then divide by them. We
could do this with lapply(), but if we do it in two steps, we can more
easily check the results at each step, which is particularly important if
the first step is more complicated.
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mtmeans <- lapply(mtcars, mean)

mtmeans[] <- Map(`/`, mtcars, mtmeans)

# In this case, equivalent to

mtcars[] <- lapply(mtcars, function(x) x / mean(x))

If some of the arguments should be fixed and constant, use an anonymous
function:

Map(function(x, w) weighted.mean(x, w, na.rm = TRUE), xs, ws)

We’ll see a more compact way to express the same idea in the next
chapter.

mapply

You may be more familiar with mapply() than Map(). I prefer Map()

because:

• It’s equivalent to mapply with simplify = FALSE, which is almost always
what you want.

• Instead of using an anonymous function to provide constant inputs,
mapply has the MoreArgs argument that takes a list of extra arguments
that will be supplied, as is, to each call. This breaks R’s usual lazy
evaluation semantics, and is inconsistent with other functions.

In brief, mapply() adds more complication for little gain.

11.2.3 Rolling computations

What if you need a for loop replacement that doesn’t exist in base R? You
can often create your own by recognising common looping structures and
implementing your own wrapper. For example, you might be interested
in smoothing your data using a rolling (or running) mean function:

rollmean <- function(x, n) {

out <- rep(NA, length(x))
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offset <- trunc(n / 2)

for (i in (offset + 1):(length(x) - n + offset + 1)) {

out[i] <- mean(x[(i - offset):(i + offset - 1)])

}

out

}

x <- seq(1, 3, length = 1e2) + runif(1e2)

plot(x)

lines(rollmean(x, 5), col = "blue", lwd = 2)

lines(rollmean(x, 10), col = "red", lwd = 2)

But if the noise was more variable (i.e., it has a longer tail), you might
worry that your rolling mean was too sensitive to outliers. Instead, you
might want to compute a rolling median.

x <- seq(1, 3, length = 1e2) + rt(1e2, df = 2) / 3

plot(x)

lines(rollmean(x, 5), col = "red", lwd = 2)

To change rollmean() to rollmedian(), all you need to do is replace
mean with median inside the loop. But instead of copying and pasting to
create a new function, we could extract the idea of computing a rolling
summary into its own function:

rollapply <- function(x, n, f, ...) {

out <- rep(NA, length(x))

offset <- trunc(n / 2)

for (i in (offset + 1):(length(x) - n + offset + 1)) {

out[i] <- f(x[(i - offset):(i + offset)], ...)

}

out

}

plot(x)

lines(rollapply(x, 5, median), col = "red", lwd = 2)

You might notice that the internal loop looks pretty similar to a vapply()

loop, so we could rewrite the function as:
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rollapply <- function(x, n, f, ...) {

offset <- trunc(n / 2)

locs <- (offset + 1):(length(x) - n + offset + 1)

num <- vapply(

locs,

function(i) f(x[(i - offset):(i + offset)], ...),

numeric(1)

)

c(rep(NA, offset), num)

}

This is effectively the same as the implementation in zoo::rollapply(),
which provides many more features and much more error checking.

11.2.4 Parallelisation

One interesting thing about the implementation of lapply() is that be-
cause each iteration is isolated from all others, the order in which they
are computed doesn’t matter. For example, lapply3() scrambles the
order of computation, but the results are always the same:

lapply3 <- function(x, f, ...) {

out <- vector("list", length(x))

for (i in sample(seq_along(x))) {

out[[i]] <- f(x[[i]], ...)

}

out

}

unlist(lapply(1:10, sqrt))

#> [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

unlist(lapply3(1:10, sqrt))

#> [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

This has a very important consequence: since we can compute each
element in any order, it’s easy to dispatch the tasks to different cores,
and compute them in parallel. This is what parallel::mclapply() (and
parallel::mcMap()) does. (These functions are not available in Windows,
but you can use the similar parLapply() with a bit more work. See
Section 17.10 for more details.)
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library(parallel)

unlist(mclapply(1:10, sqrt, mc.cores = 4))

#> [1] 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16

In this case, mclapply() is actually slower than lapply(). This is because
the cost of the individual computations is low, and additional work is
needed to send the computation to the different cores and to collect the
results.
If we take a more realistic example, generating bootstrap replicates of a
linear model for example, the advantages are clearer:

boot_df <- function(x) x[sample(nrow(x), rep = T), ]

rsquared <- function(mod) summary(mod)$r.square

boot_lm <- function(i) {

rsquared(lm(mpg ~ wt + disp, data = boot_df(mtcars)))

}

system.time(lapply(1:500, boot_lm))

#> user system elapsed

#> 0.782 0.005 0.788

system.time(mclapply(1:500, boot_lm, mc.cores = 2))

#> user system elapsed

#> 0.003 0.008 0.438

While increasing the number of cores will not always lead to linear im-
provement, switching from lapply() or Map() to its parallelised forms
can dramatically improve computational performance.

11.2.5 Exercises

1. Use vapply() to:
a) Compute the standard deviation of every column in a nu-

meric data frame.
b) Compute the standard deviation of every numeric column

in a mixed data frame. (Hint: you’ll need to use vapply()

twice.)
2. Why is using sapply() to get the class() of each element in a

data frame dangerous?
3. The following code simulates the performance of a t-test for

non-normal data. Use sapply() and an anonymous function
to extract the p-value from every trial.
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trials <- replicate(

100,

t.test(rpois(10, 10), rpois(7, 10)),

simplify = FALSE

)

Extra challenge: get rid of the anonymous function by using
[[ directly.

4. What does replicate() do? What sort of for loop does it
eliminate? Why do its arguments differ from lapply() and
friends?

5. Implement a version of lapply() that supplies FUN with both
the name and the value of each component.

6. Implement a combination of Map() and vapply() to create an
lapply() variant that iterates in parallel over all of its inputs
and stores its outputs in a vector (or a matrix). What argu-
ments should the function take?

7. Implement mcsapply(), a multicore version of sapply(). Can
you implement mcvapply(), a parallel version of vapply()?
Why or why not?

11.3 Manipulating matrices and data frames

Functionals can also be used to eliminate loops in common data manip-
ulation tasks. In this section, we’ll give a brief overview of the available
options, hint at how they can help you, and point you in the right di-
rection to learn more. We’ll cover three categories of data structure
functionals:

• apply(), sweep(), and outer() work with matrices.

• tapply() summarises a vector by groups defined by another vector.

• the plyr package, which generalises tapply() to make it easy to work
with data frames, lists, or arrays as inputs, and data frames, lists, or
arrays as outputs.
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11.3.1 Matrix and array operations

So far, all the functionals we’ve seen work with 1d input structures. The
three functionals in this section provide useful tools for working with
higher-dimensional data structures. apply() is a variant of sapply()

that works with matrices and arrays. You can think of it as an operation
that summarises a matrix or array by collapsing each row or column to
a single number. It has four arguments:

• X, the matrix or array to summarise
• MARGIN, an integer vector giving the dimensions to summarise over, 1

= rows, 2 = columns, etc.
• FUN, a summary function
• ... other arguments passed on to FUN

A typical example of apply() looks like this

a <- matrix(1:20, nrow = 5)

apply(a, 1, mean)

#> [1] 8.5 9.5 10.5 11.5 12.5

apply(a, 2, mean)

#> [1] 3 8 13 18

There are a few caveats to using apply(). It doesn’t have a simplify
argument, so you can never be completely sure what type of output
you’ll get. This means that apply() is not safe to use inside a function
unless you carefully check the inputs. apply() is also not idempotent
in the sense that if the summary function is the identity operator, the
output is not always the same as the input:

a1 <- apply(a, 1, identity)

identical(a, a1)

#> [1] FALSE

identical(a, t(a1))

#> [1] TRUE

a2 <- apply(a, 2, identity)

identical(a, a2)

#> [1] TRUE

(You can put high-dimensional arrays back in the right order using
aperm(), or use plyr::aaply(), which is idempotent.)
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sweep() allows you to “sweep” out the values of a summary statistic. It
is often used with apply() to standardise arrays. The following example
scales the rows of a matrix so that all values lie between 0 and 1.

x <- matrix(rnorm(20, 0, 10), nrow = 4)

x1 <- sweep(x, 1, apply(x, 1, min), `-`)

x2 <- sweep(x1, 1, apply(x1, 1, max), `/`)

The final matrix functional is outer(). It’s a little different in that it
takes multiple vector inputs and creates a matrix or array output where
the input function is run over every combination of the inputs:

# Create a times table

outer(1:3, 1:10, "*")

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

#> [1,] 1 2 3 4 5 6 7 8 9 10

#> [2,] 2 4 6 8 10 12 14 16 18 20

#> [3,] 3 6 9 12 15 18 21 24 27 30

Good places to learn more about apply() and friends are:

• “Using apply, sapply, lapply in R” (http://petewerner.blogspot.com/
2012/12/using-apply-sapply-lapply-in-r.html) by Peter Werner.

• “The infamous apply function” (http://rforpublichealth.blogspot.
no/2012/09/the-infamous-apply-function.html) by Slawa Rokicki.

• “The R apply function - a tutorial with examples” (http:
//forgetfulfunctor.blogspot.com/2011/07/r-apply-function-

tutorial-with-examples.html) by axiomOfChoice.

• The stackoverflow question “R Grouping functions: sapply vs. lapply

vs. apply vs. tapply vs. by vs. aggregate” (http://stackoverflow.
com/questions/3505701).

11.3.2 Group apply

You can think about tapply() as a generalisation to apply() that allows
for “ragged” arrays, arrays where each row can have a different number
of columns. This is often needed when you’re trying to summarise a
data set. For example, imagine you’ve collected pulse rate data from a
medical trial, and you want to compare the two groups:

http://petewerner.blogspot.com/2012/12/using-apply-sapply-lapply-in-r.html
http://petewerner.blogspot.com/2012/12/using-apply-sapply-lapply-in-r.html
http://rforpublichealth.blogspot.no/2012/09/the-infamous-apply-function.html
http://rforpublichealth.blogspot.no/2012/09/the-infamous-apply-function.html
http://forgetfulfunctor.blogspot.com/2011/07/r-apply-function-tutorial-with-examples.html
http://forgetfulfunctor.blogspot.com/2011/07/r-apply-function-tutorial-with-examples.html
http://forgetfulfunctor.blogspot.com/2011/07/r-apply-function-tutorial-with-examples.html
http://stackoverflow.com/questions/3505701
http://stackoverflow.com/questions/3505701
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pulse <- round(rnorm(22, 70, 10 / 3)) + rep(c(0, 5), c(10, 12))

group <- rep(c("A", "B"), c(10, 12))

tapply(pulse, group, length)

#> A B

#> 10 12

tapply(pulse, group, mean)

#> A B

#> 70.5 75.0

tapply() works by creating a “ragged” data structure from a set of in-
puts, and then applying a function to the individual elements of that
structure. The first task is actually what the split() function does. It
takes two inputs and returns a list which groups elements together from
the first vector according to elements, or categories, from the second
vector:

split(pulse, group)

#> $A

#> [1] 69 71 74 66 71 67 73 69 73 72

#>

#> $B

#> [1] 73 79 74 72 74 76 76 68 77 74 79 78

Then tapply() is just the combination of split() and sapply():

tapply2 <- function(x, group, f, ..., simplify = TRUE) {

pieces <- split(x, group)

sapply(pieces, f, simplify = simplify)

}

tapply2(pulse, group, length)

#> A B

#> 10 12

tapply2(pulse, group, mean)

#> A B

#> 70.5 75.0

Being able to rewrite tapply() as a combination of split() and sapply()

is a good indication that we’ve identified some useful building blocks.
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11.3.3 The plyr package

One challenge with using the base functionals is that they have grown
organically over time, and have been written by multiple authors. This
means that they are not very consistent:

• With tapply() and sapply(), the simplify argument is called simplify.
With mapply(), it’s called SIMPLIFY. With apply(), the argument is
absent.

• vapply() is a variant of sapply() that allows you to describe what the
output should be, but there are no corresponding variants for tapply(),
apply(), or Map().

• The first argument of most base functionals is a vector, but the first
argument in Map() is a function.

This makes learning these operators challenging, as you have to memo-
rise all of the variations. Additionally, if you think about the possible
combinations of input and output types, base R only covers a partial set
of cases:

list data frame array
list lapply() sapply()

data frame by()

array apply()

This was one of the driving motivations behind the creation of the plyr
package. It provides consistently named functions with consistently
named arguments and covers all combinations of input and output data
structures:

list data frame array
list llply() ldply() laply()

data frame dlply() ddply() daply()

array alply() adply() aaply()

Each of these functions splits up the input, applies a function to
each piece, and then combines the results. Overall, this process
is called “split-apply-combine”. You can read more about it and
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plyr in “The Split-Apply-Combine Strategy for Data Analysis”
(http://www.jstatsoft.org/v40/i01/), an open-access article published
in the Journal of Statistical Software.

11.3.4 Exercises

1. How does apply() arrange the output? Read the documenta-
tion and perform some experiments.

2. There’s no equivalent to split() + vapply(). Should there
be? When would it be useful? Implement one yourself.

3. Implement a pure R version of split(). (Hint: use unique()

and subsetting.) Can you do it without a for loop?
4. What other types of input and output are missing? Brain-

storm before you look up some answers in the plyr paper
(http://www.jstatsoft.org/v40/i01/).

11.4 Manipulating lists

Another way of thinking about functionals is as a set of general tools
for altering, subsetting, and collapsing lists. Every functional program-
ming language has three tools for this: Map(), Reduce(), and Filter().
We’ve seen Map() already, and the following sections describe Reduce(),
a powerful tool for extending two-argument functions, and Filter(), a
member of an important class of functionals that work with predicates,
functions that return a single TRUE or FALSE.

11.4.1 Reduce()

Reduce() reduces a vector, x, to a single value by recursively calling a
function, f, two arguments at a time. It combines the first two elements
with f, then combines the result of that call with the third element, and
so on. Calling Reduce(f, 1:3) is equivalent to f(f(1, 2), 3). Reduce
is also known as fold, because it folds together adjacent elements in the
list.

The following two examples show what Reduce does with an infix and
prefix function:

http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v40/i01/
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Reduce(`+`, 1:3) # -> ((1 + 2) + 3)

Reduce(sum, 1:3) # -> sum(sum(1, 2), 3)

The essence of Reduce() can be described by a simple for loop:

Reduce2 <- function(f, x) {

out <- x[[1]]

for(i in seq(2, length(x))) {

out <- f(out, x[[i]])

}

out

}

The real Reduce() is more complicated because it includes arguments
to control whether the values are reduced from the left or from the
right (right), an optional initial value (init), and an option to output
intermediate results (accumulate).
Reduce() is an elegant way of extending a function that works with two
inputs into a function that can deal with any number of inputs. It’s
useful for implementing many types of recursive operations, like merges
and intersections. (We’ll see another use in the final case study.) Imagine
you have a list of numeric vectors, and you want to find the values that
occur in every element:

l <- replicate(5, sample(1:10, 15, replace = T), simplify = FALSE)

str(l)

#> List of 5

#> $ : int [1:15] 10 8 8 1 10 6 6 7 3 9 ...

#> $ : int [1:15] 5 1 2 10 4 1 1 9 9 6 ...

#> $ : int [1:15] 1 6 2 7 9 10 8 9 4 6 ...

#> $ : int [1:15] 9 4 6 10 1 6 9 3 4 4 ...

#> $ : int [1:15] 4 4 7 7 1 8 1 7 2 3 ...

You could do that by intersecting each element in turn:

intersect(intersect(intersect(intersect(l[[1]], l[[2]]),

l[[3]]), l[[4]]), l[[5]])

#> [1] 10 1 6 4 2

That’s hard to read. With Reduce(), the equivalent is:

Reduce(intersect, l)

#> [1] 10 1 6 4 2
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11.4.2 Predicate functionals

A predicate is a function that returns a single TRUE or FALSE, like
is.character, all, or is.NULL. A predicate functional applies a predi-
cate to each element of a list or data frame. There are three useful
predicate functionals in base R: Filter(), Find(), and Position().

• Filter() selects only those elements which match the predicate.

• Find() returns the first element which matches the predicate (or the
last element if right = TRUE).

• Position() returns the position of the first element that matches the
predicate (or the last element if right = TRUE).

Another useful predicate functional is where(), a custom functional that
generates a logical vector from a list (or a data frame) and a predicate:

where <- function(f, x) {

vapply(x, f, logical(1))

}

The following example shows how you might use these functionals with
a data frame:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))

where(is.factor, df)

#> x y

#> FALSE TRUE

str(Filter(is.factor, df))

#> 'data.frame': 3 obs. of 1 variable:

#> $ y: Factor w/ 3 levels "a","b","c": 1 2 3

str(Find(is.factor, df))

#> Factor w/ 3 levels "a","b","c": 1 2 3

Position(is.factor, df)

#> [1] 2

11.4.3 Exercises

1. Why isn’t is.na() a predicate function? What base R function
is closest to being a predicate version of is.na()?
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2. Use Filter() and vapply() to create a function that applies a
summary statistic to every numeric column in a data frame.

3. What’s the relationship between which() and Position()?
What’s the relationship between where() and Filter()?

4. Implement Any(), a function that takes a list and a predicate
function, and returns TRUE if the predicate function returns
TRUE for any of the inputs. Implement All() similarly.

5. Implement the span() function from Haskell: given a list x

and a predicate function f, span returns the location of the
longest sequential run of elements where the predicate is true.
(Hint: you might find rle() helpful.)

11.5 Mathematical functionals

Functionals are very common in mathematics. The limit, the maximum,
the roots (the set of points where f(x) = 0), and the definite integral are
all functionals: given a function, they return a single number (or vector
of numbers). At first glance, these functions don’t seem to fit in with
the theme of eliminating loops, but if you dig deeper you’ll find out that
they are all implemented using an algorithm that involves iteration.

In this section we’ll use some of R’s built-in mathematical functionals.
There are three functionals that work with functions to return single
numeric values:

• integrate() finds the area under the curve defined by f()

• uniroot() finds where f() hits zero
• optimise() finds the location of lowest (or highest) value of f()

Let’s explore how these are used with a simple function, sin():

integrate(sin, 0, pi)

#> 2 with absolute error < 2.2e-14

str(uniroot(sin, pi * c(1 / 2, 3 / 2)))

#> List of 5

#> $ root : num 3.14

#> $ f.root : num 1.22e-16

#> $ iter : int 2
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#> $ init.it : int NA

#> $ estim.prec: num 6.1e-05

str(optimise(sin, c(0, 2 * pi)))

#> List of 2

#> $ minimum : num 4.71

#> $ objective: num -1

str(optimise(sin, c(0, pi), maximum = TRUE))

#> List of 2

#> $ maximum : num 1.57

#> $ objective: num 1

In statistics, optimisation is often used for maximum likelihood estima-
tion (MLE). In MLE, we have two sets of parameters: the data, which
is fixed for a given problem, and the parameters, which vary as we try
to find the maximum. These two sets of parameters make the problem
well suited for closures. Combining closures with optimisation gives rise
to the following approach to solving MLE problems.

The following example shows how we might find the maximum likelihood
estimate for λ, if our data come from a Poisson distribution. First, we
create a function factory that, given a dataset, returns a function that
computes the negative log likelihood (NLL) for parameter lambda. In
R, it’s common to work with the negative since optimise() defaults to
finding the minimum.

poisson_nll <- function(x) {

n <- length(x)

sum_x <- sum(x)

function(lambda) {

n * lambda - sum_x * log(lambda) # + terms not involving lambda

}

}

Note how the closure allows us to precompute values that are constant
with respect to the data.

We can use this function factory to generate specific NLL functions for
input data. Then optimise() allows us to find the best values (the
maximum likelihood estimates), given a generous starting range.

x1 <- c(41, 30, 31, 38, 29, 24, 30, 29, 31, 38)

x2 <- c(6, 4, 7, 3, 3, 7, 5, 2, 2, 7, 5, 4, 12, 6, 9)

nll1 <- poisson_nll(x1)
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nll2 <- poisson_nll(x2)

optimise(nll1, c(0, 100))$minimum

#> [1] 32.1

optimise(nll2, c(0, 100))$minimum

#> [1] 5.47

We can check that these values are correct by comparing them to the
analytic solution: in this case, it’s just the mean of the data, 32.1 and
5.467.

Another important mathematical functional is optim(). It is a generali-
sation of optimise() that works with more than one dimension. If you’re
interested in how it works, you might want to explore the Rvmmin pack-
age, which provides a pure-R implementation of optim(). Interestingly
Rvmmin is no slower than optim(), even though it is written in R, not C.
For this problem, the bottleneck lies not in controlling the optimisation
but with having to evaluate the function multiple times.

11.5.1 Exercises

1. Implement arg_max(). It should take a function and a
vector of inputs, and return the elements of the input
where the function returns the highest value. For exam-
ple, arg_max(-10:5, function(x) x ˆ 2) should return -10.
arg_max(-5:5, function(x) x ˆ 2) should return c(-5, 5).
Also implement the matching arg_min() function.

2. Challenge: read about the fixed point algorithm (http:
//mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#

%_sec_1.3). Complete the exercises using R.

11.6 Loops that should be left as is

Some loops have no natural functional equivalent. In this section you’ll
learn about three common cases:

• modifying in place
• recursive functions

http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-12.html#%_sec_1.3
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• while loops

It’s possible to torture these problems to use a functional, but it’s not a
good idea. You’ll create code that is harder to understand, eliminating
the main reason for using functionals in the first case.

11.6.1 Modifying in place

If you need to modify part of an existing data frame, it’s often better to
use a for loop. For example, the following code performs a variable-by-
variable transformation by matching the names of a list of functions to
the names of variables in a data frame.

trans <- list(

disp = function(x) x * 0.0163871,

am = function(x) factor(x, levels = c("auto", "manual"))

)

for(var in names(trans)) {

mtcars[[var]] <- trans[[var]](mtcars[[var]])

}

We wouldn’t normally use lapply() to replace this loop directly, but it
is possible. Just replace the loop with lapply() by using <<-:

lapply(names(trans), function(var) {

mtcars[[var]] <<- trans[[var]](mtcars[[var]])

})

The for loop is gone, but the code is longer and much harder to under-
stand. The reader needs to understand <<- and how x[[y]] <<- z works
(it’s not simple!). In short, we’ve taken a simple, easily understood for
loop, and turned it into something few people will understand: not a
good idea!

11.6.2 Recursive relationships

It’s hard to convert a for loop into a functional when the relationship
between elements is not independent, or is defined recursively. For ex-
ample, exponential smoothing works by taking a weighted average of the
current and previous data points. The exps() function below implements
exponential smoothing with a for loop.
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exps <- function(x, alpha) {

s <- numeric(length(x) + 1)

for (i in seq_along(s)) {

if (i == 1) {

s[i] <- x[i]

} else {

s[i] <- alpha * x[i - 1] + (1 - alpha) * s[i - 1]

}

}

s

}

x <- runif(6)

exps(x, 0.5)

#> [1] 0.0518 0.0518 0.3078 0.5284 0.6148 0.5978 0.3628

We can’t eliminate the for loop because none of the functionals we’ve
seen allow the output at position i to depend on both the input and
output at position i - 1.

One way to eliminate the for loop in this case is to solve the recurrence re-
lation (http://en.wikipedia.org/wiki/Recurrence_relation#Solving) by
removing the recursion and replacing it with explicit references. This re-
quires a new set of mathematical tools, and is challenging, but it can
pay off by producing a simpler function.

11.6.3 While loops

Another type of looping construct in R is the while loop. It keeps run-
ning until some condition is met. while loops are more general than for

loops: you can rewrite every for loop as a while loop, but you can’t do
the reverse. For example, we could turn this for loop:

for (i in 1:10) print(i)

into this while loop:

i <- 1

while(i <= 10) {

print(i)

i <- i + 1

}

http://en.wikipedia.org/wiki/Recurrence_relation#Solving
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Not every while loop can be turned into a for loop because many while
loops don’t know in advance how many times they will be run:

i <- 0

while(TRUE) {

if (runif(1) > 0.9) break

i <- i + 1

}

This is a common problem when you’re writing simulations.

In this case we can remove the loop by recognising a special feature of the
problem. Here we’re counting the number of successes before Bernoulli
trial with p = 0.1 fails. This is a geometric random variable, so you could
replace the code with i <- rgeom(1, 0.1). Reformulating the problem
in this way is hard to do in general, but you’ll benefit greatly if you can
do it for your problem.

11.7 A family of functions

To finish off the chapter, this case study shows how you can use func-
tionals to take a simple building block and make it powerful and general.
I’ll start with a simple idea, adding two numbers together, and use func-
tionals to extend it to summing multiple numbers, computing parallel
and cumulative sums, and summing across array dimensions.

We’ll start by defining a very simple addition function, one which takes
two scalar arguments:

add <- function(x, y) {

stopifnot(length(x) == 1, length(y) == 1,

is.numeric(x), is.numeric(y))

x + y

}

(We’re using R’s existing addition operator here, which does much more,
but the focus here is on how we can take very simple building blocks and
extend them to do more.)

I’ll also add an na.rm argument. A helper function will make this a bit
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easier: if x is missing it should return y, if y is missing it should return x,
and if both x and y are missing then it should return another argument
to the function: identity. This function is probably a bit more general
than what we need now, but it’s useful if we implement other binary
operators.

rm_na <- function(x, y, identity) {

if (is.na(x) && is.na(y)) {

identity

} else if (is.na(x)) {

y

} else {

x

}

}

rm_na(NA, 10, 0)

#> [1] 10

rm_na(10, NA, 0)

#> [1] 10

rm_na(NA, NA, 0)

#> [1] 0

This allows us to write a version of add() that can deal with missing
values if needed:

add <- function(x, y, na.rm = FALSE) {

if (na.rm && (is.na(x) || is.na(y))) rm_na(x, y, 0) else x + y

}

add(10, NA)

#> [1] NA

add(10, NA, na.rm = TRUE)

#> [1] 10

add(NA, NA)

#> [1] NA

add(NA, NA, na.rm = TRUE)

#> [1] 0

Why did we pick an identity of 0? Why should add(NA, NA, na.rm =

TRUE) return 0? Well, for every other input it returns a number, so even
if both arguments are NA, it should still do that. What number should
it return? We can figure it out because additional is associative, which
means that the order of additional doesn’t matter. That means that the
following two function calls should return the same value:
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add(add(3, NA, na.rm = TRUE), NA, na.rm = TRUE)

#> [1] 3

add(3, add(NA, NA, na.rm = TRUE), na.rm = TRUE)

#> [1] 3

This implies that add(NA, NA, na.rm = TRUE) must be 0, and hence
identity = 0 is the correct default.

Now that we have the basics working, we can extend the function to deal
with more complicated inputs. One obvious generalisation is to add more
than two numbers. We can do this by iteratively adding two numbers: if
the input is c(1, 2, 3) we compute add(add(1, 2), 3). This is a simple
application of Reduce():

r_add <- function(xs, na.rm = TRUE) {

Reduce(function(x, y) add(x, y, na.rm = na.rm), xs)

}

r_add(c(1, 4, 10))

#> [1] 15

This looks good, but we need to test a few special cases:

r_add(NA, na.rm = TRUE)

#> [1] NA

r_add(numeric())

#> NULL

These are incorrect. In the first case, we get a missing value even though
we’ve explicitly asked to ignore them. In the second case, we get NULL

instead of a length one numeric vector (as we do for every other set of
inputs).

The two problems are related. If we give Reduce() a length one vector, it
doesn’t have anything to reduce, so it just returns the input. If we give
it an input of length zero, it always returns NULL. The easiest way to fix
this problem is to use the init argument of Reduce(). This is added to
the start of every input vector:

r_add <- function(xs, na.rm = TRUE) {

Reduce(function(x, y) add(x, y, na.rm = na.rm), xs, init = 0)

}

r_add(c(1, 4, 10))
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#> [1] 15

r_add(NA, na.rm = TRUE)

#> [1] 0

r_add(numeric())

#> [1] 0

r_add() is equivalent to sum().

It would be nice to have a vectorised version of add() so that we can
perform the addition of two vectors of numbers in element-wise fashion.
We could use Map() or vapply() to implement this, but neither is perfect.
Map() returns a list, instead of a numeric vector, so we need to use
simplify2array(). vapply() returns a vector but it requires us to loop
over a set of indices.

v_add1 <- function(x, y, na.rm = FALSE) {

stopifnot(length(x) == length(y), is.numeric(x), is.numeric(y))

if (length(x) == 0) return(numeric())

simplify2array(

Map(function(x, y) add(x, y, na.rm = na.rm), x, y)

)

}

v_add2 <- function(x, y, na.rm = FALSE) {

stopifnot(length(x) == length(y), is.numeric(x), is.numeric(y))

vapply(seq_along(x), function(i) add(x[i], y[i], na.rm = na.rm),

numeric(1))

}

A few test cases help to ensure that it behaves as we expect. We’re a
bit stricter than base R here because we don’t do recycling. (You could
add that if you wanted, but I find that recycling is a frequent source of
silent bugs.)

# Both versions give the same results

v_add1(1:10, 1:10)

#> [1] 2 4 6 8 10 12 14 16 18 20

v_add1(numeric(), numeric())

#> numeric(0)

v_add1(c(1, NA), c(1, NA))

#> [1] 2 NA

v_add1(c(1, NA), c(1, NA), na.rm = TRUE)

#> [1] 2 0
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Another variant of add() is the cumulative sum. We can implement it
with Reduce() by setting the accumulate argument to TRUE:

c_add <- function(xs, na.rm = FALSE) {

Reduce(function(x, y) add(x, y, na.rm = na.rm), xs,

accumulate = TRUE)

}

c_add(1:10)

#> [1] 1 3 6 10 15 21 28 36 45 55

c_add(10:1)

#> [1] 10 19 27 34 40 45 49 52 54 55

This is equivalent to cumsum().

Finally, we might want to define addition for more complicated data
structures like matrices. We could create row and col variants that sum
across rows and columns, respectively, or we could go the whole hog
and define an array version that could sum across any arbitrary set of
dimensions. These are easily implemented as combinations of add() and
apply().

row_sum <- function(x, na.rm = FALSE) {

apply(x, 1, add, na.rm = na.rm)

}

col_sum <- function(x, na.rm = FALSE) {

apply(x, 2, add, na.rm = na.rm)

}

arr_sum <- function(x, dim, na.rm = FALSE) {

apply(x, dim, add, na.rm = na.rm)

}

The first two are equivalent to rowSums() and colSums().

If every function we have created has an existing equivalent in base R,
why did we bother? There are two main reasons:

• Since all variants were implemented by combining a simple binary op-
erator (add()) and a well-tested functional (Reduce(), Map(), apply()),
we know that our variants will behave consistently.

• We can apply the same infrastructure to other operators, especially
those that might not have the full suite of variants in base R.
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The downside of this approach is that these implementations are not
that efficient. (For example, colSums(x) is much faster than apply(x, 2,

sum).) However, even if they aren’t that fast, simple implementations
are still a good starting point because they’re less likely to have bugs.
When you create faster versions, you can compare the results to make
sure your fast versions are still correct.

If you enjoyed this section, you might also enjoy “List out of lambda”
(http://stevelosh.com/blog/2013/03/list-out-of-lambda/), a blog arti-
cle by Steve Losh that shows how you can produce high level language
structures (like lists) out of more primitive language features (like clo-
sures, aka lambdas).

11.7.1 Exercises

1. Implement smaller and larger functions that, given two in-
puts, return either the smaller or the larger value. Implement
na.rm = TRUE: what should the identity be? (Hint: smaller(x,
smaller(NA, NA, na.rm = TRUE), na.rm = TRUE) must be x, so
smaller(NA, NA, na.rm = TRUE)must be bigger than any other
value of x.) Use smaller and larger to implement equivalents
of min(), max(), pmin(), pmax(), and new functions row_min()

and row_max().
2. Create a table that has and, or, add, multiply, smaller, and

larger in the columns and binary operator, reducing variant,
vectorised variant, and array variants in the rows.

a) Fill in the cells with the names of base R functions that
perform each of the roles.

b) Compare the names and arguments of the existing R func-
tions. How consistent are they? How could you improve
them?

c) Complete the matrix by implementing any missing func-
tions.

3. How does paste() fit into this structure? What is the scalar
binary function that underlies paste()? What are the sep and
collapse arguments to paste() equivalent to? Are there any
paste variants that don’t have existing R implementations?

http://stevelosh.com/blog/2013/03/list-out-of-lambda/
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Function operators

In this chapter, you’ll learn about function operators (FOs). A function
operator is a function that takes one (or more) functions as input and
returns a function as output. In some ways, function operators are sim-
ilar to functionals: there’s nothing you can’t do without them, but they
can make your code more readable and expressive, and they can help
you write code faster. The main difference is that functionals extract
common patterns of loop use, where function operators extract common
patterns of anonymous function use.

The following code shows a simple function operator, chatty(). It wraps
a function, making a new function that prints out its first argument. It’s
useful because it gives you a window to see how functionals, like vapply(),
work.

chatty <- function(f) {

function(x, ...) {

res <- f(x, ...)

cat("Processing ", x, "\n", sep = "")

res

}

}

f <- function(x) x ^ 2

s <- c(3, 2, 1)

chatty(f)(1)

#> Processing 1

#> [1] 1

vapply(s, chatty(f), numeric(1))

#> Processing 3

#> Processing 2

#> Processing 1

#> [1] 9 4 1

In the last chapter, we saw that many built-in functionals, like Reduce(),

233
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Filter(), and Map(), have very few arguments, so we had to use anony-
mous functions to modify how they worked. In this chapter, we’ll build
specialised substitutes for common anonymous functions that allow us
to communicate our intent more clearly. For example, in Section 11.2.2
we used an anonymous function with Map() to supply fixed arguments:

Map(function(x, y) f(x, y, zs), xs, ys)

Later in this chapter, we’ll learn about partial application using the
partial() function. Partial application encapsulates the use of an anony-
mous function to supply default arguments, and allows us to write suc-
cinct code:

Map(partial(f, zs = zs), xs, yz)

This is an important use of FOs: by transforming the input function, you
eliminate parameters from a functional. In fact, as long as the inputs
and outputs of the function remain the same, this approach allows your
functionals to be more extensible, often in ways you haven’t thought of.

The chapter covers four important types of FO: behaviour, input, out-
put, and combining. For each type, I’ll show you some useful FOs, and
how you can use as another to decompose problems: as combinations
of multiple functions instead of combinations of arguments. The goal is
not to exhaustively list every possible FO, but to show a selection that
demonstrate how they work together with other FP techniques. For your
own work, you’ll need to think about and experiment with how function
operators can help you solve recurring problems.

Outline

• Section 12.1 introduces you to FOs that change the behaviour of a
function like automatically logging usage to disk or ensuring that a
function is run only once.

• Section 12.2 shows you how to write FOs that manipulate the output
of a function. These can do simple things like capturing errors, or
fundamentally change what the function does.

• Section 12.3 describes how to modify the inputs to a function using a
FO like Vectorize() or partial().

• Section 12.4 shows the power of FOs that combine multiple functions
with function composition and logical operations.
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Prerequisites

As well as writing FOs from scratch, this chapter uses function operators
from the memoise, plyr, and pryr packages. Install them by running
install.packages(c("memoise", "plyr", "pryr")).

12.1 Behavioural FOs

Behavioural FOs leave the inputs and outputs of a function unchanged,
but add some extra behaviour. In this section, we’ll look at functions
which implement three useful behaviours:

• Add a delay to avoid swamping a server with requests.
• Print to console every n invocations to check on a long running process.
• Cache previous computations to improve performance.

To motivate these behaviours, imagine we want to download a long vec-
tor of URLs. That’s pretty simple with lapply() and download_file():

download_file <- function(url, ...) {

download.file(url, basename(url), ...)

}

lapply(urls, download_file)

(download_file() is a simple wrapper around utils::download.file()

which provides a reasonable default for the file name.)

There are a number of useful behaviours we might want to add to this
function. If the list was long, we might want to print a . every ten
URLs so we know that the function’s still working. If we’re downloading
files over the internet, we might want to add a small delay between each
request to avoid hammering the server. Implementing these behaviours
in a for loop is rather complicated. We can no longer use lapply()

because we need an external counter:

i <- 1

for(url in urls) {

i <- i + 1



236 Advanced R

if (i %% 10 == 0) cat(".")

Sys.delay(1)

download_file(url)

}

Understanding this code is hard because different concerns (iteration,
printing, and downloading) are interleaved. In the remainder of this
section we’ll create FOs that encapsulate each behaviour and allow us
to write code like this:

lapply(urls, dot_every(10, delay_by(1, download_file)))

Implementing delay_by() is straightforward, and follows the same basic
template that we’ll see for the majority of FOs in this chapter:

delay_by <- function(delay, f) {

function(...) {

Sys.sleep(delay)

f(...)

}

}

system.time(runif(100))

#> user system elapsed

#> 0.001 0.000 0.000

system.time(delay_by(0.1, runif)(100))

#> user system elapsed

#> 0.000 0.000 0.105

dot_every() is a little bit more complicated because it needs to manage
a counter. Fortunately, we saw how to do that in Section 10.3.2.

dot_every <- function(n, f) {

i <- 1

function(...) {

if (i %% n == 0) cat(".")

i <<- i + 1

f(...)

}

}

x <- lapply(1:100, runif)

x <- lapply(1:100, dot_every(10, runif))

#> ..........
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Notice that I’ve made the function the last argument in each FO. This
makes it easier to read when we compose multiple function operators. If
the function were the first argument, then instead of:

download <- dot_every(10, delay_by(1, download_file))

we’d have

download <- dot_every(delay_by(download_file, 1), 10)

That’s harder to follow because (e.g.) the argument of dot_every() is
far away from its call. This is sometimes called the Dagwood sand-
wich (http://en.wikipedia.org/wiki/Dagwood_sandwich) problem: you
have too much filling (too many long arguments) between your slices
of bread (parentheses).

I’ve also tried to give the FOs descriptive names: delay by 1 (second),
(print a) dot every 10 (invocations). The more clearly the function
names used in your code express your intent, the easier it will be for
others (including future you) to read and understand the code.

12.1.1 Memoisation

Another thing you might worry about when downloading multiple files is
accidentally downloading the same file multiple times. You could avoid
this by calling unique() on the list of input URLs, or manually managing
a data structure that mapped the URL to the result. An alternative
approach is to use memoisation: modify a function to automatically
cache its results.

library(memoise)

slow_function <- function(x) {

Sys.sleep(1)

10

}

system.time(slow_function())

#> user system elapsed

#> 0.00 0.00 1.01

system.time(slow_function())

#> user system elapsed

http://en.wikipedia.org/wiki/Dagwood_sandwich
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#> 0 0 1

fast_function <- memoise(slow_function)

system.time(fast_function())

#> user system elapsed

#> 0.001 0.000 1.001

system.time(fast_function())

#> user system elapsed

#> 0.001 0.000 0.000

Memoisation is an example of the classic computer science tradeoff of
memory versus speed. A memoised function can run much faster because
it stores all of the previous inputs and outputs, using more memory.

A realistic use of memoisation is computing the Fibonacci series. The
Fibonacci series is defined recursively: the first two values are 1 and
1, then f(n) = f(n - 1) + f(n - 2). A naive version implemented in R
would be very slow because, for example, fib(10) computes fib(9) and
fib(8), and fib(9) computes fib(8) and fib(7), and so on. As a result,
the value for each value in the series gets computed many, many times.
Memoising fib() makes the implementation much faster because each
value is computed only once.

fib <- function(n) {

if (n < 2) return(1)

fib(n - 2) + fib(n - 1)

}

system.time(fib(23))

#> user system elapsed

#> 0.069 0.003 0.071

system.time(fib(24))

#> user system elapsed

#> 0.106 0.001 0.106

fib2 <- memoise(function(n) {

if (n < 2) return(1)

fib2(n - 2) + fib2(n - 1)

})

system.time(fib2(23))

#> user system elapsed

#> 0.002 0.000 0.003

system.time(fib2(24))

#> user system elapsed

#> 0 0 0
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It doesn’t make sense to memoise all functions. For example, a memoised
random number generator is no longer random:

runifm <- memoise(runif)

runifm(5)

#> [1] 0.883 0.678 0.073 0.920 0.988

runifm(5)

#> [1] 0.883 0.678 0.073 0.920 0.988

Once we understand memoise(), it’s straightforward to apply to our prob-
lem:

download <- dot_every(10, memoise(delay_by(1, download_file)))

This gives a function that we can easily use with lapply(). However, if
something goes wrong with the loop inside lapply(), it can be difficult
to tell what’s going on. The next section will show how we can use FOs
to pull back the curtain and look inside.

12.1.2 Capturing function invocations

One challenge with functionals is that it can be hard to see what’s going
on inside of them. It’s not easy to pry open their internals like it is with
a for loop. Fortunately we can use FOs to peer behind the curtain with
tee().

tee(), defined below, has three arguments, all functions: f, the function
to modify; on_input, a function that’s called with the inputs to f; and
on_output, a function that’s called with the output from f.

ignore <- function(...) NULL

tee <- function(f, on_input = ignore, on_output = ignore) {

function(...) {

on_input(...)

output <- f(...)

on_output(output)

output

}

}

(The function is inspired by the unix shell command tee, which is used
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to split up streams of file operations so that you can both display what’s
happening and save intermediate results to a file.)

We can use tee() to look inside the uniroot() functional, and see how it
iterates its way to a solution. The following example finds where x and
cos(x) intersect:

g <- function(x) cos(x) - x

zero <- uniroot(g, c(-5, 5))

show_x <- function(x, ...) cat(sprintf("%+.08f", x), "\n")

# The location where the function is evaluated:

zero <- uniroot(tee(g, on_input = show_x), c(-5, 5))

#> -5.00000000

#> +5.00000000

#> +0.28366219

#> +0.87520341

#> +0.72298040

#> +0.73863091

#> +0.73908529

#> +0.73902425

#> +0.73908529

# The value of the function:

zero <- uniroot(tee(g, on_output = show_x), c(-5, 5))

#> +5.28366219

#> -4.71633781

#> +0.67637474

#> -0.23436269

#> +0.02685676

#> +0.00076012

#> -0.00000026

#> +0.00010189

#> -0.00000026

cat() allows us to see what’s happening as the function runs, but it
doesn’t give us a way to work with the values after the function as
completed. To do that, we could capture the sequence of calls by creating
a function, remember(), that records every argument called and retrieves
them when coerced into a list. The small amount of S3 code needed is
explained in Section 7.2.

remember <- function() {

memory <- list()
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f <- function(...) {

# This is inefficient!

memory <<- append(memory, list(...))

invisible()

}

structure(f, class = "remember")

}

as.list.remember <- function(x, ...) {

environment(x)$memory

}

print.remember <- function(x, ...) {

cat("Remembering...\n")

str(as.list(x))

}

Now we can draw a picture showing how uniroot zeroes in on the final
answer:

locs <- remember()

vals <- remember()

zero <- uniroot(tee(g, locs, vals), c(-5, 5))

x <- unlist(as.list(locs))

error <- unlist(as.list(vals))

plot(x, type = "b"); abline(h = 0.739, col = "grey50")

plot(error, type = "b"); abline(h = 0, col = "grey50")

12.1.3 Laziness

The function operators we’ve seen so far follow a common pattern:

funop <- function(f, otherargs) {

function(...) {

# maybe do something

res <- f(...)



242 Advanced R

# maybe do something else

res

}

}

Unfortunately there’s a problem with this implementation because func-
tion arguments are lazily evaluated: f() may have changed between ap-
plying the FO and evaluating the function. This is a particular problem
if you’re using a for loop or lapply() to apply multiple function opera-
tors. In the following example, we take a list of functions and delay each
one. But when we try to evaluate the mean, we get the sum instead.

funs <- list(mean = mean, sum = sum)

funs_m <- lapply(funs, delay_by, delay = 0.1)

funs_m$mean(1:10)

#> [1] 55

We can avoid that problem by explicitly forcing the evaluation of f():

delay_by <- function(delay, f) {

force(f)

function(...) {

Sys.sleep(delay)

f(...)

}

}

funs_m <- lapply(funs, delay_by, delay = 0.1)

funs_m$mean(1:10)

#> [1] 5.5

It’s good practice to do that whenever you create a new FO.

12.1.4 Exercises

1. Write a FO that logs a time stamp and message to a file every
time a function is run.

2. What does the following function do? What would be a good
name for it?
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f <- function(g) {

force(g)

result <- NULL

function(...) {

if (is.null(result)) {

result <<- g(...)

}

result

}

}

runif2 <- f(runif)

runif2(5)

#> [1] 0.128 0.756 0.459 0.877 0.618

runif2(10)

#> [1] 0.128 0.756 0.459 0.877 0.618

3. Modify delay_by() so that instead of delaying by a fixed
amount of time, it ensures that a certain amount of time has
elapsed since the function was last called. That is, if you
called g <- delay_by(1, f); g(); Sys.sleep(2); g() there
shouldn’t be an extra delay.

4. Write wait_until() which delays execution until a specific
time.

5. There are three places we could have added a memoise call:
why did we choose the one we did?

download <- memoise(dot_every(10, delay_by(1, download_file)))

download <- dot_every(10, memoise(delay_by(1, download_file)))

download <- dot_every(10, delay_by(1, memoise(download_file)))

6. Why is the remember() function inefficient? How could you
implement it in more efficient way?

7. Why does the following code, from stackoverflow (http://
stackoverflow.com/questions/8440675), not do what you ex-
pect?

# return a linear function with slope a and intercept b.

f <- function(a, b) function(x) a * x + b

# create a list of functions with different parameters.

fs <- Map(f, a = c(0, 1), b = c(0, 1))

fs[[1]](3)

http://stackoverflow.com/questions/8440675
http://stackoverflow.com/questions/8440675
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#> [1] 4

# should return 0 * 3 + 0 = 0

How can you modify f so that it works correctly?

12.2 Output FOs

The next step up in complexity is to modify the output of a function.
This could be quite simple, or it could fundamentally change the op-
eration of the function by returning something completely different to
its usual output. In this section you’ll learn about two simple modifi-
cations, Negate() and failwith(), and two fundamental modifications,
capture_it() and time_it().

12.2.1 Minor modifications

base::Negate() and plyr::failwith() offer two minor, but useful, mod-
ifications of a function that are particularly handy in conjunction with
functionals.

Negate() takes a function that returns a logical vector (a predicate func-
tion), and returns the negation of that function. This can be a useful
shortcut when a function returns the opposite of what you need. The
essence of Negate() is very simple:

Negate <- function(f) {

force(f)

function(...) !f(...)

}

(Negate(is.null))(NULL)

#> [1] FALSE

I often use this idea to make a function, compact(), that removes all null
elements from a list:

compact <- function(x) Filter(Negate(is.null), x)

plyr::failwith() turns a function that throws an error into a function
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that returns a default value when there’s an error. Again, the essence
of failwith() is simple; it’s just a wrapper around try(), the function
that captures errors and allows execution to continue.

failwith <- function(default = NULL, f, quiet = FALSE) {

force(f)

function(...) {

out <- default

try(out <- f(...), silent = quiet)

out

}

}

log("a")

#> Error in log("a"): non-numeric argument to mathematical function

failwith(NA, log)("a")

#> [1] NA

failwith(NA, log, quiet = TRUE)("a")

#> [1] NA

(If you haven’t seen try() before, it’s discussed in more detail in Sec-
tion 9.3.1.)
failwith() is very useful in conjunction with functionals: instead of
the failure propagating and terminating the higher-level loop, you can
complete the iteration and then find out what went wrong. For example,
imagine you’re fitting a set of generalised linear models (GLMs) to a list
of data frames. While GLMs can sometimes fail because of optimisation
problems, you’d still want to be able to try to fit all the models, and
later look back at those that failed:

# If any model fails, all models fail to fit:

models <- lapply(datasets, glm, formula = y ~ x1 + x2 * x3)

# If a model fails, it will get a NULL value

models <- lapply(datasets, failwith(NULL, glm),

formula = y ~ x1 + x2 * x3)

# remove failed models (NULLs) with compact

ok_models <- compact(models)

# extract the datasets corresponding to failed models

failed_data <- datasets[vapply(models, is.null, logical(1))]

I think this is a great example of the power of combining functionals and
function operators: it lets you succinctly express what you need to solve
a common data analysis problem.
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12.2.2 Changing what a function does

Other output function operators can have a more profound effect on the
operation of the function. Instead of returning the original return value,
we can return some other effect of the function evaluation. Here are two
examples:

• Return text that the function print()ed:

capture_it <- function(f) {

force(f)

function(...) {

capture.output(f(...))

}

}

str_out <- capture_it(str)

str(1:10)

#> int [1:10] 1 2 3 4 5 6 7 8 9 10

str_out(1:10)

#> [1] " int [1:10] 1 2 3 4 5 6 7 8 9 10"

• Return how long a function took to run:

time_it <- function(f) {

force(f)

function(...) {

system.time(f(...))

}

}

time_it() allows us to rewrite some of the code from the functionals
chapter:

compute_mean <- list(

base = function(x) mean(x),

sum = function(x) sum(x) / length(x)

)

x <- runif(1e6)

# Previously we used an anonymous function to time execution:

# lapply(compute_mean, function(f) system.time(f(x)))

# Now we can compose function operators:
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call_fun <- function(f, ...) f(...)

lapply(compute_mean, time_it(call_fun), x)

#> $base

#> user system elapsed

#> 0.002 0.000 0.002

#>

#> $sum

#> user system elapsed

#> 0.001 0.000 0.001

In this example, there’s not a huge benefit to using function operators,
because the composition is simple and we’re applying the same operator
to each function. Generally, using function operators is most effective
when you are using multiple operators or if the gap between creating
them and using them is large.

12.2.3 Exercises

1. Create a negative() FO that flips the sign of the output of
the function to which it is applied.

2. The evaluate package makes it easy to capture all the outputs
(results, text, messages, warnings, errors, and plots) from an
expression. Create a function like capture_it() that also cap-
tures the warnings and errors generated by a function.

3. Create a FO that tracks files created or deleted in the working
directory (Hint: use dir() and setdiff().) What other global
effects of functions might you want to track?

12.3 Input FOs

The next step up in complexity is to modify the inputs of a function.
Again, you can modify how a function works in a minor way (e.g., setting
default argument values), or in a major way (e.g., converting inputs from
scalars to vectors, or vectors to matrices).
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12.3.1 Prefilling function arguments: partial function ap-
plication

A common use of anonymous functions is to make a variant of a function
that has certain arguments “filled in” already. This is called “partial
function application”, and is implemented by pryr::partial(). Once
you have read Chapter 14, I encourage you to read the source code for
partial() and figure out how it works — it’s only 5 lines of code!

partial() allows us to replace code like

f <- function(a) g(a, b = 1)

compact <- function(x) Filter(Negate(is.null), x)

Map(function(x, y) f(x, y, zs), xs, ys)

with

f <- partial(g, b = 1)

compact <- partial(Filter, Negate(is.null))

Map(partial(f, zs = zs), xs, ys)

We can use this idea to simplify the code used when working with lists
of functions. Instead of:

funs2 <- list(

sum = function(...) sum(..., na.rm = TRUE),

mean = function(...) mean(..., na.rm = TRUE),

median = function(...) median(..., na.rm = TRUE)

)

we can write:

library(pryr)

funs2 <- list(

sum = partial(sum, na.rm = TRUE),

mean = partial(mean, na.rm = TRUE),

median = partial(median, na.rm = TRUE)

)

Using partial function application is a straightforward task in many func-
tional programming languages, but it’s not entirely clear how it should
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interact with R’s lazy evaluation rules. The approach plyr::partial()

takes is to create a function that is as similar as possible to the anony-
mous function that you’d create by hand. Peter Meilstrup takes a dif-
ferent approach in his ptools package (https://github.com/crowding/
ptools/). If you’re interested in the topic, you might want to read about
the binary operators he created: %()%, %>>%, and %<<%.

12.3.2 Changing input types

It’s also possible to make a major change to a function’s input, making
a function work with fundamentally different types of data. There are a
few existing functions that work along these lines:

• base::Vectorize() converts a scalar function to a vector function. It
takes a non-vectorised function and vectorises it with respect to the
arguments specified in the vectorize.args argument. This doesn’t give
you any magical performance improvements, but it’s useful if you want
a quick and dirty way of making a vectorised function.
A mildly useful extension to sample() would be to vectorize it with
respect to size. Doing so would allow you to generate multiple samples
in one call.

sample2 <- Vectorize(sample, "size", SIMPLIFY = FALSE)

str(sample2(1:5, c(1, 1, 3)))

#> List of 3

#> $ : int 2

#> $ : int 1

#> $ : int [1:3] 2 1 5

str(sample2(1:5, 5:3))

#> List of 3

#> $ : int [1:5] 5 1 2 3 4

#> $ : int [1:4] 2 3 5 1

#> $ : int [1:3] 5 4 2

In this example we have used SIMPLIFY = FALSE to ensure that our
newly vectorised function always returns a list. This is usually what
you want.

• splat() converts a function that takes multiple arguments to a function
that takes a single list of arguments.

splat <- function (f) {

https://github.com/crowding/ptools/
https://github.com/crowding/ptools/
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force(f)

function(args) {

do.call(f, args)

}

}

This is useful if you want to invoke a function with varying arguments:

x <- c(NA, runif(100), 1000)

args <- list(

list(x),

list(x, na.rm = TRUE),

list(x, na.rm = TRUE, trim = 0.1)

)

lapply(args, splat(mean))

#> [[1]]

#> [1] NA

#>

#> [[2]]

#> [1] 10.4

#>

#> [[3]]

#> [1] 0.478

• plyr::colwise() converts a vector function to one that works with data
frames:

median(mtcars)

#> Error in median.default(mtcars): need numeric data

median(mtcars$mpg)

#> [1] 19.2

plyr::colwise(median)(mtcars)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 1 19.2 6 196 123 3.7 3.33 17.7 0 0 4 2

12.3.3 Exercises

1. Our previous download() function only downloads a single file.
How can you use partial() and lapply() to create a function
that downloads multiple files at once? What are the pros and
cons of using partial() vs. writing a function by hand?

2. Read the source code for plyr::colwise(). How does the code
work? What are colwise()’s three main tasks? How could
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you make colwise() simpler by implementing each task as a
function operator? (Hint: think about partial().)

3. Write FOs that convert a function to return a matrix instead
of a data frame, or a data frame instead of a matrix. If
you understand S3, call them as.data.frame.function() and
as.matrix.function().

4. You’ve seen five functions that modify a function to change
its output from one form to another. What are they? Draw
a table of the various combinations of types of outputs: what
should go in the rows and what should go in the columns?
What function operators might you want to write to fill in the
missing cells? Come up with example use cases.

5. Look at all the examples of using an anonymous function to
partially apply a function in this and the previous chapter.
Replace the anonymous function with partial(). What do
you think of the result? Is it easier or harder to read?

12.4 Combining FOs

Besides just operating on single functions, function operators can take
multiple functions as input. One simple example of this is plyr::each().
It takes a list of vectorised functions and combines them into a single
function.

summaries <- plyr::each(mean, sd, median)

summaries(1:10)

#> mean sd median

#> 5.50 3.03 5.50

Two more complicated examples are combining functions through com-
position, or through boolean algebra. These capabilities are the glue
that allow us to join multiple functions together.

12.4.1 Function composition

An important way of combining functions is through composition:
f(g(x)). Composition takes a list of functions and applies them
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sequentially to the input. It’s a replacement for the common pattern of
anonymous function that chains multiple functions together to get the
result you want:

sapply(mtcars, function(x) length(unique(x)))

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 25 3 27 22 22 29 30 2 2 3 6

A simple version of compose looks like this:

compose <- function(f, g) {

function(...) f(g(...))

}

(pryr::compose() provides a more full-featured alternative that can ac-
cept multiple functions and is used for the rest of the examples.)

This allows us to write:

sapply(mtcars, compose(length, unique))

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 25 3 27 22 22 29 30 2 2 3 6

Mathematically, function composition is often denoted with the infix
operator, o, (f o g)(x). Haskell, a popular functional programming
language, uses . to the same end. In R, we can create our own infix
composition function:

"%o%" <- compose

sapply(mtcars, length %o% unique)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> 25 3 27 22 22 29 30 2 2 3 6

sqrt(1 + 8)

#> [1] 3

compose(sqrt, `+`)(1, 8)

#> [1] 3

(sqrt %o% `+`)(1, 8)

#> [1] 3

Compose also allows for a very succinct implementation of Negate, which
is just a partially evaluated version of compose().
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Negate <- partial(compose, `!`)

We could implement the population standard deviation with function
composition:

square <- function(x) x^2

deviation <- function(x) x - mean(x)

sd2 <- sqrt %o% mean %o% square %o% deviation

sd2(1:10)

#> [1] 2.87

This type of programming is called tacit or point-free programming.
(The term point-free comes from the use of “point” to refer to values
in topology; this style is also derogatorily known as pointless). In this
style of programming, you don’t explicitly refer to variables. Instead,
you focus on the high-level composition of functions rather than the
low-level flow of data. The focus is on what’s being done, not on objects
it’s being done to. Since we’re using only functions and not parameters,
we use verbs and not nouns. This style is common in Haskell, and is
the typical style in stack based programming languages like Forth and
Factor. It’s not a terribly natural or elegant style in R, but it is fun to
play with.

compose() is particularly useful in conjunction with partial(), because
partial() allows you to supply additional arguments to the functions
being composed. One nice side effect of this style of programming is
that it keeps a function’s arguments near its name. This is important
because as the size of the chunk of code you have to hold in your head
grows code becomes harder to understand.

Below I take the example from the first section of the chapter and modify
it to use the two styles of function composition described above. Both
results are longer than the original code, but they may be easier to
understand because the function and its arguments are closer together.
Note that we still have to read them from right to left (bottom to top):
the first function called is the last one written. We could define compose()
to work in the opposite direction, but in the long run, this is likely to
lead to confusion since we’d create a small part of the langugage that
reads differently from every other part.

download <- dot_every(10, memoise(delay_by(1, download_file)))
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download <- pryr::compose(

partial(dot_every, 10),

memoise,

partial(delay_by, 1),

download_file

)

download <- partial(dot_every, 10) %o%

memoise %o%

partial(delay_by, 1) %o%

download_file

12.4.2 Logical predicates and boolean algebra

When I use Filter() and other functionals that work with logical predi-
cates, I often find myself using anonymous functions to combine multiple
conditions:

Filter(function(x) is.character(x) || is.factor(x), iris)

As an alternative, we could define function operators that combine log-
ical predicates:

and <- function(f1, f2) {

force(f1); force(f2)

function(...) {

f1(...) && f2(...)

}

}

or <- function(f1, f2) {

force(f1); force(f2)

function(...) {

f1(...) || f2(...)

}

}

not <- function(f) {

force(f)

function(...) {

!f(...)
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}

}

This would allow us to write:

Filter(or(is.character, is.factor), iris)

Filter(not(is.numeric), iris)

And we now have a boolean algebra on functions, not on the results of
functions.

12.4.3 Exercises

1. Implement your own version of compose() using Reduce and
%o%. For bonus points, do it without calling function.

2. Extend and() and or() to deal with any number of input func-
tions. Can you do it with Reduce()? Can you keep them
lazy (e.g., for and(), the function returns once it sees the first
FALSE)?

3. Implement the xor() binary operator. Implement it using the
existing xor() function. Implement it as a combination of
and() and or(). What are the advantages and disadvantages of
each approach? Also think about what you’ll call the resulting
function to avoid a clash with the existing xor() function, and
how you might change the names of and(), not(), and or() to
keep them consistent.

4. Above, we implemented boolean algebra for functions that
return a logical function. Implement elementary algebra
(plus(), minus(), multiply(), divide(), exponentiate(),
log()) for functions that return numeric vectors.
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13
Non-standard evaluation

“Flexibility in syntax, if it does not lead to ambiguity, would seem a
reasonable thing to ask of an interactive programming language.”
— Kent Pitman

R has powerful tools for computing not only on values, but also on
the actions that lead to those values. If you’re coming from another
programming language, they are one of the most surprising features of
R. Consider the following simple snippet of code that plots a sine curve:

x <- seq(0, 2 * pi, length = 100)

sinx <- sin(x)

plot(x, sinx, type = "l")

Look at the labels on the axes. How did R know that the variable on the
x axis is called x and the variable on the y axis is called sinx? In most
programming languages, you can only access the values of a function’s
arguments. In R, you can also access the code used to compute them.
This makes it possible to evaluate code in non-standard ways: to use
what is known as non-standard evaluation, or NSE for short. NSE
is particularly useful for functions when doing interactive data analysis
because it can dramatically reduce the amount of typing.

Outline

• Section 13.1 teaches you how to capture unevaluated expressions using
substitute().

• Section 13.2 shows you subset() works with combining substitute()

with eval() to allow you to succinctly select rows from a data frame.

• Section 13.3 discusses scoping issues specific to NSE, and will show
you how to resolve them.

259



260 Advanced R

• Section 13.4 shows why every function that uses NSE should have an
escape hatch, a version that uses regular evaluation.

• Section 13.5 teaches you how to use substitute() to work with func-
tions that don’t have an escape hatch.

• Section 13.6 finishes off the chapter with a discussion of the downsides
of NSE.

Prerequisites

Before reading this chapter, make sure you’re familiar with environ-
ments (Chapter 8) and lexical scoping (Section 6.2). You’ll also need
to install the pryr package with install.packages("pryr"). Some exer-
cises require the plyr package, which you can install from CRAN with
install.packages("plyr").

13.1 Capturing expressions

substitute() makes non-standard evaluation possible. It looks at a func-
tion argument and instead of seeing the value, it sees the code used to
compute the value:

f <- function(x) {

substitute(x)

}

f(1:10)

#> 1:10

x <- 10

f(x)

#> x

y <- 13

f(x + y^2)

#> x + y^2

For now, we won’t worry about exactly what substitute() returns
(that’s the topic of Chapter 14), but we’ll call it an expression.
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substitute() works because function arguments are represented by a
special type of object called a promise. A promise captures the ex-
pression needed to compute the value and the environment in which to
compute it. You’re not normally aware of promises because the first time
you access a promise its code is evaluated in its environment, yielding a
value.
substitute() is often paired with deparse(). That function takes the re-
sult of substitute(), an expression, and turns it into a character vector.

g <- function(x) deparse(substitute(x))

g(1:10)

#> [1] "1:10"

g(x)

#> [1] "x"

g(x + y^2)

#> [1] "x + y^2"

There are a lot of functions in Base R that use these ideas. Some use
them to avoid quotes:

library(ggplot2)

# the same as

library("ggplot2")

Other functions, like plot.default(), use them to provide default labels.
data.frame() labels variables with the expression used to compute them:

x <- 1:4

y <- letters[1:4]

names(data.frame(x, y))

#> [1] "x" "y"

We’ll learn about the ideas that underlie all these examples by looking
at one particularly useful application of NSE: subset().

13.1.1 Exercises

1. One important feature of deparse() to be aware of when pro-
gramming is that it can return multiple strings if the input is
too long. For example, the following call produces a vector of
length two:
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g(a + b + c + d + e + f + g + h + i + j + k + l + m +

n + o + p + q + r + s + t + u + v + w + x + y + z)

Why does this happen? Carefully read the documentation.
Can you write a wrapper around deparse() so that it always
returns a single string?

2. Why does as.Date.default() use substitute() and deparse()?
Why does pairwise.t.test() use them? Read the source code.

3. pairwise.t.test() assumes that deparse() always returns a
length one character vector. Can you construct an input that
violates this expectation? What happens?

4. f(), defined above, just calls substitute(). Why can’t we use
it to define g()? In other words, what will the following code
return? First make a prediction. Then run the code and think
about the results.

f <- function(x) substitute(x)

g <- function(x) deparse(f(x))

g(1:10)

g(x)

g(x + y ^ 2 / z + exp(a * sin(b)))

13.2 Non-standard evaluation in subset

While printing out the code supplied to an argument value can be useful,
we can actually do more with the unevaluated code. Take subset(), for
example. It’s a useful interactive shortcut for subsetting data frames:
instead of repeating the name of data frame many times, you can save
some typing:

sample_df <- data.frame(a = 1:5, b = 5:1, c = c(5, 3, 1, 4, 1))

subset(sample_df, a >= 4)

#> a b c

#> 4 4 2 4

#> 5 5 1 1

# equivalent to:

# sample_df[sample_df$a >= 4, ]
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subset(sample_df, b == c)

#> a b c

#> 1 1 5 5

#> 5 5 1 1

# equivalent to:

# sample_df[sample_df$b == sample_df$c, ]

subset() is special because it implements different scoping rules: the
expressions a >= 4 or b == c are evaluated in the specified data frame
rather than in the current or global environments. This is the essence
of non-standard evaluation.

How does subset() work? We’ve already seen how to capture an argu-
ment’s expression rather than its result, so we just need to figure out
how to evaluate that expression in the right context. Specifically, we
want x to be interpreted as sample_df$x, not globalenv()$x. To do this,
we need eval(). This function takes an expression and evaluates it in
the specified environment.

Before we can explore eval(), we need one more useful function: quote().
It captures an unevaluated expression like substitute(), but doesn’t
do any of the advanced transformations that can make substitute()

confusing. quote() always returns its input as is:

quote(1:10)

#> 1:10

quote(x)

#> x

quote(x + y^2)

#> x + y^2

We need quote() to experiment with eval() because eval()’s first
argument is an expression. So if you only provide one argument, it
will evaluate the expression in the current environment. This makes
eval(quote(x)) exactly equivalent to x, regardless of what x is:

eval(quote(x <- 1))

eval(quote(x))

#> [1] 1

eval(quote(y))

#> Error in eval(expr, envir, enclos): object 'y' not found
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quote() and eval() are opposites. In the example below, each eval()

peels off one layer of quote()’s.

quote(2 + 2)

#> 2 + 2

eval(quote(2 + 2))

#> [1] 4

quote(quote(2 + 2))

#> quote(2 + 2)

eval(quote(quote(2 + 2)))

#> 2 + 2

eval(eval(quote(quote(2 + 2))))

#> [1] 4

eval()’s second argument specifies the environment in which the code is
executed:

x <- 10

eval(quote(x))

#> [1] 10

e <- new.env()

e$x <- 20

eval(quote(x), e)

#> [1] 20

Because lists and data frames bind names to values in a similar way
to environments, eval()’s second argument need not be limited to an
environment: it can also be a list or a data frame.

eval(quote(x), list(x = 30))

#> [1] 30

eval(quote(x), data.frame(x = 40))

#> [1] 40

This gives us one part of subset():

eval(quote(a >= 4), sample_df)

#> [1] FALSE FALSE FALSE TRUE TRUE

eval(quote(b == c), sample_df)

#> [1] TRUE FALSE FALSE FALSE TRUE
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A common mistake when using eval() is to forget to quote the first
argument. Compare the results below:

a <- 10

eval(quote(a), sample_df)

#> [1] 1 2 3 4 5

eval(a, sample_df)

#> [1] 10

eval(quote(b), sample_df)

#> [1] 5 4 3 2 1

eval(b, sample_df)

#> Error in eval(b, sample_df): object 'b' not found

We can use eval() and substitute() to write subset(). We first capture
the call representing the condition, then we evaluate it in the context of
the data frame and, finally, we use the result for subsetting:

subset2 <- function(x, condition) {

condition_call <- substitute(condition)

r <- eval(condition_call, x)

x[r, ]

}

subset2(sample_df, a >= 4)

#> a b c

#> 4 4 2 4

#> 5 5 1 1

13.2.1 Exercises

1. Predict the results of the following lines of code:

eval(quote(eval(quote(eval(quote(2 + 2))))))

eval(eval(quote(eval(quote(eval(quote(2 + 2)))))))

quote(eval(quote(eval(quote(eval(quote(2 + 2)))))))

2. subset2() has a bug if you use it with a single column data
frame. What should the following code return? How can you
modify subset2() so it returns the correct type of object?

sample_df2 <- data.frame(x = 1:10)

subset2(sample_df2, x > 8)

#> [1] 9 10



266 Advanced R

3. The real subset function (subset.data.frame()) removes miss-
ing values in the condition. Modify subset2() to do the same:
drop the offending rows.

4. What happens if you use quote() instead of substitute() in-
side of subset2()?

5. The second argument in subset() allows you to select vari-
ables. It treats variable names as if they were positions. This
allows you to do things like subset(mtcars, , -cyl) to drop
the cylinder variable, or subset(mtcars, , disp:drat) to se-
lect all the variables between disp and drat. How does this
work? I’ve made this easier to understand by extracting it out
into its own function.

select <- function(df, vars) {

vars <- substitute(vars)

var_pos <- setNames(as.list(seq_along(df)), names(df))

pos <- eval(vars, var_pos)

df[, pos, drop = FALSE]

}

select(mtcars, -cyl)

6. What does evalq() do? Use it to reduce the amount of typing
for the examples above that use both eval() and quote().

13.3 Scoping issues

It certainly looks like our subset2() function works. But since we’re
working with expressions instead of values, we need to test things more
extensively. For example, the following applications of subset2() should
all return the same value because the only difference between them is
the name of a variable:

y <- 4

x <- 4

condition <- 4

condition_call <- 4

subset2(sample_df, a == 4)

#> a b c
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#> 4 4 2 4

subset2(sample_df, a == y)

#> a b c

#> 4 4 2 4

subset2(sample_df, a == x)

#> a b c

#> 1 1 5 5

#> 2 2 4 3

#> 3 3 3 1

#> 4 4 2 4

#> 5 5 1 1

#> NA NA NA NA

#> NA.1 NA NA NA

subset2(sample_df, a == condition)

#> Error in eval(expr, envir, enclos): object 'a' not found

subset2(sample_df, a == condition_call)

#> Warning in a == condition_call: longer object length is not a

#> multiple of shorter object length

#> [1] a b c

#> <0 rows> (or 0-length row.names)

What went wrong? You can get a hint from the variable names I’ve cho-
sen: they are all names of variables defined inside subset2(). If eval()
can’t find the variable inside the data frame (its second argument), it
looks in the environment of subset2(). That’s obviously not what we
want, so we need some way to tell eval() where to look if it can’t find
the variables in the data frame.

The key is the third argument to eval(): enclos. This allows us to
specify a parent (or enclosing) environment for objects that don’t have
one (like lists and data frames). If the binding is not found in env, eval()
will next look in enclos, and then in the parents of enclos. enclos is
ignored if env is a real environment. We want to look for x in the
environment from which subset2() was called. In R terminology this
is called the parent frame and is accessed with parent.frame(). This
is an example of dynamic scope (http://en.wikipedia.org/wiki/Scope_
%28programming%29#Dynamic_scoping): the values come from the location
where the function was called, not where it was defined.

With this modification our function now works:

subset2 <- function(x, condition) {

condition_call <- substitute(condition)

r <- eval(condition_call, x, parent.frame())

http://en.wikipedia.org/wiki/Scope_%28programming%29#Dynamic_scoping
http://en.wikipedia.org/wiki/Scope_%28programming%29#Dynamic_scoping
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x[r, ]

}

x <- 4

subset2(sample_df, a == x)

#> a b c

#> 4 4 2 4

Using enclos is just a shortcut for converting a list or data frame to an
environment. We can get the same behaviour by using list2env(). It
turns a list into an environment with an explicit parent:

subset2a <- function(x, condition) {

condition_call <- substitute(condition)

env <- list2env(x, parent = parent.frame())

r <- eval(condition_call, env)

x[r, ]

}

x <- 5

subset2a(sample_df, a == x)

#> a b c

#> 5 5 1 1

13.3.1 Exercises

1. plyr::arrange() works similarly to subset(), but instead of
selecting rows, it reorders them. How does it work? What
does substitute(order(...)) do? Create a function that does
only that and experiment with it.

2. What does transform() do? Read the documenta-
tion. How does it work? Read the source code for
transform.data.frame(). What does substitute(list(...))

do?
3. plyr::mutate() is similar to transform() but it applies the

transformations sequentially so that transformation can refer
to columns that were just created:

df <- data.frame(x = 1:5)

transform(df, x2 = x * x, x3 = x2 * x)

plyr::mutate(df, x2 = x * x, x3 = x2 * x)
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How does mutate work? What’s the key difference between
mutate() and transform()?

4. What does with() do? How does it work? Read the source
code for with.default(). What does within() do? How does
it work? Read the source code for within.data.frame(). Why
is the code so much more complex than with()?

13.4 Calling from another function

Typically, computing on the language is most useful when functions are
called directly by users and less useful when they are called by other
functions. While subset() saves typing, it’s actually difficult to use non-
interactively. For example, imagine we want to create a function that
randomly reorders a subset of rows of data. A nice way to do that would
be to compose a function that reorders with another that selects. Let’s
try that:

subset2 <- function(x, condition) {

condition_call <- substitute(condition)

r <- eval(condition_call, x, parent.frame())

x[r, ]

}

scramble <- function(x) x[sample(nrow(x)), ]

subscramble <- function(x, condition) {

scramble(subset2(x, condition))

}

But it doesn’t work:

subscramble(sample_df, a >= 4)

# Error in eval(expr, envir, enclos) : object 'a' not found

traceback()

#> 5: eval(expr, envir, enclos)

#> 4: eval(condition_call, x, parent.frame()) at #3

#> 3: subset2(x, condition) at #1

#> 2: scramble(subset2(x, condition)) at #2

#> 1: subscramble(sample_df, a >= 4)
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What’s gone wrong? To figure it out, let us debug() subset2()‘ and work
through the code line-by-line:

debugonce(subset2)

subscramble(sample_df, a >= 4)

#> debugging in: subset2(x, condition)

#> debug at #1: {

#> condition_call <- substitute(condition)

#> r <- eval(condition_call, x, parent.frame())

#> x[r, ]

#> }

n

#> debug at #2: condition_call <- substitute(condition)

n

#> debug at #3: r <- eval(condition_call, x, parent.frame())

r <- eval(condition_call, x, parent.frame())

#> Error in eval(expr, envir, enclos) : object 'a' not found

condition_call

#> condition

eval(condition_call, x)

#> Error in eval(expr, envir, enclos) : object 'a' not found

Q

Can you see what the problem is? condition_call contains the expres-
sion condition. So when we evaluate condition_call it also evaluates
condition, which has the value a >= 4. However, this can’t be computed
because there’s no object called a in the parent environment. But, if a

were set in the global environment, even more confusing things can hap-
pen:

a <- 4

subscramble(sample_df, a == 4)

#> a b c

#> 1 1 5 5

#> 4 4 2 4

#> 2 2 4 3

#> 5 5 1 1

#> 3 3 3 1

a <- c(1, 1, 4, 4, 4, 4)

subscramble(sample_df, a >= 4)

#> a b c
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#> 4 4 2 4

#> NA NA NA NA

#> 3 3 3 1

#> 5 5 1 1

This is an example of the general tension between functions that are
designed for interactive use and functions that are safe to program with.
A function that uses substitute() might reduce typing, but it can be
difficult to call from another function.

As a developer, you should always provide an escape hatch: an alter-
native version of the function that uses standard evaluation. In this
case, we could write a version of subset2() that takes an already quoted
expression:

subset2_q <- function(x, condition) {

r <- eval(condition, x, parent.frame())

x[r, ]

}

Here I use the suffix _q to indicate that it takes a quoted expression.
Most users won’t need this function so the name can be a little longer.

We can then rewrite both subset2() and subscramble() to use
subset2_q():

subset2 <- function(x, condition) {

subset2_q(x, substitute(condition))

}

subscramble <- function(x, condition) {

condition <- substitute(condition)

scramble(subset2_q(x, condition))

}

subscramble(sample_df, a >= 3)

#> a b c

#> 5 5 1 1

#> 4 4 2 4

#> 3 3 3 1

subscramble(sample_df, a >= 3)

#> a b c

#> 3 3 3 1
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#> 5 5 1 1

#> 4 4 2 4

Base R functions tend to use a different sort of escape hatch. They
often have an argument that turns off NSE. For example, require() has
character.only = TRUE. I don’t think it’s a good idea to use an argument
to change the behaviour of another argument because it makes function
calls harder to understand.

13.4.1 Exercises

1. The following R functions all use NSE. For each, describe how
it uses NSE, and read the documentation to determine its
escape hatch.

•rm()

•library() and require()

•substitute()

•data()

•data.frame()

2. Base functions match.fun(), page(), and ls() all try to au-
tomatically determine whether you want standard or non-
standard evaluation. Each uses a different approach. Figure
out the essence of each approach then compare and contrast.

3. Add an escape hatch to plyr::mutate() by splitting it into
two functions. One function should capture the unevaluated
inputs. The other should take a data frame and list of expres-
sions and perform the computation.

4. What’s the escape hatch for ggplot2::aes()? What about
plyr::()? What do they have in common? What are the
advantages and disadvantages of their differences?

5. The version of subset2_q() I presented is a simplification of
real code. Why is the following version better?

subset2_q <- function(x, cond, env = parent.frame()) {

r <- eval(cond, x, env)

x[r, ]

}

Rewrite subset2() and subscramble() to use this improved
version.
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13.5 Substitute

Most functions that use non-standard evaluation provide an escape
hatch. But what happens if you want to call a function that doesn’t
have one? For example, imagine you want to create a lattice graphic
given the names of two variables:

library(lattice)

xyplot(mpg ~ disp, data = mtcars)

x <- quote(mpg)

y <- quote(disp)

xyplot(x ~ y, data = mtcars)

#> Error in tmp[subset]: object of type 'symbol' is not subsettable

We might turn to substitute() and use it for another purpose: to modify
an expression. Unfortunately substitute() has a feature that makes
modifying calls interactively a bit of a pain. When run from the global
environment, it never does substitutions: in fact, in this situation it
behaves just like quote():

a <- 1

b <- 2

substitute(a + b + z)

#> a + b + z

However, if you run it inside a function, substitute() does substitute
and leaves everything else as is:

f <- function() {

a <- 1

b <- 2

substitute(a + b + z)

}

f()

#> 1 + 2 + z

To make it easier to experiment with substitute(), pryr provides the
subs() function. It works exactly the same way as substitute() except
it has a shorter name and it works in the global environment. These two
features make experimentation easier:
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a <- 1

b <- 2

subs(a + b + z)

#> 1 + 2 + z

The second argument (of both subs() and substitute()) can override
the use of the current environment, and provide an alternative via a list
of name-value pairs. The following example uses this technique to show
some variations on substituting a string, variable name, or function call:

subs(a + b, list(a = "y"))

#> "y" + b

subs(a + b, list(a = quote(y)))

#> y + b

subs(a + b, list(a = quote(y())))

#> y() + b

Remember that every action in R is a function call, so we can also replace
+ with another function:

subs(a + b, list("+" = quote(f)))

#> f(a, b)

subs(a + b, list("+" = quote(`*`)))

#> a * b

You can also make nonsense code:

subs(y <- y + 1, list(y = 1))

#> 1 <- 1 + 1

Formally, substitution takes place by examining all the names in the
expression. If the name refers to:

1. an ordinary variable, it’s replaced by the value of the variable.
2. a promise (a function argument), it’s replaced by the expres-

sion associated with the promise.
3. ..., it’s replaced by the contents of ....

Otherwise it’s left as is.

We can use this to create the right call to xyplot():
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x <- quote(mpg)

y <- quote(disp)

subs(xyplot(x ~ y, data = mtcars))

#> xyplot(mpg ~ disp, data = mtcars)

It’s even simpler inside a function, because we don’t need to explicitly
quote the x and y variables (rule 2 above):

xyplot2 <- function(x, y, data = data) {

substitute(xyplot(x ~ y, data = data))

}

xyplot2(mpg, disp, data = mtcars)

#> xyplot(mpg ~ disp, data = mtcars)

If we include ... in the call to substitute, we can add additional argu-
ments to the call:

xyplot3 <- function(x, y, ...) {

substitute(xyplot(x ~ y, ...))

}

xyplot3(mpg, disp, data = mtcars, col = "red", aspect = "xy")

#> xyplot(mpg ~ disp, data = mtcars, col = "red", aspect = "xy")

To create the plot, we’d then eval() this call.

13.5.1 Adding an escape hatch to substitute

substitute() is itself a function that uses non-standard evaluation and
doesn’t have an escape hatch. This means we can’t use substitute() if
we already have an expression saved in a variable:

x <- quote(a + b)

substitute(x, list(a = 1, b = 2))

#> x

Although substitute() doesn’t have a built-in escape hatch, we can use
the function itself to create one:

substitute_q <- function(x, env) {

call <- substitute(substitute(y, env), list(y = x))
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eval(call)

}

x <- quote(a + b)

substitute_q(x, list(a = 1, b = 2))

#> 1 + 2

The implementation of substitute_q() is short, but deep. Let’s work
through the example above: substitute_q(x, list(a = 1, b = 2)). It’s
a little tricky because substitute() uses NSE so we can’t use the usual
technique of working through the parentheses inside-out.

1. First substitute(substitute(y, env), list(y = x)) is evalu-
ated. The expression substitute(y, env) is captured and y is
replaced by the value of x. Because we’ve put x inside a list,
it will be evaluated and the rules of substitute will replace y

with its value. This yields the expression substitute(a + b,

env)

2. Next we evaluate that expression inside the current function.
substitute() evaluates its first argument, and looks for name
value pairs in env. Here, it evaluates as list(a = 1, b = 2).
Since these are both values (not promises), the result will be
1 + 2

A slightly more rigorous version of substitute_q() is provided by the
pryr package.

13.5.2 Capturing unevaluated …

Another useful technique is to capture all of the unevaluated expressions
in .... Base R functions do this in many ways, but there’s one technique
that works well across a wide variety of situations:

dots <- function(...) {

eval(substitute(alist(...)))

}

This uses the alist() function which simply captures all its argu-
ments. This function is the same as pryr::dots(). Pryr also provides
pryr::named_dots(), which, by using deparsed expressions as default
names, ensures that all arguments are named (just like data.frame()).
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13.5.3 Exercises
1. Use subs() to convert the LHS to the RHS for each of the

following pairs:

•a + b + c -> a * b * c

•f(g(a, b), c) -> (a + b) * c

•f(a < b, c, d) -> if (a < b) c else d

2. For each of the following pairs of expressions, describe why
you can’t use subs() to convert one to the other.

•a + b + c -> a + b * c

•f(a, b) -> f(a, b, c)

•f(a, b, c) -> f(a, b)

3. How does pryr::named_dots() work? Read the source.

13.6 The downsides of non-standard evaluation

The biggest downside of NSE is that functions that use it are no longer
referentially transparent (http://en.wikipedia.org/wiki/Referential_
transparency_(computer_science)). A function is referentially trans-
parent if you can replace its arguments with their values and its
behaviour doesn’t change. For example, if a function, f(), is referen-
tially transparent and both x and y are 10, then f(x), f(y), and f(10)

will all return the same result. Referentially transparent code is easier
to reason about because the names of objects don’t matter, and because
you can always work from the innermost parentheses outwards.

There are many important functions that by their very nature are not
referentially transparent. Take the assignment operator. You can’t take
a <- 1 and replace a by its value and get the same behaviour. This
is one reason that people usually write assignments at the top-level of
functions. It’s hard to reason about code like this:

a <- 1

b <- 2

if ((b <- a + 1) > (a <- b - 1)) {

b <- b + 2

}

http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)
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Using NSE prevents a function from being referentially transparent.
This makes the mental model needed to correctly predict the output
much more complicated. So, it’s only worthwhile to use NSE if
there is significant gain. For example, library() and require() can
be called either with or without quotes, because internally they use
deparse(substitute(x)) plus some other tricks. This means that these
two lines do exactly the same thing:

library(ggplot2)

library("ggplot2")

Things start to get complicated if the variable is associated with a value.
What package will this load?

ggplot2 <- "plyr"

library(ggplot2)

There are a number of other R functions that work in this way, like ls(),
rm(), data(), demo(), example(), and vignette(). To me, eliminating two
keystrokes is not worth the loss of referential transparency, and I don’t
recommend you use NSE for this purpose.

One situation where non-standard evaluation is worthwhile is
data.frame(). If not explicitly supplied, it uses the input to au-
tomatically name the output variables:

x <- 10

y <- "a"

df <- data.frame(x, y)

names(df)

#> [1] "x" "y"

I think it’s worthwhile because it eliminates a lot of redundancy in the
common scenario when you’re creating a data frame from existing vari-
ables. More importantly, if needed, it’s easy to override this behaviour
by supplying names for each variable.

Non-standard evaluation allows you to write functions that are extremely
powerful. However, they are harder to understand and to program with.
As well as always providing an escape hatch, carefully consider both the
costs and benefits of NSE before using it in a new domain.
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13.6.1 Exercises

1. What does the following function do? What’s the escape
hatch? Do you think that this is an appropriate use of NSE?

nl <- function(...) {

dots <- named_dots(...)

lapply(dots, eval, parent.frame())

}

2. Instead of relying on promises, you can use formulas created
with ~ to explicitly capture an expression and its environment.
What are the advantages and disadvantages of making quoting
explicit? How does it impact referential transparency?

3. Read the standard non-standard evaluation rules found at
http://developer.r-project.org/nonstandard-eval.pdf.

http://developer.r-project.org/nonstandard-eval.pdf




14
Expressions

In Chapter 13, you learned the basics of accessing and evaluating the
expressions underlying computation in R. In this chapter, you’ll learn
how to manipulate these expressions with code. You’re going to learn
how to metaprogram: how to create programs with other programs!

Outline

• Section 14.1 begins with a deep dive into the structure of expressions.
You’ll learn about the four components of an expression: constants,
names, calls, and pairlists.

• Section 14.2 goes into further details about names.

• Section 14.3 gives more details about calls.

• Section 14.4 takes a minor detour to discuss some common uses of calls
in base R.

• Section 14.5 completes the discussion of the four major components
of an expression, and shows how you can create functions from their
component pieces.

• Section 14.6 discusses how to convert back and forth between expres-
sions and text.

• Section 14.7 concludes the chapter, combining everything you’ve
learned about writing functions that can compute on and modify
arbitrary R code.

Prerequisites

Throughout this chapter we’re going to use tools from the pryr package
to help see what’s going on. If you don’t already have it, install it by
running install.packages("pryr").

281
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14.1 Structure of expressions

To compute on the language, we first need to understand the structure
of the language. That will require some new vocabulary, some new tools,
and some new ways of thinking about R code. The first thing you’ll need
to understand is the distinction between an operation and a result:

x <- 4

y <- x * 10

y

#> [1] 40

We want to distinguish the action of multiplying x by 10 and assigning
that result to y from the actual result (40). As we’ve seen in the previous
chapter, we can capture the action with quote():

z <- quote(y <- x * 10)

z

#> y <- x * 10

quote() returns an expression: an object that represents an action that
can be performed by R. (Unfortunately expression() does not return an
expression in this sense. Instead, it returns something more like a list of
expressions. See Section 14.6 for more details.)

An expression is also called an abstract syntax tree (AST) because it rep-
resents the hierarchical tree structure of the code. We’ll use pryr::ast()

to see this more clearly:

ast(y <- x * 10)

#> \- ()

#> \- `<-

#> \- `y

#> \- ()

#> \- `*

#> \- `x

#> \- 10

There are four possible components of an expression: constants, names,
calls, and pairlists.
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• constants are length one atomic vectors, like "a" or 10. ast() displays
them as is.

ast("a")

#> \- "a"

ast(1)

#> \- 1

ast(1L)

#> \- 1L

ast(TRUE)

#> \- TRUE

Quoting a constant returns it unchanged:

identical(1, quote(1))

#> [1] TRUE

identical("test", quote("test"))

#> [1] TRUE

• names, or symbols, represent the name of an object rather than its
value. ast() prefixes names with a backtick.

ast(x)

#> \- `x

ast(mean)

#> \- `mean

ast(`an unusual name`)

#> \- `an unusual name

• calls represent the action of calling a function. Like lists, calls are re-
cursive: they can contain constants, names, pairlists, and other calls.
ast() prints () and then lists the children. The first child is the func-
tion that is called, and the remaining children are the function’s argu-
ments.

ast(f())

#> \- ()

#> \- `f

ast(f(1, 2))

#> \- ()

#> \- `f

#> \- 1

#> \- 2

ast(f(a, b))

#> \- ()
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#> \- `f

#> \- `a

#> \- `b

ast(f(g(), h(1, a)))

#> \- ()

#> \- `f

#> \- ()

#> \- `g

#> \- ()

#> \- `h

#> \- 1

#> \- `a

As mentioned in Section 6.3, even things that don’t look like function
calls still have this hierarchical structure:

ast(a + b)

#> \- ()

#> \- `+

#> \- `a

#> \- `b

ast(if (x > 1) x else 1/x)

#> \- ()

#> \- `if

#> \- ()

#> \- `>

#> \- `x

#> \- 1

#> \- `x

#> \- ()

#> \- `/

#> \- 1

#> \- `x

• pairlists, short for dotted pair lists, are a legacy of R’s past. They
are only used in one place: the formal arguments of a function. ast()

prints [] at the top-level of a pairlist. Like calls, pairlists are also
recursive and can contain constants, names, and calls.

ast(function(x = 1, y) x)

#> \- ()

#> \- `function

#> \- []

#> \ x = 1
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#> \ y =`MISSING

#> \- `x

#> \- <srcref>

ast(function(x = 1, y = x * 2) {x / y})

#> \- ()

#> \- `function

#> \- []

#> \ x = 1

#> \ y =()

#> \- `*

#> \- `x

#> \- 2

#> \- ()

#> \- `{

#> \- ()

#> \- `/

#> \- `x

#> \- `y

#> \- <srcref>

Note that str() does not follow these naming conventions when describ-
ing objects. Instead, it describes names as symbols and calls as language
objects:

str(quote(a))

#> symbol a

str(quote(a + b))

#> language a + b

Using low-level functions, it is possible to create call trees that contain
objects other than constants, names, calls, and pairlists. The following
example uses substitute() to insert a data frame into a call tree. This
is a bad idea, however, because the object does not print correctly: the
printed call looks like it should return “list” but when evaluated, it
returns “data.frame”.

class_df <- substitute(class(df), list(df = data.frame(x = 10)))

class_df

#> class(list(x = 10))

eval(class_df)

#> [1] "data.frame"

Together these four components define the structure of all R code. They
are explained in more detail in the following sections.
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14.1.1 Exercises

1. There’s no existing base function that checks if an element is
a valid component of an expression (i.e., it’s a constant, name,
call, or pairlist). Implement one by guessing the names of the
“is” functions for calls, names, and pairlists.

2. pryr::ast() uses non-standard evaluation. What’s its escape
hatch to standard evaluation?

3. What does the call tree of an if statement with multiple else
conditions look like?

4. Compare ast(x + y %+% z) to ast(x ˆ y %+% z). What do
they tell you about the precedence of custom infix functions?

5. Why can’t an expression contain an atomic vector of length
greater than one? Which one of the six types of atomic vector
can’t appear in an expression? Why?

14.2 Names

Typically, we use quote() to capture names. You can also convert a
string to a name with as.name(). However, this is most useful only
when your function receives strings as input. Otherwise it involves more
typing than using quote(). (You can use is.name() to test if an object
is a name.)

as.name("name")

#> name

identical(quote(name), as.name("name"))

#> [1] TRUE

is.name("name")

#> [1] FALSE

is.name(quote(name))

#> [1] TRUE

is.name(quote(f(name)))

#> [1] FALSE

(Names are also called symbols. as.symbol() and is.symbol() are iden-
tical to as.name() and is.name().)
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Names that would otherwise be invalid are automatically surrounded by
backticks:

as.name("a b")

#> `a b`

as.name("if")

#> `if`

There’s one special name that needs a little extra discussion: the empty
name. It is used to represent missing arguments. This object behaves
strangely. You can’t bind it to a variable. If you do, it triggers an error
about missing arguments. It’s only useful if you want to programmati-
cally create a function with missing arguments.

f <- function(x) 10

formals(f)$x

is.name(formals(f)$x)

#> [1] TRUE

as.character(formals(f)$x)

#> [1] ""

missing_arg <- formals(f)$x

# Doesn't work!

is.name(missing_arg)

#> Error in eval(expr, envir, enclos): argument "missing_arg" is missing, with no default

To explicitly create it when needed, call quote() with a named argument:

quote(expr =)

14.2.1 Exercises

1. You can use formals() to both get and set the arguments of
a function. Use formals() to modify the following function so
that the default value of x is missing and y is 10.

g <- function(x = 20, y) {

x + y

}
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2. Write an equivalent to get() using as.name() and
eval(). Write an equivalent to assign() using as.name(),
substitute(), and eval(). (Don’t worry about the multiple
ways of choosing an environment; assume that the user
supplies it explicitly.)

14.3 Calls

A call is very similar to a list. It has length, [[ and [ methods, and is
recursive because calls can contain other calls. The first element of the
call is the function that gets called. It’s usually the name of a function:

x <- quote(read.csv("important.csv", row.names = FALSE))

x[[1]]

#> read.csv

is.name(x[[1]])

#> [1] TRUE

But it can also be another call:

y <- quote(add(10)(20))

y[[1]]

#> add(10)

is.call(y[[1]])

#> [1] TRUE

The remaining elements are the arguments. They can be extracted by
name or by position.

x <- quote(read.csv("important.csv", row.names = FALSE))

x[[2]]

#> [1] "important.csv"

x$row.names

#> [1] FALSE

names(x)

#> [1] "" "" "row.names"
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The length of a call minus 1 gives the number of arguments:

length(x) - 1

#> [1] 2

14.3.1 Modifying a call

You can add, modify, and delete elements of the call with the standard
replacement operators, $<- and [[<-:

y <- quote(read.csv("important.csv", row.names = FALSE))

y$row.names <- TRUE

y$col.names <- FALSE

y

#> read.csv("important.csv", row.names = TRUE, col.names = FALSE)

y[[2]] <- quote(paste0(filename, ".csv"))

y[[4]] <- NULL

y

#> read.csv(paste0(filename, ".csv"), row.names = TRUE)

y$sep <- ","

y

#> read.csv(paste0(filename, ".csv"), row.names = TRUE, sep = ",")

Calls also support the [ method. But use it with care. Removing the
first element is unlikely to create a useful call.

x[-3] # remove the second argument

#> read.csv("important.csv")

x[-1] # remove the function name - but it's still a call!

#> "important.csv"(row.names = FALSE)

x

#> read.csv("important.csv", row.names = FALSE)

If you want a list of the unevaluated arguments (expressions), use explicit
coercion:

# A list of the unevaluated arguments

as.list(x[-1])
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#> [[1]]

#> [1] "important.csv"

#>

#> $row.names

#> [1] FALSE

Generally speaking, because R’s function calling semantics are so flexi-
ble, getting or setting arguments by position is dangerous. For example,
even though the values at each position are different, the following three
calls all have the same effect:

m1 <- quote(read.delim("data.txt", sep = "|"))

m2 <- quote(read.delim(s = "|", "data.txt"))

m3 <- quote(read.delim(file = "data.txt", , "|"))

To work around this problem, pryr provides standardise_call(). It uses
the base match.call() function to convert all positional arguments to
named arguments:

standardise_call(m1)

#> read.delim(file = "data.txt", sep = "|")

standardise_call(m2)

#> read.delim(file = "data.txt", sep = "|")

standardise_call(m3)

#> read.delim(file = "data.txt", sep = "|")

14.3.2 Creating a call from its components

To create a new call from its components, you can use call() or
as.call(). The first argument to call() is a string which gives a
function name. The other arguments are expressions that represent the
arguments of the call.

call(":", 1, 10)

#> 1:10

call("mean", quote(1:10), na.rm = TRUE)

#> mean(1:10, na.rm = TRUE)

as.call() is a minor variant of call() that takes a single list as input.
The first element is a name or call. The subsequent elements are the
arguments.
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as.call(list(quote(mean), quote(1:10)))

#> mean(1:10)

as.call(list(quote(adder(10)), 20))

#> adder(10)(20)

14.3.3 Exercises

1. The following two calls look the same, but are actually differ-
ent:

(a <- call("mean", 1:10))

#> mean(1:10)

(b <- call("mean", quote(1:10)))

#> mean(1:10)

identical(a, b)

#> [1] FALSE

What’s the difference? Which one should you prefer?
2. Implement a pure R version of do.call().
3. Concatenating a call and an expression with c() creates a

list. Implement concat() so that the following code works to
combine a call and an additional argument.

concat(quote(f), a = 1, b = quote(mean(a)))

#> f(a = 1, b = mean(a))

4. Since list()s don’t belong in expressions, we could create a
more convenient call constructor that automatically combines
lists into the arguments. Implement make_call() so that the
following code works.

make_call(quote(mean), list(quote(x), na.rm = TRUE))

#> mean(x, na.rm = TRUE)

make_call(quote(mean), quote(x), na.rm = TRUE)

#> mean(x, na.rm = TRUE)

5. How does mode<- work? How does it use call()?
6. Read the source for pryr::standardise_call(). How does it

work? Why is is.primitive() needed?
7. standardise_call() doesn’t work so well for the following calls.

Why?
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standardise_call(quote(mean(1:10, na.rm = TRUE)))

#> mean(x = 1:10, na.rm = TRUE)

standardise_call(quote(mean(n = T, 1:10)))

#> mean(x = 1:10, n = T)

standardise_call(quote(mean(x = 1:10, , TRUE)))

#> mean(x = 1:10, , TRUE)

8. Read the documentation for pryr::modify_call(). How do
you think it works? Read the source code.

9. Use ast() and experimentation to figure out the three argu-
ments in an if() call. Which components are required? What
are the arguments to the for() and while() calls?

14.4 Capturing the current call

Many base R functions use the current call: the expression that caused
the current function to be run. There are two ways to capture a current
call:

• sys.call() captures exactly what the user typed.

• match.call() makes a call that only uses named arguments. It’s
like automatically calling pryr::standardise_call() on the result of
sys.call()

The following example illustrates the difference between the two:

f <- function(abc = 1, def = 2, ghi = 3) {

list(sys = sys.call(), match = match.call())

}

f(d = 2, 2)

#> $sys

#> f(d = 2, 2)

#>

#> $match

#> f(abc = 2, def = 2)

Modelling functions often use match.call() to capture the call used to
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create the model. This makes it possible to update() a model, re-fitting
the model after modifying some of original arguments. Here’s an example
of update() in action:

mod <- lm(mpg ~ wt, data = mtcars)

update(mod, formula = . ~ . + cyl)

#>

#> Call:

#> lm(formula = mpg ~ wt + cyl, data = mtcars)

#>

#> Coefficients:

#> (Intercept) wt cyl

#> 39.69 -3.19 -1.51

How does update() work? We can rewrite it using some tools from pryr
to focus on the essence of the algorithm.

update_call <- function (object, formula., ...) {

call <- object$call

# Use update.formula to deal with formulas like . ~ .

if (!missing(formula.)) {

call$formula <- update.formula(formula(object), formula.)

}

modify_call(call, dots(...))

}

update_model <- function(object, formula., ...) {

call <- update_call(object, formula., ...)

eval(call, parent.frame())

}

update_model(mod, formula = . ~ . + cyl)

#>

#> Call:

#> lm(formula = mpg ~ wt + cyl, data = mtcars)

#>

#> Coefficients:

#> (Intercept) wt cyl

#> 39.69 -3.19 -1.51

The original update() has an evaluate argument that controls whether
the function returns the call or the result. But I think it’s better, on
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principle, that a function returns only one type of object, rather than
different types depending on the function’s arguments.

This rewrite also allows us to fix a small bug in update(): it re-evaluates
the call in the global environment, when what we really want is to re-
evaluate it in the environment where the model was originally fit — in
the formula.

f <- function() {

n <- 3

lm(mpg ~ poly(wt, n), data = mtcars)

}

mod <- f()

update(mod, data = mtcars)

#> Error in poly(wt, n): object 'n' not found

update_model <- function(object, formula., ...) {

call <- update_call(object, formula., ...)

eval(call, environment(formula(object)))

}

update_model(mod, data = mtcars)

#>

#> Call:

#> lm(formula = mpg ~ poly(wt, n), data = mtcars)

#>

#> Coefficients:

#> (Intercept) poly(wt, n)1 poly(wt, n)2 poly(wt, n)3

#> 20.091 -29.116 8.636 0.275

This is an important principle to remember: if you want to re-run code
captured with match.call(), you also need to capture the environment
in which it was evaluated, usually the parent.frame(). The downside to
this is that capturing the environment also means capturing any large
objects which happen to be in that environment, which prevents their
memory from being released. This topic is explored in more detail in
Section 18.2.

Some base R functions use match.call() where it’s not necessary. For
example, write.csv() captures the call to write.csv() and mangles it to
call write.table() instead:

write.csv <- function(...) {

Call <- match.call(expand.dots = TRUE)
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for (arg in c("append", "col.names", "sep", "dec", "qmethod")) {

if (!is.null(Call[[arg]])) {

warning(gettextf("attempt to set '%s' ignored", arg))

}

}

rn <- eval.parent(Call$row.names)

Call$append <- NULL

Call$col.names <- if (is.logical(rn) && !rn) TRUE else NA

Call$sep <- ","

Call$dec <- "."

Call$qmethod <- "double"

Call[[1L]] <- as.name("write.table")

eval.parent(Call)

}

To fix this, we could implement write.csv() using regular function call
semantics:

write.csv <- function(x, file = "", sep = ",", qmethod = "double",

...) {

write.table(x = x, file = file, sep = sep, qmethod = qmethod,

...)

}

This is much easier to understand: it’s just calling write.table() with
different defaults. This also fixes a subtle bug in the original write.csv():
write.csv(mtcars, row = FALSE) raises an error, but write.csv(mtcars,

row.names = FALSE) does not. The lesson here is that it’s always better
to solve a problem with the simplest tool possible.

14.4.1 Exercises

1. Compare and contrast update_model() with update.default().
2. Why doesn’t write.csv(mtcars, "mtcars.csv", row = FALSE)

work? What property of argument matching has the original
author forgotten?

3. Rewrite update.formula() to use R code instead of C code.
4. Sometimes it’s necessary to uncover the function that called

the function that called the current function (i.e., the grand-
parent, not the parent). How can you use sys.call() or
match.call() to find this function?
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14.5 Pairlists

Pairlists are a holdover from R’s past. They behave identically to lists,
but have a different internal representation (as a linked list rather than
a vector). Pairlists have been replaced by lists everywhere except in
function arguments.
The only place you need to care about the difference between a list and
a pairlist is if you’re going to construct functions by hand. For example,
the following function allows you to construct a function from its com-
ponent pieces: a list of formal arguments, a body, and an environment.
The function uses as.pairlist() to ensure that the function() has the
pairlist of args it needs.

make_function <- function(args, body, env = parent.frame()) {

args <- as.pairlist(args)

eval(call("function", args, body), env)

}

This function is also available in pryr, where it does a little extra checking
of arguments. make_function() is best used in conjunction with alist(),
the argument list function. alist() doesn’t evaluate its arguments so
that alist(x = a) is shorthand for list(x = quote(a)).

add <- make_function(alist(a = 1, b = 2), quote(a + b))

add(1)

#> [1] 3

add(1, 2)

#> [1] 3

# To have an argument with no default, you need an explicit =

make_function(alist(a = , b = a), quote(a + b))

#> function (a, b = a)

#> a + b

# To take `...` as an argument put it on the LHS of =

make_function(alist(a = , b = , ... =), quote(a + b))

#> function (a, b, ...)

#> a + b

make_function() has one advantage over using closures to construct func-
tions: with it, you can easily read the source code. For example:
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adder <- function(x) {

make_function(alist(y =), substitute({x + y}), parent.frame())

}

adder(10)

#> function (y)

#> {

#> 10 + y

#> }

One useful application of make_function() is in functions like curve().
curve() allows you to plot a mathematical function without creating an
explicit R function:

curve(sin(exp(4 * x)), n = 1000)

Here x is a pronoun. x doesn’t represent a single concrete value, but is
instead a placeholder that varies over the range of the plot. One way to
implement curve() would be with make_function():

curve2 <- function(expr, xlim = c(0, 1), n = 100,

env = parent.frame()) {

f <- make_function(alist(x = ), substitute(expr), env)

x <- seq(xlim[1], xlim[2], length = n)

y <- f(x)

plot(x, y, type = "l", ylab = deparse(substitute(expr)))

}

Functions that use a pronoun are called anaphoric (http://en.
wikipedia.org/wiki/Anaphora_(linguistics)) functions. They are
used in Arc (http://www.arcfn.com/doc/anaphoric.html) (a lisp like
language), Perl (http://www.perlmonks.org/index.pl?node_id=666047),
and Clojure (http://amalloy.hubpages.com/hub/Unhygenic-anaphoric-
Clojure-macros-for-fun-and-profit).

14.5.1 Exercises

1. How are alist(a) and alist(a = ) different? Think about
both the input and the output.

http://en.wikipedia.org/wiki/Anaphora_(linguistics)
http://en.wikipedia.org/wiki/Anaphora_(linguistics)
http://www.arcfn.com/doc/anaphoric.html
http://www.perlmonks.org/index.pl?node_id=666047
http://amalloy.hubpages.com/hub/Unhygenic-anaphoric-Clojure-macros-for-fun-and-profit
http://amalloy.hubpages.com/hub/Unhygenic-anaphoric-Clojure-macros-for-fun-and-profit


298 Advanced R

2. Read the documentation and source code for pryr::partial().
What does it do? How does it work? Read the documentation
and source code for pryr::unenclose(). What does it do and
how does it work?

3. The actual implementation of curve() looks more like

curve3 <- function(expr, xlim = c(0, 1), n = 100,

env = parent.frame()) {

env2 <- new.env(parent = env)

env2$x <- seq(xlim[1], xlim[2], length = n)

y <- eval(substitute(expr), env2)

plot(env2$x, y, type = "l",

ylab = deparse(substitute(expr)))

}

How does this approach differ from curve2() defined above?

14.6 Parsing and deparsing

Sometimes code is represented as a string, rather than as an expression.
You can convert a string to an expression with parse(). parse() is
the opposite of deparse(): it takes a character vector and returns an
expression object. The primary use of parse() is parsing files of code to
disk, so the first argument is a file path. Note that if you have code in
a character vector, you need to use the text argument:

z <- quote(y <- x * 10)

deparse(z)

#> [1] "y <- x * 10"

parse(text = deparse(z))

#> expression(y <- x * 10)

Because there might be many top-level calls in a file, parse() doesn’t
return just a single expression. Instead, it returns an expression object,
which is essentially a list of expressions:

exp <- parse(text = c("
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x <- 4

x

5

"))

length(exp)

#> [1] 3

typeof(exp)

#> [1] "expression"

exp[[1]]

#> x <- 4

exp[[2]]

#> x

You can create expression objects by hand with expression(), but I
wouldn’t recommend it. There’s no need to learn about this esoteric
data structure if you already know how to use expressions.
With parse() and eval(), it’s possible to write a simple version of
source(). We read in the file from disk, parse() it and then eval()

each component in a specified environment. This version defaults to a
new environment, so it doesn’t affect existing objects. source() invisibly
returns the result of the last expression in the file, so simple_source()

does the same.

simple_source <- function(file, envir = new.env()) {

stopifnot(file.exists(file))

stopifnot(is.environment(envir))

lines <- readLines(file, warn = FALSE)

exprs <- parse(text = lines)

n <- length(exprs)

if (n == 0L) return(invisible())

for (i in seq_len(n - 1)) {

eval(exprs[i], envir)

}

invisible(eval(exprs[n], envir))

}

The real source() is considerably more complicated because it can echo

input and output, and also has many additional settings to control be-
haviour.
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14.6.1 Exercises

1. What are the differences between quote() and expression()?
2. Read the help for deparse() and construct a call that

deparse() and parse() do not operate symmetrically on.
3. Compare and contrast source() and sys.source().
4. Modify simple_source() so it returns the result of every ex-

pression, not just the last one.
5. The code generated by simple_source() lacks source refer-

ences. Read the source code for sys.source() and the help
for srcfilecopy(), then modify simple_source() to preserve
source references. You can test your code by sourcing a func-
tion that contains a comment. If successful, when you look at
the function, you’ll see the comment and not just the source
code.

14.7 Walking the AST with recursive functions

It’s easy to modify a single call with substitute() or pryr::modify_call().
For more complicated tasks we need to work directly with the AST.
The base codetools package provides some useful motivating examples
of how we can do this:

• findGlobals() locates all global variables used by a function. This can
be useful if you want to check that your function doesn’t inadvertently
rely on variables defined in their parent environment.

• checkUsage() checks for a range of common problems including unused
local variables, unused parameters, and the use of partial argument
matching.

To write functions like findGlobals() and checkUsage(), we’ll need a
new tool. Because expressions have a tree structure, using a recursive
function would be the natural choice. The key to doing that is getting the
recursion right. This means making sure that you know what the base
case is and figuring out how to combine the results from the recursive
case. For calls, there are two base cases (atomic vectors and names) and
two recursive cases (calls and pairlists). This means that a function for
working with expressions will look like:
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recurse_call <- function(x) {

if (is.atomic(x)) {

# Return a value

} else if (is.name(x)) {

# Return a value

} else if (is.call(x)) {

# Call recurse_call recursively

} else if (is.pairlist(x)) {

# Call recurse_call recursively

} else {

# User supplied incorrect input

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

14.7.1 Finding F and T

We’ll start simple with a function that determines whether a function
uses the logical abbreviations T and F. Using T and F is generally consid-
ered to be poor coding practice, and is something that R CMD check will
warn about. Let’s first compare the AST for T vs. TRUE:

ast(TRUE)

#> \- TRUE

ast(T)

#> \- `T

TRUE is parsed as a logical vector of length one, while T is parsed as
a name. This tells us how to write our base cases for the recursive
function: while an atomic vector will never be a logical abbreviation, a
name might, so we’ll need to test for both T and F. The recursive cases
can be combined because they do the same thing in both cases: they
recursively call logical_abbr() on each element of the object.

logical_abbr <- function(x) {

if (is.atomic(x)) {

FALSE

} else if (is.name(x)) {

identical(x, quote(T)) || identical(x, quote(F))

} else if (is.call(x) || is.pairlist(x)) {
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for (i in seq_along(x)) {

if (logical_abbr(x[[i]])) return(TRUE)

}

FALSE

} else {

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

logical_abbr(quote(TRUE))

#> [1] FALSE

logical_abbr(quote(T))

#> [1] TRUE

logical_abbr(quote(mean(x, na.rm = T)))

#> [1] TRUE

logical_abbr(quote(function(x, na.rm = T) FALSE))

#> [1] TRUE

14.7.2 Finding all variables created by assignment

logical_abbr() is very simple: it only returns a single TRUE or FALSE. The
next task, listing all variables created by assignment, is a little more com-
plicated. We’ll start simply, and then make the function progressively
more rigorous.

Again, we start by looking at the AST for assignment:

ast(x <- 10)

#> \- ()

#> \- `<-

#> \- `x

#> \- 10

Assignment is a call where the first element is the name <-, the second
is the object the name is assigned to, and the third is the value to be
assigned. This makes the base cases simple: constants and names don’t
create assignments, so they return NULL. The recursive cases aren’t too
hard either. We lapply() over pairlists and over calls to functions other
than <-.

find_assign <- function(x) {
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if (is.atomic(x) || is.name(x)) {

NULL

} else if (is.call(x)) {

if (identical(x[[1]], quote(`<-`))) {

x[[2]]

} else {

lapply(x, find_assign)

}

} else if (is.pairlist(x)) {

lapply(x, find_assign)

} else {

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

find_assign(quote(a <- 1))

#> a

find_assign(quote({

a <- 1

b <- 2

}))

#> [[1]]

#> NULL

#>

#> [[2]]

#> a

#>

#> [[3]]

#> b

This function works for these simple cases, but the output is rather
verbose and includes some extraneous NULLs. Instead of returning a list,
let’s keep it simple and use a character vector. We’ll also test it with
two slightly more complicated examples:

find_assign2 <- function(x) {

if (is.atomic(x) || is.name(x)) {

character()

} else if (is.call(x)) {

if (identical(x[[1]], quote(`<-`))) {

as.character(x[[2]])

} else {

unlist(lapply(x, find_assign2))
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}

} else if (is.pairlist(x)) {

unlist(lapply(x, find_assign2))

} else {

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

find_assign2(quote({

a <- 1

b <- 2

a <- 3

}))

#> [1] "a" "b" "a"

find_assign2(quote({

system.time(x <- print(y <- 5))

}))

#> [1] "x"

This is better, but we have two problems: dealing with repeated names
and neglecting assignments inside other assignments. The fix for the
first problem is easy. We need to wrap unique() around the recursive
case to remove duplicate assignments. The fix for the second problem
is a bit more tricky. We also need to recurse when the call is to <-.
find_assign3() implements both strategies:

find_assign3 <- function(x) {

if (is.atomic(x) || is.name(x)) {

character()

} else if (is.call(x)) {

if (identical(x[[1]], quote(`<-`))) {

lhs <- as.character(x[[2]])

} else {

lhs <- character()

}

unique(c(lhs, unlist(lapply(x, find_assign3))))

} else if (is.pairlist(x)) {

unique(unlist(lapply(x, find_assign3)))

} else {

stop("Don't know how to handle type ", typeof(x),
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call. = FALSE)

}

}

find_assign3(quote({

a <- 1

b <- 2

a <- 3

}))

#> [1] "a" "b"

find_assign3(quote({

system.time(x <- print(y <- 5))

}))

#> [1] "x" "y"

We also need to test subassignment:

find_assign3(quote({

l <- list()

l$a <- 5

names(l) <- "b"

}))

#> [1] "l" "$" "a" "names"

We only want assignment of the object itself, not assignment that modi-
fies a property of the object. Drawing the tree for the quoted object will
help us see what condition to test for. The second element of the call to
<- should be a name, not another call.

ast(l$a <- 5)

#> \- ()

#> \- `<-

#> \- ()

#> \- `$

#> \- `l

#> \- `a

#> \- 5

ast(names(l) <- "b")

#> \- ()

#> \- `<-

#> \- ()
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#> \- `names

#> \- `l

#> \- "b"

Now we have a complete version:

find_assign4 <- function(x) {

if (is.atomic(x) || is.name(x)) {

character()

} else if (is.call(x)) {

if (identical(x[[1]], quote(`<-`)) && is.name(x[[2]])) {

lhs <- as.character(x[[2]])

} else {

lhs <- character()

}

unique(c(lhs, unlist(lapply(x, find_assign4))))

} else if (is.pairlist(x)) {

unique(unlist(lapply(x, find_assign4)))

} else {

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

find_assign4(quote({

l <- list()

l$a <- 5

names(l) <- "b"

}))

#> [1] "l"

While the complete version of this function is quite complicated, it’s
important to remember we wrote it by working our way up by writing
simple component parts.

14.7.3 Modifying the call tree

The next step up in complexity is returning a modified call tree, like
what you get with bquote(). bquote() is a slightly more flexible form of
quote: it allows you to optionally quote and unquote some parts of an
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expression (it’s similar to the backtick operator in Lisp). Everything is
quoted, unless it’s encapsulated in .() in which case it’s evaluated and
the result is inserted:

a <- 1

b <- 3

bquote(a + b)

#> a + b

bquote(a + .(b))

#> a + 3

bquote(.(a) + .(b))

#> 1 + 3

bquote(.(a + b))

#> [1] 4

This provides a fairly easy way to control what gets evaluated and when.
How does bquote() work? Below, I’ve rewritten bquote() to use the same
style as our other functions: it expects input to be quoted already, and
makes the base and recursive cases more explicit:

bquote2 <- function (x, where = parent.frame()) {

if (is.atomic(x) || is.name(x)) {

# Leave unchanged

x

} else if (is.call(x)) {

if (identical(x[[1]], quote(.))) {

# Call to .(), so evaluate

eval(x[[2]], where)

} else {

# Otherwise apply recursively, turning result back into call

as.call(lapply(x, bquote2, where = where))

}

} else if (is.pairlist(x)) {

as.pairlist(lapply(x, bquote2, where = where))

} else {

# User supplied incorrect input

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

x <- 1
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y <- 2

bquote2(quote(x == .(x)))

#> x == 1

bquote2(quote(function(x = .(x)) {

x + .(y)

}))

#> function(x = 1) {

#> x + 2

#> }

The main difference between this and the previous recursive functions
is that after we process each element of calls and pairlists, we need to
coerce them back to their original types.

Note that functions that modify the source tree are most useful for cre-
ating expressions that are used at run-time, rather than those that are
saved back to the original source file. This is because all non-code infor-
mation is lost:

bquote2(quote(function(x = .(x)) {

# This is a comment

x + # funky spacing

.(y)

}))

#> function(x = 1) {

#> x + 2

#> }

These tools are somewhat similar to Lisp macros, as discussed in Pro-
grammer’s Niche: Macros in R (http://www.r-project.org/doc/Rnews/
Rnews_2001-3.pdf#page=10) by Thomas Lumley. However, macros are
run at compile-time, which doesn’t have any meaning in R, and al-
ways return expressions. They’re also somewhat like Lisp fexprs (http:
//en.wikipedia.org/wiki/Fexpr). A fexpr is a function where the ar-
guments are not evaluated by default. The terms macro and fexpr are
useful to know when looking for useful techniques from other languages.

14.7.4 Exercises

1. Why does logical_abbr() use a for loop instead of a functional
like lapply()?

http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf#page=10
http://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf#page=10
http://en.wikipedia.org/wiki/Fexpr
http://en.wikipedia.org/wiki/Fexpr
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2. logical_abbr() works when given quoted objects, but doesn’t
work when given an existing function, as in the example below.
Why not? How could you modify logical_abbr() to work with
functions? Think about what components make up a function.

f <- function(x = TRUE) {

g(x + T)

}

logical_abbr(f)

3. Write a function called ast_type() that returns either “con-
stant”, “name”, “call”, or “pairlist”. Rewrite logical_abbr(),
find_assign(), and bquote2() to use this function with
switch() instead of nested if statements.

4. Write a function that extracts all calls to a function. Compare
your function to pryr::fun_calls().

5. Write a wrapper around bquote2() that does non-standard
evaluation so that you don’t need to explicitly quote() the
input.

6. Compare bquote2() to bquote(). There is a subtle bug in
bquote(): it won’t replace calls to functions with no argu-
ments. Why?

bquote(.(x)(), list(x = quote(f)))

#> .(x)()

bquote(.(x)(1), list(x = quote(f)))

#> f(1)

7. Improve the base recurse_call() template to also work
with lists of functions and expressions (e.g., as from
parse(path_to_file)).





15
Domain specific languages

The combination of first class environments, lexical scoping, non-
standard evaluation, and metaprogramming gives us a powerful toolkit
for creating embedded domain specific languages (DSLs) in R. Embed-
ded DSLs take advantage of a host language’s parsing and execution
framework, but adjust the semantics to make them more suitable for
a specific task. DSLs are a very large topic, and this chapter will only
scratch the surface, focussing on important implementation techniques
rather than on how you might come up with the language in the first
place. If you’re interested in learning more, I highly recommend Domain
Specific Languages (http://amzn.com/0321712943?tag=devtools-20) by
Martin Fowler. It discusses many options for creating a DSL and
provides many examples of different languages.

R’s most popular DSL is the formula specification, which provides a
succinct way of describing the relationship between predictors and the
response in a model. Other examples include ggplot2 (for visualisation)
and plyr (for data manipulation). Another package that makes extensive
use of these ideas is dplyr, which provides translate_sql() to convert R
expressions into SQL:

library(dplyr)

translate_sql(sin(x) + tan(y))

#> <SQL> SIN("x") + TAN("y")

translate_sql(x < 5 & !(y >= 5))

#> <SQL> "x" < 5.0 AND NOT(("y" >= 5.0))

translate_sql(first %like% "Had*")

#> <SQL> "first" LIKE 'Had*'

translate_sql(first %in% c("John", "Roger", "Robert"))

#> <SQL> "first" IN ('John', 'Roger', 'Robert')

translate_sql(like == 7)

#> <SQL> "like" = 7.0

This chapter will develop two simple, but useful DSLs: one to generate
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HTML, and the other to turn mathematical expressions expressed in R
code into LaTeX.

Prerequisites

This chapter together pulls together many techniques discussed else-
where in the book. In particular, you’ll need to understand environ-
ments, functionals, non-standard evaluation, and metaprogramming.

15.1 HTML

HTML (hypertext markup language) is the language that underlies the
majority of the web. It’s a special case of SGML (standard generalised
markup language), and it’s similar but not identical to XML (extensible
markup language). HTML looks like this:

<body>

<h1 id='first'>A heading</h1>

<p>Some text &amp; <b>some bold text.</b></p>

<img src='myimg.png' width='100' height='100' />

</body>

Even if you’ve never looked at HTML before, you can still see that the
key component of its coding structure is tags, <tag></tag>. Tags can
be contained inside other tags and intermingled with text. Generally,
HTML ignores whitespaces (a sequence of whitespace is equivalent to a
single space) so you could put the previous example on a single line and
it would still display the same in a browser:

<body><h1 id='first'>A heading</h1><p>Some text &amp; <b>some bold

text.</b></p><img src='myimg.png' width='100' height='100' />

</body>

However, like R code, you usually want to indent HTML to make the
structure more obvious.

There are over 100 HTML tags. But to illustrate HTML, we’re going to
focus on just a few:
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• <body>: the top-level tag that all content is enclosed within
• <h1>: creates a heading-1, the top level heading
• <p>: creates a paragraph
• <b>: emboldens text
• <img>: embeds an image

(You probably guessed what these did already!)
Tags can also have named attributes. They look like <tag a="a"

b="b"></tag>. Tag values should always be enclosed in either single or
double quotes. Two important attributes used with just about every tag
are id and class. These are used in conjunction with CSS (cascading
style sheets) in order to control the style of the document.
Some tags, like <img>, can’t have any content. These are called void tags
and have a slightly different syntax. Instead of writing <img></img>,
you write <img />. Since they have no content, attributes are more
important. In fact, img has three that are used for almost every image:
src (where the image lives), width, and height.
Because < and > have special meanings in HTML, you can’t write them
directly. Instead you have to use the HTML escapes: &gt; and &lt;.
And, since those escapes use &, if you want a literal ampersand you have
to escape with &amp;.

15.1.1 Goal

Our goal is to make it easy to generate HTML from R. To give a concrete
example, we want to generate the following HTML with code that looks
as similar to the HTML as possible.

<body>

<h1 id='first'>A heading</h1>

<p>Some text &amp; <b>some bold text.</b></p>

<img src='myimg.png' width='100' height='100' />

</body>

To do so, we will work our way up to the following DSL:

with_html(body(

h1("A heading", id = "first"),

p("Some text &", b("some bold text.")),

img(src = "myimg.png", width = 100, height = 100)

))
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Note that the nesting of function calls is the same as the nesting of
tags: unnamed arguments become the content of the tag, and named
arguments become their attributes. Because tags and text are clearly
distinct in this API, we can automatically escape & and other special
characters.

15.1.2 Escaping

Escaping is so fundamental to DSLs that it’ll be our first topic. To create
a way of escaping characters, we need to give “&” a special meaning
without ending up double-escaping. The easiest way to do this is to
create an S3 class that distinguishes between regular text (that needs
escaping) and HTML (that doesn’t).

html <- function(x) structure(x, class = "html")

print.html <- function(x, ...) {

out <- paste0("<HTML> ", x)

cat(paste(strwrap(out), collapse = "\n"), "\n", sep = "")

}

We then write an escape method that leaves HTML unchanged and
escapes the special characters (&, <, >) for ordinary text. We also add a
list method for convenience.

escape <- function(x) UseMethod("escape")

escape.html <- function(x) x

escape.character <- function(x) {

x <- gsub("&", "&amp;", x)

x <- gsub("<", "&lt;", x)

x <- gsub(">", "&gt;", x)

html(x)

}

escape.list <- function(x) {

lapply(x, escape)

}

# Now we check that it works

escape("This is some text.")

#> <HTML> This is some text.

escape("x > 1 & y < 2")
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#> <HTML> x &gt; 1 &amp; y &lt; 2

# Double escaping is not a problem

escape(escape("This is some text. 1 > 2"))

#> <HTML> This is some text. 1 &gt; 2

# And text we know is HTML doesn't get escaped.

escape(html("<hr />"))

#> <HTML> <hr />

Escaping is an important component for many DSLs.

15.1.3 Basic tag functions

Next, we’ll write a few simple tag functions and then figure out how
to generalise this function to cover all possible HTML tags. Let’s start
with <p>. HTML tags can have both attributes (e.g., id or class) and
children (like <b> or <i>). We need some way of separating these in the
function call. Given that attributes are named values and children don’t
have names, it seems natural to separate using named arguments from
unnamed ones. For example, a call to p() might look like:

p("Some text.", b("some bold text"), class = "mypara")

We could list all the possible attributes of the <p> tag in the function
definition. However, that’s hard not only because there are many at-
tributes, but also because it’s possible to use custom attributes (http:
//html5doctor.com/html5-custom-data-attributes/). Instead, we’ll just
use ... and separate the components based on whether or not they are
named. To do this correctly, we need to be aware of an inconsistency in
names():

names(c(a = 1, b = 2))

#> [1] "a" "b"

names(c(a = 1, 2))

#> [1] "a" ""

names(c(1, 2))

#> NULL

With this in mind, we create two helper functions to extract the named
and unnamed components of a vector:

http://html5doctor.com/html5-custom-data-attributes/
http://html5doctor.com/html5-custom-data-attributes/
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named <- function(x) {

if (is.null(names(x))) return(NULL)

x[names(x) != ""]

}

unnamed <- function(x) {

if (is.null(names(x))) return(x)

x[names(x) == ""]

}

We can now create our p() function. Notice that there’s one new func-
tion here: html_attributes(). It uses a list of name-value pairs to create
the correct specification of HTML attributes. It’s a little complicated (in
part, because it deals with some idiosyncracies of HTML that I haven’t
mentioned.). However, because it’s not that important and doesn’t in-
troduce any new ideas, I won’t discuss it here (you can find the source
online).

source("dsl-html-attributes.r", local = TRUE)

p <- function(...) {

args <- list(...)

attribs <- html_attributes(named(args))

children <- unlist(escape(unnamed(args)))

html(paste0(

"<p", attribs, ">",

paste(children, collapse = ""),

"</p>"

))

}

p("Some text")

#> <HTML> <p>Some text</p>

p("Some text", id = "myid")

#> <HTML> <p id = 'myid'>Some text</p>

p("Some text", image = NULL)

#> <HTML> <p image>Some text</p>

p("Some text", class = "important", "data-value" = 10)

#> <HTML> <p class = 'important' data-value = '10'>Some

#> text</p>
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15.1.4 Tag functions

With this definition of p(), it’s pretty easy to see how we can apply this
approach to different tags: we just need to replace "p" with a variable.
We’ll use a closure to make it easy to generate a tag function given a
tag name:

tag <- function(tag) {

force(tag)

function(...) {

args <- list(...)

attribs <- html_attributes(named(args))

children <- unlist(escape(unnamed(args)))

html(paste0(

"<", tag, attribs, ">",

paste(children, collapse = ""),

"</", tag, ">"

))

}

}

(We’re forcing the evaluation of tag with the expectation that we’ll be
calling this function from a loop. This will help to avoid potential bugs
caused by lazy evaluation.)

Now we can run our earlier example:

p <- tag("p")

b <- tag("b")

i <- tag("i")

p("Some text.", b("Some bold text"), i("Some italic text"),

class = "mypara")

#> <HTML> <p class = 'mypara'>Some text.<b>Some bold

#> text</b><i>Some italic text</i></p>

Before we continue writing functions for every possible HTML tag, we
need to create a variant of tag() for void tags. It can be very similar
to tag(), but if there are any unnamed tags, it needs to throw an error.
Also note that the tag itself will look slightly different:

void_tag <- function(tag) {
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force(tag)

function(...) {

args <- list(...)

if (length(unnamed(args)) > 0) {

stop("Tag ", tag, " can not have children", call. = FALSE)

}

attribs <- html_attributes(named(args))

html(paste0("<", tag, attribs, " />"))

}

}

img <- void_tag("img")

img(src = "myimage.png", width = 100, height = 100)

#> <HTML> <img src = 'myimage.png' width = '100' height =

#> '100' />

15.1.5 Processing all tags

Next we need a list of all the HTML tags:

tags <- c("a", "abbr", "address", "article", "aside", "audio",

"b","bdi", "bdo", "blockquote", "body", "button", "canvas",

"caption","cite", "code", "colgroup", "data", "datalist",

"dd", "del","details", "dfn", "div", "dl", "dt", "em",

"eventsource","fieldset", "figcaption", "figure", "footer",

"form", "h1", "h2", "h3", "h4", "h5", "h6", "head", "header",

"hgroup", "html", "i","iframe", "ins", "kbd", "label",

"legend", "li", "mark", "map","menu", "meter", "nav",

"noscript", "object", "ol", "optgroup", "option", "output",

"p", "pre", "progress", "q", "ruby", "rp","rt", "s", "samp",

"script", "section", "select", "small", "span", "strong",

"style", "sub", "summary", "sup", "table", "tbody", "td",

"textarea", "tfoot", "th", "thead", "time", "title", "tr",

"u", "ul", "var", "video")

void_tags <- c("area", "base", "br", "col", "command", "embed",

"hr", "img", "input", "keygen", "link", "meta", "param",

"source", "track", "wbr")

If you look at this list carefully, you’ll see there are quite a few tags
that have the same name as base R functions (body, col, q, source, sub,
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summary, table), and others that have the same name as popular packages
(e.g., map). This means we don’t want to make all the functions available
by default, in either the global environment or the package environment.
Instead, we’ll put them in a list and add some additional code to make
it easy to use them when desired. First, we make a named list:

tag_fs <- c(

setNames(lapply(tags, tag), tags),

setNames(lapply(void_tags, void_tag), void_tags)

)

This gives us an explicit (but verbose) way to call tag functions:

tag_fs$p("Some text.", tag_fs$b("Some bold text"),

tag_fs$i("Some italic text"))

#> <HTML> <p>Some text.<b>Some bold text</b><i>Some

#> italic text</i></p>

We can then finish off our HTML DSL with a function that allows us to
evaluate code in the context of that list:

with_html <- function(code) {

eval(substitute(code), tag_fs)

}

This gives us a succinct API which allows us to write HTML when we
need it but doesn’t clutter up the namespace when we don’t.

with_html(body(

h1("A heading", id = "first"),

p("Some text &", b("some bold text.")),

img(src = "myimg.png", width = 100, height = 100)

))

#> <HTML> <body><h1 id = 'first'>A heading</h1><p>Some

#> text &amp;<b>some bold text.</b></p><img src =

#> 'myimg.png' width = '100' height = '100' /></body>

If you want to access the R function overridden by an HTML tag with the
same name inside with_html(), you can use the full package::function
specification.



320 Advanced R

15.1.6 Exercises

1. The escaping rules for <script> and <style> tags are different:
you don’t want to escape angle brackets or ampersands, but
you do want to escape </script> or </style>. Adapt the code
above to follow these rules.

2. The use of ... for all functions has some big downsides.
There’s no input validation and there will be little informa-
tion in the documentation or autocomplete about how they
are used in the function. Create a new function that, when
given a named list of tags and their
attribute names (like below), creates functions which address
this problem.

list(

a = c("href"),

img = c("src", "width", "height")

)

All tags should get class and id attributes.
3. Currently the HTML doesn’t look terribly pretty, and it’s

hard to see the structure. How could you adapt tag() to do
indenting and formatting?

15.2 LaTeX

The next DSL will convert R expressions into their LaTeX math equiva-
lents. (This is a bit like ?plotmath, but for text instead of plots.) LaTeX
is the lingua franca of mathematicians and statisticians: whenever you
want to describe an equation in text (e.g., in an email), you write it as
a LaTeX equation. Since many reports are produced using both R and
LaTeX, it might be useful to be able to automatically convert mathe-
matical expressions from one language to the other.
Because we need to convert both functions and names, this mathematical
DSL will be more complicated than the HTML DSL. We’ll also need to
create a “default” conversion, so that functions we don’t know about get
a standard conversion. Like the HTML DSL, we’ll also write functionals
to make it easier to generate the translators.
Before we begin, let’s quickly cover how formulas are expressed in LaTeX.
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15.2.1 LaTeX mathematics

LaTeX mathematics are complex. Fortunately, they are well docu-
mented (http://en.wikibooks.org/wiki/LaTeX/Mathematics). That said,
they have a fairly simple structure:

• Most simple mathematical equations are written in the same way you’d
type them in R: x * y, z ˆ 5. Subscripts are written using _ (e.g., x_1).

• Special characters start with a \: \pi= �, \pm=±, and so on. There are
a huge number of symbols available in LaTeX. Googling for latex math

symbols will return many lists (http://www.sunilpatel.co.uk/latex-
type/latex-math-symbols/). There’s even a service (http://detexify.
kirelabs.org/classify.html) that will look up the symbol you sketch
in the browser.

• More complicated functions look like \name{arg1}{arg2}. For example,
to write a fraction you’d use \frac{a}{b}. To write a square root, you’d
use \sqrt{a}.

• To group elements together use {}: i.e., x ˆ a + b vs. x ˆ {a + b}.

• In good math typesetting, a distinction is made between variables
and functions. But without extra information, LaTeX doesn’t know
whether f(a * b) represents calling the function f with input a * b,
or is shorthand for f * (a * b). If f is a function, you can tell LaTeX
to typeset it using an upright font with \textrm{f}(a * b).

15.2.2 Goal

Our goal is to use these rules to automatically convert an R expression
to its appropriate LaTeX representation. We’ll tackle this in four stages:

• Convert known symbols: pi -> \pi

• Leave other symbols unchanged: x -> x, y -> y

• Convert known functions to their special forms: sqrt(frac(a, b)) ->
\sqrt{\frac{a, b}}

• Wrap unknown functions with \textrm: f(a) -> \textrm{f}(a)

We’ll code this translation in the opposite direction of what we did with
the HTML DSL. We’ll start with infrastructure, because that makes it
easy to experiment with our DSL, and then work our way back down to
generate the desired output.

http://en.wikibooks.org/wiki/LaTeX/Mathematics
http://www.sunilpatel.co.uk/latex-type/latex-math-symbols/
http://www.sunilpatel.co.uk/latex-type/latex-math-symbols/
http://detexify.kirelabs.org/classify.html
http://detexify.kirelabs.org/classify.html
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15.2.3 to_math

To begin, we need a wrapper function that will convert R expressions
into LaTeX math expressions. This will work the same way as to_html():
capture the unevaluated expression and evaluate it in a special environ-
ment. However, the special environment is no longer fixed. It will vary
depending on the expression. We do this in order to be able to deal with
symbols and functions that we haven’t yet seen.

to_math <- function(x) {

expr <- substitute(x)

eval(expr, latex_env(expr))

}

15.2.4 Known symbols

Our first step is to create an environment that will convert the special
LaTeX symbols used for Greek, e.g., pi to \pi. This is the same basic
trick used in subset that makes it possible to select column ranges by
name (subset(mtcars, , cyl:wt)): bind a name to a string in a special
environment.

We create that environment by naming a vector, converting the vector
into a list, and converting the list into an environment.

greek <- c(

"alpha", "theta", "tau", "beta", "vartheta", "pi", "upsilon",

"gamma", "gamma", "varpi", "phi", "delta", "kappa", "rho",

"varphi", "epsilon", "lambda", "varrho", "chi", "varepsilon",

"mu", "sigma", "psi", "zeta", "nu", "varsigma", "omega", "eta",

"xi", "Gamma", "Lambda", "Sigma", "Psi", "Delta", "Xi",

"Upsilon", "Omega", "Theta", "Pi", "Phi")

greek_list <- setNames(paste0("\\", greek), greek)

greek_env <- list2env(as.list(greek_list), parent = emptyenv())

We can then check it:

latex_env <- function(expr) {

greek_env

}

to_math(pi)
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#> [1] "\\pi"

to_math(beta)

#> [1] "\\beta"

15.2.5 Unknown symbols

If a symbol isn’t Greek, we want to leave it as is. This is tricky because we
don’t know in advance what symbols will be used, and we can’t possibly
generate them all. So we’ll use a little bit of metaprogramming to find
out what symbols are present in an expression. The all_names function
takes an expression and does the following: if it’s a name, it converts it
to a string; if it’s a call, it recurses down through its arguments.

all_names <- function(x) {

if (is.atomic(x)) {

character()

} else if (is.name(x)) {

as.character(x)

} else if (is.call(x) || is.pairlist(x)) {

children <- lapply(x[-1], all_names)

unique(unlist(children))

} else {

stop("Don't know how to handle type ", typeof(x),

call. = FALSE)

}

}

all_names(quote(x + y + f(a, b, c, 10)))

#> [1] "x" "y" "a" "b" "c"

We now want to take that list of symbols, and convert it to an envi-
ronment so that each symbol is mapped to its corresponding string rep-
resentation (e.g., so eval(quote(x), env) yields "x"). We again use the
pattern of converting a named character vector to a list, then converting
the list to an environment.

latex_env <- function(expr) {

names <- all_names(expr)

symbol_list <- setNames(as.list(names), names)

symbol_env <- list2env(symbol_list)
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symbol_env

}

to_math(x)

#> [1] "x"

to_math(longvariablename)

#> [1] "longvariablename"

to_math(pi)

#> [1] "pi"

This works, but we need to combine it with the Greek symbols envi-
ronment. Since we want to give preference to Greek over defaults (e.g.,
to_math(pi) should give "\\pi", not "pi"), symbol_env needs to be the
parent of greek_env. To do that, we need to make a copy of greek_env

with a new parent. While R doesn’t come with a function for cloning
environments, we can easily create one by combining two existing func-
tions:

clone_env <- function(env, parent = parent.env(env)) {

list2env(as.list(env), parent = parent)

}

This gives us a function that can convert both known (Greek) and un-
known symbols.

latex_env <- function(expr) {

# Unknown symbols

names <- all_names(expr)

symbol_list <- setNames(as.list(names), names)

symbol_env <- list2env(symbol_list)

# Known symbols

clone_env(greek_env, symbol_env)

}

to_math(x)

#> [1] "x"

to_math(longvariablename)

#> [1] "longvariablename"

to_math(pi)

#> [1] "\\pi"
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15.2.6 Known functions

Next we’ll add functions to our DSL. We’ll start with a couple of helper
closures that make it easy to add new unary and binary operators. These
functions are very simple: they only assemble strings. (Again we use
force() to make sure the arguments are evaluated at the right time.)

unary_op <- function(left, right) {

force(left)

force(right)

function(e1) {

paste0(left, e1, right)

}

}

binary_op <- function(sep) {

force(sep)

function(e1, e2) {

paste0(e1, sep, e2)

}

}

Using these helpers, we can map a few illustrative examples of converting
R to LaTeX. Note that with R’s lexical scoping rules helping us, we can
easily provide new meanings for standard functions like +, -, and *, and
even ( and {.

# Binary operators

f_env <- new.env(parent = emptyenv())

f_env$"+" <- binary_op(" + ")

f_env$"-" <- binary_op(" - ")

f_env$"*" <- binary_op(" * ")

f_env$"/" <- binary_op(" / ")

f_env$"^" <- binary_op("^")

f_env$"[" <- binary_op("_")

# Grouping

f_env$"{" <- unary_op("\\left{ ", " \\right}")

f_env$"(" <- unary_op("\\left( ", " \\right)")

f_env$paste <- paste

# Other math functions
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f_env$sqrt <- unary_op("\\sqrt{", "}")

f_env$sin <- unary_op("\\sin(", ")")

f_env$log <- unary_op("\\log(", ")")

f_env$abs <- unary_op("\\left| ", "\\right| ")

f_env$frac <- function(a, b) {

paste0("\\frac{", a, "}{", b, "}")

}

# Labelling

f_env$hat <- unary_op("\\hat{", "}")

f_env$tilde <- unary_op("\\tilde{", "}")

We again modify latex_env() to include this environment. It should be
the last environment R looks for names in: in other words, sin(sin)

should work.

latex_env <- function(expr) {

# Known functions

f_env

# Default symbols

names <- all_names(expr)

symbol_list <- setNames(as.list(names), names)

symbol_env <- list2env(symbol_list, parent = f_env)

# Known symbols

greek_env <- clone_env(greek_env, parent = symbol_env)

}

to_math(sin(x + pi))

#> [1] "\\sin(x + \\pi)"

to_math(log(x_i ^ 2))

#> [1] "\\log(x_i^2)"

to_math(sin(sin))

#> [1] "\\sin(sin)"

15.2.7 Unknown functions

Finally, we’ll add a default for functions that we don’t yet know about.
Like the unknown names, we can’t know in advance what these will be,
so we again use a little metaprogramming to figure them out:
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all_calls <- function(x) {

if (is.atomic(x) || is.name(x)) {

character()

} else if (is.call(x)) {

fname <- as.character(x[[1]])

children <- lapply(x[-1], all_calls)

unique(c(fname, unlist(children)))

} else if (is.pairlist(x)) {

unique(unlist(lapply(x[-1], all_calls), use.names = FALSE))

} else {

stop("Don't know how to handle type ", typeof(x), call. = FALSE)

}

}

all_calls(quote(f(g + b, c, d(a))))

#> [1] "f" "+" "d"

And we need a closure that will generate the functions for each unknown
call.

unknown_op <- function(op) {

force(op)

function(...) {

contents <- paste(..., collapse = ", ")

paste0("\\mathrm{", op, "}(", contents, ")")

}

}

And again we update latex_env():

latex_env <- function(expr) {

calls <- all_calls(expr)

call_list <- setNames(lapply(calls, unknown_op), calls)

call_env <- list2env(call_list)

# Known functions

f_env <- clone_env(f_env, call_env)

# Default symbols

symbols <- all_names(expr)

symbol_list <- setNames(as.list(symbols), symbols)

symbol_env <- list2env(symbol_list, parent = f_env)
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# Known symbols

greek_env <- clone_env(greek_env, parent = symbol_env)

}

to_math(f(a * b))

#> [1] "\\mathrm{f}(a * b)"

15.2.8 Exercises

1. Add escaping. The special symbols that should be escaped
by adding a backslash in front of them are \, $, and %. Just
as with HTML, you’ll need to make sure you don’t end up
double-escaping. So you’ll need to create a small S3 class and
then use that in function operators. That will also allow you
to embed arbitrary LaTeX if needed.

2. Complete the DSL to support all the functions that plotmath

supports.
3. There’s a repeating pattern in latex_env(): we take a char-

acter vector, do something to each piece, convert it to a list,
and then convert the list to an environment. Write a function
that automates this task, and then rewrite latex_env().

4. Study the source code for dplyr. An important part of its
structure is partial_eval() which helps manage expressions
when some of the components refer to variables in the database
while others refer to local R objects. Note that you could use
very similar ideas if you needed to translate small R expres-
sions into other languages, like JavaScript or Python.
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Performance

R is not a fast language. This is not an accident. R was purposely
designed to make data analysis and statistics easier for you to do. It
was not designed to make life easier for your computer. While R is slow
compared to other programming languages, for most purposes, it’s fast
enough.

The goal of this part of the book is to give you a deeper understanding of
R’s performance characteristics. In this chapter, you’ll learn about some
of the trade-offs that R has made, valuing flexibility over performance.
The following four chapters will give you the skills to improve the speed
of your code when you need to:

• In Chapter 17, you’ll learn how to systematically make your code
faster. First you figure what’s slow, and then you apply some gen-
eral techniques to make the slow parts faster.

• In Chapter 18, you’ll learn about how R uses memory, and how garbage
collection and copy-on-modify affect performance and memory usage.

• For really high-performance code, you can move outside of R and use
another programming language. Chapter 19 will teach you the absolute
minimum you need to know about C++ so you can write fast code
using the Rcpp package.

• To really understand the performance of built-in base functions, you’ll
need to learn a little bit about R’s C API. In Chapter 20, you’ll learn
a little about R’s C internals.

Let’s get started by learning more about why R is slow.

331
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16.1 Why is R slow?

To understand R’s performance, it helps to think about R as both a
language and as an implementation of that language. The R-language
is abstract: it defines what R code means and how it should work. The
implementation is concrete: it reads R code and computes a result. The
most popular implementation is the one from r-project.org (http://r-
project.org). I’ll call that implementation GNU-R to distinguish it from
R-language, and from the other implementations I’ll discuss later in the
chapter.

The distinction between R-language and GNU-R is a bit murky because
the R-language is not formally defined. While there is the R language
definition (http://cran.r-project.org/doc/manuals/R-lang.html), it is
informal and incomplete. The R-language is mostly defined in terms
of how GNU-R works. This is in contrast to other languages, like
C++ (http://isocpp.org/std/the-standard) and javascript (http:
//www.ecma-international.org/publications/standards/Ecma-262.htm),
that make a clear distinction between language and implementation
by laying out formal specifications that describe in minute detail how
every aspect of the language should work. Nevertheless, the distinction
between R-language and GNU-R is still useful: poor performance due
to the language is hard to fix without breaking existing code; fixing
poor performance due to the implementation is easier.

In Section 16.3, I discuss some of the ways in which the design of the R-
language imposes fundamental constraints on R’s speed. In Section 16.4,
I discuss why GNU-R is currently far from the theoretical maximum, and
why improvements in performance happen so slowly. While it’s hard to
know exactly how much faster a better implementation could be, a >10x
improvement in speed seems achievable. In Section 16.5, I discuss some
of the promising new implementations of R, and describe one important
technique they use to make R code run faster.

Beyond performance limitations due to design and implementation, it
has to be said that a lot of R code is slow simply because it’s poorly
written. Few R users have any formal training in programming or soft-
ware development. Fewer still write R code for a living. Most people
use R to understand data: it’s more important to get an answer quickly
than to develop a system that will work in a wide variety of situations.
This means that it’s relatively easy to make most R code much faster,
as we’ll see in the following chapters.

http://r-project.org
http://r-project.org
http://cran.r-project.org/doc/manuals/R-lang.html
http://isocpp.org/std/the-standard
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
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Before we examine some of the slower parts of the R-language and GNU-
R, we need to learn a little about benchmarking so that we can give our
intuitions about performance a concrete foundation.

16.2 Microbenchmarking

A microbenchmark is a measurement of the performance of a very small
piece of code, something that might take microseconds (µs) or nanosec-
onds (ns) to run. I’m going to use microbenchmarks to demonstrate
the performance of very low-level pieces of R code, which help develop
your intuition for how R works. This intuition, by-and-large, is not
useful for increasing the speed of real code. The observed differences
in microbenchmarks will typically be dominated by higher-order effects
in real code; a deep understanding of subatomic physics is not very
helpful when baking. Don’t change the way you code because of these
microbenchmarks. Instead wait until you’ve read the practical advice in
the following chapters.

The best tool for microbenchmarking in R is the microbenchmark (http:
//cran.r-project.org/web/packages/microbenchmark/) package. It pro-
vides very precise timings, making it possible to compare operations
that only take a tiny amount of time. For example, the following code
compares the speed of two ways of computing a square root.

library(microbenchmark)

x <- runif(100)

microbenchmark(

sqrt(x),

x ^ 0.5

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> sqrt(x) 592 612 666 703 6,460 100

#> x^0.5 3,780 3,860 3,920 4,050 33,500 100

By default, microbenchmark() runs each expression 100 times (controlled
by the times parameter). In the process, it also randomises the order of
the expressions. It summarises the results with a minimum (min), lower

http://cran.r-project.org/web/packages/microbenchmark/
http://cran.r-project.org/web/packages/microbenchmark/
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quartile (lq), median, upper quartile (uq), and maximum (max). Focus
on the median, and use the upper and lower quartiles (lq and uq) to
get a feel for the variability. In this example, you can see that using the
special purpose sqrt() function is faster than the general exponentiation
operator.

As with all microbenchmarks, pay careful attention to the units: each
computation takes about 800 ns, 800 billionths of a second. To help
calibrate the impact of a microbenchmark on run time, it’s useful to
think about how many times a function needs to run before it takes a
second. If a microbenchmark takes:

• 1 ms, then one thousand calls takes a second
• 1 µs, then one million calls takes a second
• 1 ns, then one billion calls takes a second

The sqrt() function takes about 800 ns, or 0.8 µs, to compute the square
root of 100 numbers. That means if you repeated the operation a million
times, it would take 0.8 s. So changing the way you compute the square
root is unlikely to significantly affect real code.

16.2.1 Exercises

1. Instead of using microbenchmark(), you could use the built-
in function system.time(). But system.time() is much less
precise, so you’ll need to repeat each operation many times
with a loop, and then divide to find the average time of each
operation, as in the code below.

n <- 1:1e6

system.time(for (i in n) sqrt(x)) / length(n)

system.time(for (i in n) x ^ 0.5) / length(n)

How do the estimates from system.time() compare to those
from microbenchmark()? Why are they different?

2. Here are two other ways to compute the square root of a vec-
tor. Which do you think will be fastest? Which will be slow-
est? Use microbenchmarking to test your answers.

x ^ (1 / 2)

exp(log(x) / 2)
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3. Use microbenchmarking to rank the basic arithmetic operators
(+, -, *, /, and ˆ) in terms of their speed. Visualise the results.
Compare the speed of arithmetic on integers vs. doubles.

4. You can change the units in which the microbenchmark results
are expressed with the unit parameter. Use unit = "eps" to
show the number of evaluations needed to take 1 second. Re-
peat the benchmarks above with the eps unit. How does this
change your intuition for performance?

16.3 Language performance

In this section, I’ll explore three trade-offs that limit the performance
of the R-language: extreme dynamism, name lookup with mutable envi-
ronments, and lazy evaluation of function arguments. I’ll illustrate each
trade-off with a microbenchmark, showing how it slows GNU-R down.
I benchmark GNU-R because you can’t benchmark the R-language (it
can’t run code). This means that the results are only suggestive of the
cost of these design decisions, but are nevertheless useful. I’ve picked
these three examples to illustrate some of the trade-offs that are key to
language design: the designer must balance speed, flexibility, and ease
of implementation.

If you’d like to learn more about the performance characteristics of the R-
language and how they affect real code, I highly recommend “Evaluating
the Design of the R Language” (http://r.cs.purdue.edu/pub/ecoop12.
pdf) by Floreal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek.
It uses a powerful methodology that combines a modified R interpreter
and a wide set of code found in the wild.

16.3.1 Extreme dynamism

R is an extremely dynamic programming language. Almost anything
can be modified after it is created. To give just a few examples, you can:

• Change the body, arguments, and environment of functions.
• Change the S4 methods for a generic.
• Add new fields to an S3 object, or even change its class.
• Modify objects outside of the local environment with <<-.

http://r.cs.purdue.edu/pub/ecoop12.pdf
http://r.cs.purdue.edu/pub/ecoop12.pdf
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Pretty much the only things you can’t change are objects in sealed
namespaces, which are created when you load a package.

The advantage of dynamism is that you need minimal upfront plan-
ning. You can change your mind at any time, iterating your way to
a solution without having to start afresh. The disadvantage of dy-
namism is that it’s difficult to predict exactly what will happen with
a given function call. This is a problem because the easier it is to
predict what’s going to happen, the easier it is for an interpreter or
compiler to make an optimisation. (If you’d like more details, Charles
Nutter expands on this idea at On Languages, VMs, Optimization, and
the Way of the World (http://blog.headius.com/2013/05/on-languages-
vms-optimization-and-way.html).) If an interpreter can’t predict what’s
going to happen, it has to consider many options before it finds the right
one. For example, the following loop is slow in R, because R doesn’t
know that x is always an integer. That means R has to look for the right
+ method (i.e., is it adding doubles, or integers?) in every iteration of
the loop.

x <- 0L

for (i in 1:1e6) {

x <- x + 1

}

The cost of finding the right method is higher for non-primitive functions.
The following microbenchmark illustrates the cost of method dispatch
for S3, S4, and RC. I create a generic and a method for each OO system,
then call the generic and see how long it takes to find and call the method.
I also time how long it takes to call the bare function for comparison.

f <- function(x) NULL

s3 <- function(x) UseMethod("s3")

s3.integer <- f

A <- setClass("A", representation(a = "list"))

setGeneric("s4", function(x) standardGeneric("s4"))

setMethod(s4, "A", f)

B <- setRefClass("B", methods = list(rc = f))

a <- A()

b <- B$new()

http://blog.headius.com/2013/05/on-languages-vms-optimization-and-way.html
http://blog.headius.com/2013/05/on-languages-vms-optimization-and-way.html
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microbenchmark(

fun = f(),

S3 = s3(1L),

S4 = s4(a),

RC = b$rc()

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> fun 147 194 226 264 709 100

#> S3 2,050 2,500 2,810 3,130 16,400 100

#> S4 9,570 11,200 12,000 12,700 86,200 100

#> RC 9,480 10,700 11,400 12,000 526,000 100

On my computer, the bare function takes about 200 ns. S3 method
dispatch takes an additional 2,000 ns; S4 dispatch, 11,000 ns; and RC
dispatch, 10,000 ns. S3 and S4 method dispatch are expensive because
R must search for the right method every time the generic is called; it
might have changed between this call and the last. R could do better by
caching methods between calls, but caching is hard to do correctly and
a notorious source of bugs.

16.3.2 Name lookup with mutable environments

It’s surprisingly difficult to find the value associated with a name in the
R-language. This is due to combination of lexical scoping and extreme
dynamism. Take the following example. Each time we print a it comes
from a different environment:

a <- 1

f <- function() {

g <- function() {

print(a)

assign("a", 2, envir = parent.frame())

print(a)

a <- 3

print(a)

}

g()

}

f()

#> [1] 1
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#> [1] 2

#> [1] 3

This means that you can’t do name lookup just once: you have to start
from scratch each time. This problem is exacerbated by the fact that
almost every operation is a lexically scoped function call. You might
think the following simple function calls two functions: + and ˆ. In fact,
it calls four because { and ( are regular functions in R.

f <- function(x, y) {

(x + y) ^ 2

}

Since these functions are in the global environment, R has to look
through every environment in the search path, which could easily be
10 or 20 environments. The following microbenchmark hints at the per-
formance costs. We create four versions of f(), each with one more
environment (containing 26 bindings) between the environment of f()

and the base environment where +, ˆ, (, and { are defined.

random_env <- function(parent = globalenv()) {

letter_list <- setNames(as.list(runif(26)), LETTERS)

list2env(letter_list, envir = new.env(parent = parent))

}

set_env <- function(f, e) {

environment(f) <- e

f

}

f2 <- set_env(f, random_env())

f3 <- set_env(f, random_env(environment(f2)))

f4 <- set_env(f, random_env(environment(f3)))

microbenchmark(

f(1, 2),

f2(1, 2),

f3(1, 2),

f4(1, 2),

times = 10000

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> f(1, 2) 566 613 693 828 19,000 10000
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#> f2(1, 2) 606 661 741 877 22,700 10000

#> f3(1, 2) 654 700 783 918 925,000 10000

#> f4(1, 2) 695 748 829 963 823,000 10000

Each additional environment between f() and the base environment
makes the function slower by about 30 ns.

It might be possible to implement a caching system so that R only needs
to look up the value of each name once. This is hard because there are so
many ways to change the value associated with a name: <<-, assign(),
eval(), and so on. Any caching system would have to know about these
functions to make sure the cache was correctly invalidated and you didn’t
get an out-of-date value.

Another simple fix would be to add more built-in constants that you
can’t override. This, for example, would mean that R always knew ex-
actly what +, -, {, and (meant, and you wouldn’t have to repeatedly look
up their definitions. That would make the interpreter more complicated
(because there are more special cases) and hence harder to maintain,
and the language less flexible. This would change the R-language, but
it would be unlikely to affect much existing code because it’s such a bad
idea to override functions like { and (.

16.3.3 Lazy evaluation overhead

In R, function arguments are evaluated lazily (as discussed in Sec-
tion 6.4.4 and Section 13.1). To implement lazy evaluation, R uses a
promise object that contains the expression needed to compute the
result and the environment in which to perform the computation.
Creating these objects has some overhead, so each additional argument
to a function decreases its speed a little.

The following microbenchmark compares the runtime of a very simple
function. Each version of the function has one additional argument.
This suggests that adding an additional argument slows the function
down by ~20 ns.

f0 <- function() NULL

f1 <- function(a = 1) NULL

f2 <- function(a = 1, b = 1) NULL

f3 <- function(a = 1, b = 2, c = 3) NULL

f4 <- function(a = 1, b = 2, c = 4, d = 4) NULL

f5 <- function(a = 1, b = 2, c = 4, d = 4, e = 5) NULL
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microbenchmark(f0(), f1(), f2(), f3(), f4(), f5(), times = 10000)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> f0() 118 139 145 171 28,800 10000

#> f1() 142 164 172 222 123,000 10000

#> f2() 162 185 192 298 22,700 10000

#> f3() 185 209 219 387 52,200 10000

#> f4() 202 228 260 436 42,100 10000

#> f5() 224 249 308 491 957,000 10000

In most other programming languages there is little overhead for adding
extra arguments. Many compiled languages will even warn you if ar-
guments are never used (like in the above example), and automatically
remove them from the function.

16.3.4 Exercises

1. scan() has the most arguments (21) of any base function.
About how much time does it take to make 21 promises each
time scan is called? Given a simple input (e.g., scan(text =

"1 2 3", quiet = T)) what proportion of the total run time
is due to creating those promises?

2. Read “Evaluating the Design of the R Language” (http://r.
cs.purdue.edu/pub/ecoop12.pdf). What other aspects of the
R-language slow it down? Construct microbenchmarks to il-
lustrate.

3. How does the performance of S3 method dispatch change with
the length of the class vector? How does performance of S4
method dispatch change with number of superclasses? How
about RC?

4. What is the cost of multiple inheritance and multiple dispatch
on S4 method dispatch?

5. Why is the cost of name lookup less for functions in the base
package?

http://r.cs.purdue.edu/pub/ecoop12.pdf
http://r.cs.purdue.edu/pub/ecoop12.pdf
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16.4 Implementation performance

The design of the R language limits its maximum theoretical perfor-
mance, but GNU-R is currently nowhere near that maximum. There
are many things that can (and will) be done to improve performance.
This section discusses some aspects of GNU-R that are slow not because
of their definition, but because of their implementation.

R is over 20 years old. It contains nearly 800,000 lines of code (about
45% C, 19% R, and 17% Fortran). Changes to base R can only be
made by members of the R Core Team (or R-core for short). Currently
R-core has twenty members (http://www.r-project.org/contributors.
html), but only six are active in day-to-day development. No one on
R-core works full time on R. Most are statistics professors who can only
spend a relatively small amount of their time on R. Because of the care
that must be taken to avoid breaking existing code, R-core tends to be
very conservative about accepting new code. It can be frustrating to see
R-core reject proposals that would improve performance. However, the
overriding concern for R-core is not to make R fast, but to build a stable
platform for data analysis and statistics.

Below, I’ll show two small, but illustrative, examples of parts of R that
are currently slow but could, with some effort, be made faster. They are
not critical parts of base R, but they have been sources of frustration
for me in the past. As with all microbenchmarks, these won’t affect the
performance of most code, but can be important for special cases.

16.4.1 Extracting a single value from a data frame

The following microbenchmark shows seven ways to access a single value
(the number in the bottom-right corner) from the built-in mtcars dataset.
The variation in performance is startling: the slowest method takes 30x
longer than the fastest. There’s no reason that there has to be such a
huge difference in performance. It’s simply that no one has had the time
to fix it.

microbenchmark(

"[32, 11]" = mtcars[32, 11],

"$carb[32]" = mtcars$carb[32],

"[[c(11, 32)]]" = mtcars[[c(11, 32)]],

http://www.r-project.org/contributors.html
http://www.r-project.org/contributors.html
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"[[11]][32]" = mtcars[[11]][32],

".subset2" = .subset2(mtcars, 11)[32]

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> [32, 11] 17,500 18,100 18,600 19,400 104,000 100

#> $carb[32] 9,100 10,200 10,700 11,400 49,500 100

#> [[c(11, 32)]] 7,540 8,210 8,720 9,330 500,000 100

#> [[11]][32] 7,040 7,880 8,200 8,790 21,100 100

#> .subset2 229 440 494 552 2,940 100

16.4.2 ifelse(), pmin(), and pmax()

Some base functions are known to be slow. For example, take the fol-
lowing three implementations of squish(), a function that ensures that
the smallest value in a vector is at least a and its largest value is at most
b. The first implementation, squish_ife(), uses ifelse(). ifelse() is
known to be slow because it is relatively general and must evaluate all
arguments fully. The second implementation, squish_p(), uses pmin()

and pmax(). Because these two functions are so specialised, one might
expect that they would be fast. However, they’re actually rather slow.
This is because they can take any number of arguments and they have
to do some relatively complicated checks to determine which method to
use. The final implementation uses basic subassignment.

squish_ife <- function(x, a, b) {

ifelse(x <= a, a, ifelse(x >= b, b, x))

}

squish_p <- function(x, a, b) {

pmax(pmin(x, b), a)

}

squish_in_place <- function(x, a, b) {

x[x <= a] <- a

x[x >= b] <- b

x

}

x <- runif(100, -1.5, 1.5)

microbenchmark(

squish_ife = squish_ife(x, -1, 1),

squish_p = squish_p(x, -1, 1),

squish_in_place = squish_in_place(x, -1, 1),
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unit = "us"

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> squish_ife 73.40 86.40 89.2 114.0 212.0 100

#> squish_p 18.90 21.90 24.3 35.4 465.0 100

#> squish_in_place 7.92 9.73 11.1 14.5 62.9 100

Using pmin() and pmax() is about 3x faster than ifelse(), and using
subsetting directly is about twice as fast again. We can often do even
better by using C++. The following example compares the best R im-
plementation to a relatively simple, if verbose, implementation in C++.
Even if you’ve never used C++, you should still be able to follow the
basic strategy: loop over every element in the vector and perform a dif-
ferent action depending on whether or not the value is less than a and/or
greater than b. The C++ implementation is around 3x faster than the
best pure R implementation.

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector squish_cpp(NumericVector x, double a, double b) {

int n = x.length();

NumericVector out(n);

for (int i = 0; i < n; ++i) {

double xi = x[i];

if (xi < a) {

out[i] = a;

} else if (xi > b) {

out[i] = b;

} else {

out[i] = xi;

}

}

return out;

}

(You’ll learn how to access this C++ code from R in Chapter 19.)

microbenchmark(
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squish_in_place = squish_in_place(x, -1, 1),

squish_cpp = squish_cpp(x, -1, 1),

unit = "us"

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> squish_in_place 7.52 7.81 8.04 8.51 40.3 100

#> squish_cpp 2.46 2.72 2.88 3.07 38.1 100

16.4.3 Exercises

1. The performance characteristics of squish_ife(), squish_p(),
and squish_in_place() vary considerably with the size of x.
Explore the differences. Which sizes lead to the biggest and
smallest differences?

2. Compare the performance costs of extracting an element from
a list, a column from a matrix, and a column from a data
frame. Do the same for rows.

16.5 Alternative R implementations

There are some exciting new implementations of R. While they all try
to stick as closely as possible to the existing language definition, they
improve speed by using ideas from modern interpreter design. The four
most mature open-source projects are:

• pqR (http://www.pqr-project.org/) (pretty quick R) by Radford Neal.
Built on top of R 2.15.0, it fixes many obvious performance issues, and
provides better memory management and some support for automatic
multithreading.

• Renjin (http://www.renjin.org/) by BeDataDriven. Renjin
uses the Java virtual machine, and has an extensive test suite
(http://packages.renjin.org/).

• FastR (https://github.com/allr/fastr) by a team from Purdue.
FastR is similar to Renjin, but it makes more ambitious optimisations
and is somewhat less mature.

http://www.pqr-project.org/
http://www.renjin.org/
http://packages.renjin.org/
https://github.com/allr/fastr
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• Riposte (https://github.com/jtalbot/riposte) by Justin Talbot and
Zachary DeVito. Riposte is experimental and ambitious. For the
parts of R it implements, it is extremely fast. Riposte is described in
more detail in Riposte: A Trace-Driven Compiler and Parallel VM for
Vector Code in R (http://www.justintalbot.com/wp-content/uploads/
2012/10/pact080talbot.pdf).

These are roughly ordered from most practical to most ambitious.
Another project, CXXR (http://www.cs.kent.ac.uk/projects/cxxr/)
by Andrew Runnalls, does not provide any performance improvements.
Instead, it aims to refactor R’s internal C code in order to build a
stronger foundation for future development, to keep behaviour identical
to GNU-R, and to create better, more extensible documentation of its
internals.

R is a huge language and it’s not clear whether any of these approaches
will ever become mainstream. It’s a hard task to make an alternative
implementation run all R code in the same way as GNU-R. Can you
imagine having to reimplement every function in base R to be not only
faster, but also to have exactly the same documented bugs? However,
even if these implementations never make a dent in the use of GNU-R,
they still provide benefits:

• Simpler implementations make it easy to validate new approaches be-
fore porting to GNU-R.

• Knowing which aspects of the language can be changed with minimal
impact on existing code and maximal impact on performance can help
to guide us to where we should direct our attention.

• Alternative implementations put pressure on the R-core to incorporate
performance improvements.

One of the most important approaches that pqR, Renjin, FastR, and
Riposte are exploring is the idea of deferred evaluation. As Justin Talbot,
the author of Riposte, points out: “for long vectors, R’s execution is
completely memory bound. It spends almost all of its time reading and
writing vector intermediates to memory”. If we could eliminate these
intermediate vectors, we could improve performance and reduce memory
usage.

The following example shows a very simple example of how deferred
evaluation can help. We have three vectors, x, y, z, each containing 1
million elements, and we want to find the sum of x + y where z is TRUE.

https://github.com/jtalbot/riposte
http://www.justintalbot.com/wp-content/uploads/2012/10/pact080talbot.pdf
http://www.justintalbot.com/wp-content/uploads/2012/10/pact080talbot.pdf
http://www.cs.kent.ac.uk/projects/cxxr/
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(This represents a simplification of a pretty common sort of data analysis
question.)

x <- runif(1e6)

y <- runif(1e6)

z <- sample(c(T, F), 1e6, rep = TRUE)

sum((x + y)[z])

In R, this creates two big temporary vectors: x + y, 1 million elements
long, and (x + y)[z], about 500,000 elements long. This means you
need to have extra memory available for the intermediate calculation,
and you have to shuttle the data back and forth between the CPU and
memory. This slows computation down because the CPU can’t work at
maximum efficiency if it’s always waiting for more data to come in.

However, if we rewrote the function using a loop in a language like C++,
we only need one intermediate value: the sum of all the values we’ve seen:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double cond_sum_cpp(NumericVector x, NumericVector y,

LogicalVector z) {

double sum = 0;

int n = x.length();

for(int i = 0; i < n; i++) {

if (!z[i]) continue;

sum += x[i] + y[i];

}

return sum;

}

On my computer, this approach is about eight times faster than the
vectorised R equivalent, which is already pretty fast.

cond_sum_r <- function(x, y, z) {

sum((x + y)[z])

}
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microbenchmark(

cond_sum_cpp(x, y, z),

cond_sum_r(x, y, z),

unit = "ms"

)

#> Unit: milliseconds

#> expr min lq median uq max neval

#> cond_sum_cpp(x, y, z) 4.07 4.11 4.4 4.74 5.74 100

#> cond_sum_r(x, y, z) 30.80 32.30 33.3 37.20 67.20 100

The goal of deferred evaluation is to perform this transformation au-
tomatically, so you can write concise R code and have it automatically
translated into efficient machine code. Sophisticated translators can also
figure out how to make the most of multiple cores. In the above exam-
ple, if you have four cores, you could split x, y, and z into four pieces
performing the conditional sum on each core, then adding together the
four individual results. Deferred evaluation can also work with for loops,
automatically discovering operations that can be vectorised.

This chapter has discussed some of the fundamental reasons that R is
slow. The following chapters will give you the tools to do something
about it when it impacts your code.





17
Optimising code

“Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact
when debugging and maintenance are considered.”
— Donald Knuth.

Optimising code to make it run faster is an iterative process:

1. Find the biggest bottleneck (the slowest part of your code).
2. Try to eliminate it (you may not succeed but that’s ok).
3. Repeat until your code is “fast enough.”

This sounds easy, but it’s not.
Even experienced programmers have a hard time identifying bottlenecks
in their code. Instead of relying on your intuition, you should profile
your code: use realistic inputs and measure the run-time of each individ-
ual operation. Only once you’ve identified the most important bottle-
necks can you attempt to eliminate them. It’s difficult to provide general
advice on improving performance, but I try my best with six techniques
that can be applied in many situations. I’ll also suggest a general strat-
egy for performance optimisation that helps ensure that your faster code
will still be correct code.
It’s easy to get caught up in trying to remove all bottlenecks. Don’t!
Your time is valuable and is better spent analysing your data, not elim-
inating possible inefficiencies in your code. Be pragmatic: don’t spend
hours of your time to save seconds of computer time. To enforce this
advice, you should set a goal time for your code and optimise only up
to that goal. This means you will not eliminate all bottlenecks. Some
you will not get to because you’ve met your goal. Others you may need
to pass over and accept either because there is no quick and easy so-
lution or because the code is already well optimised and no significant
improvement is possible. Accept these possibilities and move on to the
next candidate.

349
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Outline

• Section 17.1 describes how to find the bottlenecks in your code using
line profiling.

• Section 17.2 outlines seven general strategies for improving the perfor-
mance of your code.

• Section 17.3 teaches you how to organise your code to make optimisa-
tion as easy, and bug free, as possible.

• Section 17.4 reminds you to look for existing solutions.

• Section 17.5 emphasises the importance of being lazy: often the easiest
way to make a function faster is to let it to do less work.

• Section 17.6 concisely defines vectorisation, and shows you how to
make the most of built-in functions.

• Section 17.7 discusses the performance perils of copying data.

• Section 17.8 shows you how to take advantage of R’s byte code com-
piler.

• Section 17.9 pulls all the pieces together into a case study showing how
to speed up repeated t-tests by ~1000x.

• Section 17.10 teaches you how to use parallelisation to spread compu-
tation across all the cores in your computer.

• Section 17.11 finishes the chapter with pointers to more resources that
will help you write fast code.

Prerequisites

In this chapter we’ll be using the lineprof package to understand the
performance of R code. Get it with:

devtools::install_github("hadley/lineprof")

17.1 Measuring performance

To understand performance, you use a profiler. There are a number of
different types of profilers. R uses a fairly simple type called a sampling
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or statistical profiler. A sampling profiler stops the execution of code
every few milliseconds and records which function is currently executing
(along with which function called that function, and so on). For example,
consider f(), below:

library(lineprof)

f <- function() {

pause(0.1)

g()

h()

}

g <- function() {

pause(0.1)

h()

}

h <- function() {

pause(0.1)

}

(I use pause() instead of Sys.sleep() because Sys.sleep() does not ap-
pear in profiling outputs because as far as R can tell, it doesn’t use up
any computing time.)

If we profiled the execution of f(), stopping the execution of code every
0.1 s, we’d see a profile like below. Each line represents one “tick” of
the profiler (0.1 s in this case), and function calls are nested with >. It
shows that the code spends 0.1 s running f(), then 0.2 s running g(),
then 0.1 s running h().

f()

f() > g()

f() > g() > h()

f() > h()

If we actually profile f(), using the code below, we’re unlikely to get
such a clear result.

tmp <- tempfile()

Rprof(tmp, interval = 0.1)

f()

Rprof(NULL)
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That’s because profiling is hard to do accurately without slowing your
code down by many orders of magnitude. The compromise that RProf()
makes, sampling, only has minimal impact on the overall performance,
but is fundamentally stochastic. There’s some variability in both the
accuracy of the timer and in the time taken by each operation, so each
time you profile you’ll get a slightly different answer. Fortunately, pin-
point accuracy is not needed to identify the slowest parts of your code.

Rather than focussing on individual calls, we’ll visualise aggregates us-
ing the lineprof package. There are a number of other options, like
summaryRprof(), the proftools package, and the profr package, but these
tools are beyond the scope of this book. I wrote the lineprof pack-
age as a simpler way to visualise profiling data. As the name suggests,
the fundamental unit of analysis in lineprof() is a line of code. This
makes lineprof less precise than the alternatives (because a line of code
can contain multiple function calls), but it’s easier to understand the
context.

To use lineprof, we first save the code in a file and source() it. Here
profiling-example.R contains the definition of f(), g(), and h(). Note
that you must use source() to load the code. This is because lineprof
uses srcrefs to match up the code to the profile, and the needed srcrefs
are only created when you load code from disk. We then use lineprof()

to run our function and capture the timing output. Printing this object
shows some basic information. For now, we’ll just focus on the time
column which estimates how long each line took to run and the ref
column which tells us which line of code was run. The estimates aren’t
perfect, but the ratios look about right.

library(lineprof)

source("profiling-example.R")

l <- lineprof(f())

l

#> time alloc release dups ref src

#> 1 0.074 0.001 0 0 profiling.R#2 f/pause

#> 2 0.143 0.002 0 0 profiling.R#3 f/g

#> 3 0.071 0.000 0 0 profiling.R#4 f/h

lineprof provides some functions to navigate through this data structure,
but they’re a bit clumsy. Instead, we’ll start an interactive explorer using
the shiny package. shine(l) will open a new web page (or if you’re
using RStudio, a new pane) that shows your source code annotated with
information about how long each line took to run. shine() starts a
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shiny app which “blocks” your R session. To exit, you’ll need to stop
the process using escape or ctrl + c.

The t column visualises how much time is spent on each line. (You’ll
learn about the other columns in Section 18.3.) While not precise, it
allows you to spot bottlenecks, and you can get precise numbers by
hovering over each bar. This shows that twice as much time is spent on
g() as on h(), so it would make sense to drill down into g() for more
details. To do so, click g():

Then h():
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This technique should allow you to quickly identify the major bottlenecks
in your code.

17.1.1 Limitations

There are some other limitations to profiling:

• Profiling does not extend to C code. You can see if your R code calls
C/C++ code but not what functions are called inside of your C/C++
code. Unfortunately, tools for profiling compiled code are beyond the
scope of this book (i.e., I have no idea how to do it).

• Similarly, you can’t see what’s going on inside primitive functions or
byte code compiled code.

• If you’re doing a lot of functional programming with anonymous func-
tions, it can be hard to figure out exactly which function is being called.
The easiest way to work around this is to name your functions.

• Lazy evaluation means that arguments are often evaluated inside an-
other function. For example, in the following code, profiling would
make it seem like i() was called by j() because the argument isn’t
evaluated until it’s needed by j().

i <- function() {

pause(0.1)

10

}
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j <- function(x) {

x + 10

}

j(i())

If this is confusing, you can create temporary variables to force com-
putation to happen earlier.

17.2 Improving performance

“We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%. A good programmer will
not be lulled into complacency by such reasoning, he will be wise to
look carefully at the critical code; but only after that code has been
identified.”
— Donald Knuth.

Once you’ve used profiling to identify a bottleneck, you need to make it
faster. The following sections introduce you to a number of techniques
that I’ve found broadly useful:

1. Look for existing solutions.
2. Do less work.
3. Vectorise.
4. Parallelise.
5. Avoid copies.
6. Byte-code compile.

A final technique is to rewrite in a faster language, like C++. That’s a
big topic and is covered in Chapter 19.

Before we get into specific techniques, I’ll first describe a general strategy
and organisational style that’s useful when working on performance.
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17.3 Code organisation

There are two traps that are easy to fall into when trying to make your
code faster:

1. Writing faster but incorrect code.
2. Writing code that you think is faster, but is actually no better.

The strategy outlined below will help you avoid these pitfalls.

When tackling a bottleneck, you’re likely to come up with multiple ap-
proaches. Write a function for each approach, encapsulating all relevant
behaviour. This makes it easier to check that each approach returns the
correct result and to time how long it takes to run. To demonstrate the
strategy, I’ll compare two approaches for computing the mean:

mean1 <- function(x) mean(x)

mean2 <- function(x) sum(x) / length(x)

I recommend that you keep a record of everything you try, even the
failures. If a similar problem occurs in the future, it’ll be useful to see
everything you’ve tried. To do this I often use R Markdown, which
makes it easy to intermingle code with detailed comments and notes.

Next, generate a representative test case. The case should be big enough
to capture the essence of your problem but small enough that it takes
only a few seconds to run. You don’t want it to take too long because
you’ll need to run the test case many times to compare approaches. On
the other hand, you don’t want the case to be too small because then
results might not scale up to the real problem.

Use this test case to quickly check that all variants return the same
result. An easy way to do so is with stopifnot() and all.equal(). For
real problems with fewer possible outputs, you may need more tests
to make sure that an approach doesn’t accidentally return the correct
answer. That’s unlikely for the mean.

x <- runif(100)

stopifnot(all.equal(mean1(x), mean2(x)))
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Finally, use the microbenchmark package to compare how long each vari-
ation takes to run. For bigger problems, reduce the times parameter
so that it only takes a couple of seconds to run. Focus on the median
time, and use the upper and lower quartiles to gauge the variability of
the measurement.

microbenchmark(

mean1(x),

mean2(x)

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> mean1(x) 5,680 6,080 6,250 6,490 38,500 100

#> mean2(x) 763 1,010 1,220 1,380 17,300 100

(You might be surprised by the results: mean(x) is considerably slower
than sum(x) / length(x). This is because, among other reasons, mean(x)
makes two passes over the vector to be more numerically accurate.)

Before you start experimenting, you should have a target speed that
defines when the bottleneck is no longer a problem. Setting such a
goal is important because you don’t want to spend valuable time over-
optimising your code.

If you’d like to see this strategy in action, I’ve used it a few times on
stackoverflow:

• http://stackoverflow.com/questions/22515525#22518603

• http://stackoverflow.com/questions/22515175#22515856

• http://stackoverflow.com/questions/3476015#22511936

17.4 Has someone already solved the problem?

Once you’ve organised your code and captured all the variations you
can think of, it’s natural to see what others have done. You are part
of a large community, and it’s quite possible that someone has already
tackled the same problem. If your bottleneck is a function in a package,
it’s worth looking at other packages that do the same thing. Two good
places to start are:

http://stackoverflow.com/questions/22515525#22518603
http://stackoverflow.com/questions/22515175#22515856
http://stackoverflow.com/questions/3476015#22511936
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• CRAN task views (http://cran.rstudio.com/web/views/). If there’s a
CRAN task view related to your problem domain, it’s worth looking
at the packages listed there.

• Reverse dependencies of Rcpp, as listed on its CRAN page (http:
//cran.r-project.org/web/packages/Rcpp). Since these packages use
C++, it’s possible to find a solution to your bottleneck written in a
higher performance language.

Otherwise, the challenge is describing your bottleneck in a way that
helps you find related problems and solutions. Knowing the name of
the problem or its synonyms will make this search much easier. But
because you don’t know what it’s called, it’s hard to search for it! By
reading broadly about statistics and algorithms, you can build up your
own knowledge base over time. Alternatively, ask others. Talk to your
colleagues and brainstorm some possible names, then search on Google
and stackoverflow. It’s often helpful to restrict your search to R related
pages. For Google, try rseek (http://www.rseek.org/). For stackover-
flow, restrict your search by including the R tag, [R], in your search.

As discussed above, record all solutions that you find, not just those
that immediately appear to be faster. Some solutions might be initially
slower, but because they are easier to optimise they end up being faster.
You may also be able to combine the fastest parts from different ap-
proaches. If you’ve found a solution that’s fast enough, congratulations!
If appropriate, you may want to share your solution with the R commu-
nity. Otherwise, read on.

17.4.1 Exercises

1. What are faster alternatives to lm? Which are specifically
designed to work with larger datasets?

2. What package implements a version of match() that’s faster
for repeated lookups? How much faster is it?

3. List four functions (not just those in base R) that convert a
string into a date time object. What are their strengths and
weaknesses?

4. How many different ways can you compute a 1d density esti-
mate in R?

5. Which packages provide the ability to compute a rolling mean?
6. What are the alternatives to optim()?

http://cran.rstudio.com/web/views/
http://cran.r-project.org/web/packages/Rcpp
http://cran.r-project.org/web/packages/Rcpp
http://www.rseek.org/


Optimising code 359

17.5 Do as little as possible

The easiest way to make a function faster is to let it do less work. One
way to do that is use a function tailored to a more specific type of input
or ouput, or a more specific problem. For example:

• rowSums(), colSums(), rowMeans(), and colMeans() are faster than
equivalent invocations that use apply() because they are vectorised
(the topic of the next section).

• vapply() is faster than sapply() because it pre-specifies the output
type.

• If you want to see if a vector contains a single value, any(x == 10) is
much faster than 10 %in% x. This is because testing equality is simpler
than testing inclusion in a set.

Having this knowledge at your fingertips requires knowing that alter-
native functions exist: you need to have a good vocabulary. Start
with Chapter 4, and expand your vocab by regularly reading R code.
Good places to read code are the R-help mailing list (https://stat.ethz.
ch/mailman/listinfo/r-help) and stackoverflow (http://stackoverflow.
com/questions/tagged/r).

Some functions coerce their inputs into a specific type. If your input is
not the right type, the function has to do extra work. Instead, look for
a function that works with your data as it is, or consider changing the
way you store your data. The most common example of this problem
is using apply() on a data frame. apply() always turns its input into
a matrix. Not only is this error prone (because a data frame is more
general than a matrix), it is also slower.

Other functions will do less work if you give them more information
about the problem. It’s always worthwhile to carefully read the doc-
umentation and experiment with different arguments. Some examples
that I’ve discovered in the past include:

• read.csv(): specify known column types with colClasses.

• factor(): specify known levels with levels.

https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help
http://stackoverflow.com/questions/tagged/r
http://stackoverflow.com/questions/tagged/r
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• cut(): don’t generate labels with labels = FALSE if you don’t need
them, or, even better, use findInterval() as mentioned in the “see
also” section of the documentation.

• unlist(x, use.names = FALSE) is much faster than unlist(x).

• interaction(): if you only need combinations that exist in the data,
use drop = TRUE.

Sometimes you can make a function faster by avoiding method dispatch.
As we saw in (Section 16.3.1), method dispatch in R can be costly. If
you’re calling a method in a tight loop, you can avoid some of the costs
by doing the method lookup only once:

• For S3, you can do this by calling generic.class() instead of
generic().

• For S4, you can do this by using findMethod() to find the method,
saving it to a variable, and then calling that function.

For example, calling mean.default() quite a bit faster than calling mean()

for small vectors:

x <- runif(1e2)

microbenchmark(

mean(x),

mean.default(x)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> mean(x) 4.86 5.09 5.25 5.45 47.1 100

#> mean.default(x) 1.38 1.56 1.64 1.76 32.7 100

This optimisation is a little risky. While mean.default() is almost twice
as fast, it’ll fail in surprising ways if x is not a numeric vector. You
should only use it if you know for sure what x is.
Knowing that you’re dealing with a specific type of input can be another
way to write faster code. For example, as.data.frame() is quite slow
because it coerces each element into a data frame and then rbind()s
them together. If you have a named list with vectors of equal length,
you can directly transform it into a data frame. In this case, if you’re
able to make strong assumptions about your input, you can write a
method that’s about 20x faster than the default.
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quickdf <- function(l) {

class(l) <- "data.frame"

attr(l, "row.names") <- .set_row_names(length(l[[1]]))

l

}

l <- lapply(1:26, function(i) runif(1e3))

names(l) <- letters

microbenchmark(

quick_df = quickdf(l),

as.data.frame = as.data.frame(l)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> quick_df 14.4 16.1 21.1 28.3 81 100

#> as.data.frame 1,480.0 1,530.0 1,600.0 1,870.0 4,300 100

Again, note the trade-off. This method is fast because it’s dangerous. If
you give it bad inputs, you’ll get a corrupt data frame:

quickdf(list(x = 1, y = 1:2))

#> Warning in format.data.frame(x, digits = digits, na.encode =

#> FALSE): corrupt data frame: columns will be truncated or

#> padded with NAs

#> x y

#> 1 1 1

To come up with this minimal method, I carefully read through and then
rewrote the source code for as.data.frame.list() and data.frame(). I
made many small changes, each time checking that I hadn’t broken ex-
isting behaviour. After several hours work, I was able to isolate the min-
imal code shown above. This is a very useful technique. Most base R
functions are written for flexibility and functionality, not performance.
Thus, rewriting for your specific need can often yield substantial im-
provements. To do this, you’ll need to read the source code. It can be
complex and confusing, but don’t give up!

The following example shows a progressive simplification of the diff()

function if you only want computing differences between adjacent values.
At each step, I replace one argument with a specific case, and then check
to see that the function still works. The initial function is long and
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complicated, but by restricting the arguments I not only make it around
twice as fast, I also make it easier to understand.

First, I take the code of diff() and reformat it to my style:

diff1 <- function (x, lag = 1L, differences = 1L) {

ismat <- is.matrix(x)

xlen <- if (ismat) dim(x)[1L] else length(x)

if (length(lag) > 1L || length(differences) > 1L ||

lag < 1L || differences < 1L)

stop("'lag' and 'differences' must be integers >= 1")

if (lag * differences >= xlen) {

return(x[0L])

}

r <- unclass(x)

i1 <- -seq_len(lag)

if (ismat) {

for (i in seq_len(differences)) {

r <- r[i1, , drop = FALSE] -

r[-nrow(r):-(nrow(r) - lag + 1L), , drop = FALSE]

}

} else {

for (i in seq_len(differences)) {

r <- r[i1] - r[-length(r):-(length(r) - lag + 1L)]

}

}

class(r) <- oldClass(x)

r

}

Next, I assume vector input. This allows me to remove the is.matrix()

test and the method that uses matrix subsetting.

diff2 <- function (x, lag = 1L, differences = 1L) {

xlen <- length(x)

if (length(lag) > 1L || length(differences) > 1L ||

lag < 1L || differences < 1L)

stop("'lag' and 'differences' must be integers >= 1")

if (lag * differences >= xlen) {

return(x[0L])
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}

i1 <- -seq_len(lag)

for (i in seq_len(differences)) {

x <- x[i1] - x[-length(x):-(length(x) - lag + 1L)]

}

x

}

diff2(cumsum(0:10))

#> [1] 1 2 3 4 5 6 7 8 9 10

I now assume that difference = 1L. This simplifies input checking and
eliminates the for loop:

diff3 <- function (x, lag = 1L) {

xlen <- length(x)

if (length(lag) > 1L || lag < 1L)

stop("'lag' must be integer >= 1")

if (lag >= xlen) {

return(x[0L])

}

i1 <- -seq_len(lag)

x[i1] - x[-length(x):-(length(x) - lag + 1L)]

}

diff3(cumsum(0:10))

#> [1] 1 2 3 4 5 6 7 8 9 10

Finally I assume lag = 1L. This eliminates input checking and simplifies
subsetting.

diff4 <- function (x) {

xlen <- length(x)

if (xlen <= 1) return(x[0L])

x[-1] - x[-xlen]

}

diff4(cumsum(0:10))

#> [1] 1 2 3 4 5 6 7 8 9 10

Now diff4() is both considerably simpler and considerably faster than
diff1():
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x <- runif(100)

microbenchmark(

diff1(x),

diff2(x),

diff3(x),

diff4(x)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> diff1(x) 11.70 14.00 14.60 15.10 43.7 100

#> diff2(x) 10.20 12.60 12.80 13.10 69.4 100

#> diff3(x) 9.03 11.00 11.30 11.70 29.4 100

#> diff4(x) 7.12 9.38 9.56 9.82 16.8 100

You’ll be able to make diff() even faster for this special case once you’ve
read Chapter 19.

A final example of doing less work is to use simpler data structures. For
example, when working with rows from a data frame, it’s often faster to
work with row indices than data frames. For instance, if you wanted to
compute a bootstrap estimate of the correlation between two columns
in a data frame, there are two basic approaches: you can either work
with the whole data frame or with the individual vectors. The following
example shows that working with vectors is about twice as fast.

sample_rows <- function(df, i) sample.int(nrow(df), i,

replace = TRUE)

# Generate a new data frame containing randomly selected rows

boot_cor1 <- function(df, i) {

sub <- df[sample_rows(df, i), , drop = FALSE]

cor(sub$x, sub$y)

}

# Generate new vectors from random rows

boot_cor2 <- function(df, i ) {

idx <- sample_rows(df, i)

cor(df$x[idx], df$y[idx])

}

df <- data.frame(x = runif(100), y = runif(100))

microbenchmark(

boot_cor1(df, 10),
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boot_cor2(df, 10)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> boot_cor1(df, 10) 129.0 136.0 141.0 148.0 752 100

#> boot_cor2(df, 10) 76.5 79.5 82.1 87.3 130 100

17.5.1 Exercises

1. How do the results change if you compare mean() and
mean.default() on 10,000 observations, rather than on 100?

2. The following code provides an alternative implementation of
rowSums(). Why is it faster for this input?

rowSums2 <- function(df) {

out <- df[[1L]]

if (ncol(df) == 1) return(out)

for (i in 2:ncol(df)) {

out <- out + df[[i]]

}

out

}

df <- as.data.frame(

replicate(1e3, sample(100, 1e4, replace = TRUE))

)

system.time(rowSums(df))

#> user system elapsed

#> 0.062 0.003 0.066

system.time(rowSums2(df))

#> user system elapsed

#> 0.056 0.008 0.063

3. What’s the difference between rowSums() and .rowSums()?
4. Make a faster version of chisq.test() that only computes the

chi-square test statistic when the input is two numeric vectors
with no missing values. You can try simplifying chisq.test()

or by coding from the mathematical definition (http://en.
wikipedia.org/wiki/Pearson%27s_chi-squared_test).

5. Can you make a faster version of table() for the case of an

http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
http://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test
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input of two integer vectors with no missing values? Can you
use it to speed up your chi-square test?

6. Imagine you want to compute the bootstrap distribution of a
sample correlation using cor_df() and the data in the example
below. Given that you want to run this many times, how can
you make this code faster? (Hint: the function has three
components that you can speed up.)

n <- 1e6

df <- data.frame(a = rnorm(n), b = rnorm(n))

cor_df <- function(i) {

i <- sample(seq(n), n * 0.01)

cor(q[i, , drop = FALSE])[2,1]

}

Is there a way to vectorise this procedure?

17.6 Vectorise

If you’ve used R for any length of time, you’ve probably heard the
admonishment to “vectorise your code”. But what does that actually
mean? Vectorising your code is not just about avoiding for loops, al-
though that’s often a step. Vectorising is about taking a “whole object”
approach to a problem, thinking about vectors, not scalars. There are
two key attributes of a vectorised function:

• It makes many problems simpler. Instead of having to think about the
components of a vector, you only think about entire vectors.

• The loops in a vectorised function are written in C instead of R. Loops
in C are much faster because they have much less overhead.

Chapter 11 stressed the importance of vectorised code as a higher level
abstraction. Vectorisation is also important for writing fast R code. This
doesn’t mean simply using apply() or lapply(), or even Vectorise().
Those functions improve the interface of a function, but don’t fun-
damentally change performance. Using vectorisation for performance
means finding the existing R function that is implemented in C and
most closely applies to your problem.
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Vectorised functions that apply to many common performance bottle-
necks include:

• rowSums(), colSums(), rowMeans(), and colMeans(). These vectorised
matrix functions will always be faster than using apply(). You can
sometimes use these functions to build other vectorised functions.

rowAny <- function(x) rowSums(x) > 0

rowAll <- function(x) rowSums(x) == ncol(x)

• Vectorised subsetting can lead to big improvements in speed. Remem-
ber the techniques behind lookup tables (Section 3.4.1) and matching
and merging by hand (Section 3.4.2). Also remember that you can use
subsetting assignment to replace multiple values in a single step. If x
is a vector, matrix or data frame then x[is.na(x)] <- 0 will replace
all missing values with 0.

• If you’re extracting or replacing values in scattered locations in a ma-
trix or data frame, subset with an integer matrix. See Section 3.1.3
for more details.

• If you’re converting continuous values to categorical make sure you
know how to use cut() and findInterval().

• Be aware of vectorised functions like cumsum() and diff().

Matrix algebra is a general example of vectorisation. There loops are
executed by highly tuned external libraries like BLAS. If you can figure
out a way to use matrix algebra to solve your problem, you’ll often get
a very fast solution. The ability to solve problems with matrix algebra
is a product of experience. While this skill is something you’ll develop
over time, a good place to start is to ask people with experience in your
domain.

The downside of vectorisation is that it makes it harder to predict how
operations will scale. The following example measures how long it takes
to use character subsetting to lookup 1, 10, and 100 elements from a list.
You might expect that looking up 10 elements would take 10x as long as
looking up 1, and that looking up 100 elements would take 10x longer
again. In fact, the following example shows that it only takes about 9
times longer to look up 100 elements than it does to look up 1.

lookup <- setNames(as.list(sample(100, 26)), letters)
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x1 <- "j"

x10 <- sample(letters, 10)

x100 <- sample(letters, 100, replace = TRUE)

microbenchmark(

lookup[x1],

lookup[x10],

lookup[x100]

)

#> Unit: nanoseconds

#> expr min lq median uq max neval

#> lookup[x1] 553 576 634 686 2,120 100

#> lookup[x10] 1,430 1,500 1,580 1,660 32,600 100

#> lookup[x100] 6,020 6,080 6,110 6,180 13,000 100

Vectorisation won’t solve every problem, and rather than torturing an
existing algorithm into one that uses a vectorised approach, you’re often
better off writing your own vectorised function in C++. You’ll learn
how to do so in Chapter 19.

17.6.1 Exercises

1. The density functions, e.g., dnorm(), have a common interface.
Which arguments are vectorised over? What does rnorm(10,

mean = 10:1) do?
2. Compare the speed of apply(x, 1, sum) with rowSums(x) for

varying sizes of x.
3. How can you use crossprod() to compute a weighted sum?

How much faster is it than the naive sum(x * w)?

17.7 Avoid copies

A pernicious source of slow R code is growing an object with a loop.
Whenever you use c(), append(), cbind(), rbind(), or paste() to create
a bigger object, R must first allocate space for the new object and then
copy the old object to its new home. If you’re repeating this many times,
like in a for loop, this can be quite expensive. You’ve entered Circle 2
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of the “R inferno” (http://www.burns-stat.com/pages/Tutor/R_inferno.
pdf).

Here’s a little example that shows the problem. We first generate some
random strings, and then combine them either iteratively with a loop
using collapse(), or in a single pass using paste(). Note that the perfor-
mance of collapse() gets relatively worse as the number of strings grows:
combining 100 strings takes almost 30 times longer than combining 10
strings.

random_string <- function() {

paste(sample(letters, 50, replace = TRUE), collapse = "")

}

strings10 <- replicate(10, random_string())

strings100 <- replicate(100, random_string())

collapse <- function(xs) {

out <- ""

for (x in xs) {

out <- paste0(out, x)

}

out

}

microbenchmark(

loop10 = collapse(strings10),

loop100 = collapse(strings100),

vec10 = paste(strings10, collapse = ""),

vec100 = paste(strings100, collapse = "")

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> loop10 23.50 24.90 25.8 28.70 61.9 100

#> loop100 901.00 912.00 920.0 965.00 1,300.0 100

#> vec10 5.77 6.26 6.6 7.27 34.6 100

#> vec100 47.40 49.10 49.9 53.20 86.0 100

Modifying an object in a loop, e.g., x[i] <- y, can also create a copy,
depending on the class of x. Section 18.4 discusses this issue in more
depth and gives you some tools to determine when you’re making copies.

http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
http://www.burns-stat.com/pages/Tutor/R_inferno.pdf
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17.8 Byte code compilation

R 2.13.0 introduced a byte code compiler which can increase the speed
of some code. Using the compiler is an easy way to get improvements
in speed. Even if it doesn’t work well for your function, you won’t
have invested a lot of time in the effort. The following example shows
the pure R version of lapply() from Section 11.1. Compiling it gives a
considerable speedup, although it’s still not quite as fast as the C version
provided by base R.

lapply2 <- function(x, f, ...) {

out <- vector("list", length(x))

for (i in seq_along(x)) {

out[[i]] <- f(x[[i]], ...)

}

out

}

lapply2_c <- compiler::cmpfun(lapply2)

x <- list(1:10, letters, c(F, T), NULL)

microbenchmark(

lapply2(x, is.null),

lapply2_c(x, is.null),

lapply(x, is.null)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> lapply2(x, is.null) 5.50 5.95 6.21 6.69 42.60 100

#> lapply2_c(x, is.null) 3.19 3.51 3.70 4.00 11.00 100

#> lapply(x, is.null) 2.27 2.61 2.79 3.07 9.45 100

Byte code compilation really helps here, but in most cases you’re more
likely to get a 5-10% improvement. All base R functions are byte code
compiled by default.
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17.9 Case study: t-test

The following case study shows how to make t-tests faster using some
of the techniques described above. It’s based on an example in “Com-
puting thousands of test statistics simultaneously in R” (http://stat-
computing.org/newsletter/issues/scgn-18-1.pdf) by Holger Schwender
and Tina Müller. I thoroughly recommend reading the paper in full to
see the same idea applied to other tests.
Imagine we have run 1000 experiments (rows), each of which collects data
on 50 individuals (columns). The first 25 individuals in each experiment
are assigned to group 1 and the rest to group 2. We’ll first generate
some random data to represent this problem:

m <- 1000

n <- 50

X <- matrix(rnorm(m * n, mean = 10, sd = 3), nrow = m)

grp <- rep(1:2, each = n / 2)

For data in this form, there are two ways to use t.test(). We can either
use the formula interface or provide two vectors, one for each group.
Timing reveals that the formula interface is considerably slower.

system.time(for(i in 1:m) t.test(X[i, ] ~ grp)$stat)

#> user system elapsed

#> 0.952 0.003 0.956

system.time(

for(i in 1:m) t.test(X[i, grp == 1], X[i, grp == 2])$stat

)

#> user system elapsed

#> 0.223 0.001 0.224

Of course, a for loop computes, but doesn’t save the values. We’ll use
apply() to do that. This adds a little overhead:

compT <- function(x, grp){

t.test(x[grp == 1], x[grp == 2])$stat

}

system.time(t1 <- apply(X, 1, compT, grp = grp))

#> user system elapsed

#> 0.225 0.002 0.230

http://stat-computing.org/newsletter/issues/scgn-18-1.pdf
http://stat-computing.org/newsletter/issues/scgn-18-1.pdf
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How can we make this faster? First, we could try doing less work. If you
look at the source code of stats:::t.test.default(), you’ll see that it
does a lot more than just compute the t-statistic. It also computes the
p-value and formats the output for printing. We can try to make our
code faster by stripping out those pieces.

my_t <- function(x, grp) {

t_stat <- function(x) {

m <- mean(x)

n <- length(x)

var <- sum((x - m) ^ 2) / (n - 1)

list(m = m, n = n, var = var)

}

g1 <- t_stat(x[grp == 1])

g2 <- t_stat(x[grp == 2])

se_total <- sqrt(g1$var / g1$n + g2$var / g2$n)

(g1$m - g2$m) / se_total

}

system.time(t2 <- apply(X, 1, my_t, grp = grp))

#> user system elapsed

#> 0.034 0.002 0.036

stopifnot(all.equal(t1, t2))

This gives us about a 6x speed improvement.

Now that we have a fairly simple function, we can make it faster still
by vectorising it. Instead of looping over the array outside the func-
tion, we will modify t_stat() to work with a matrix of values. Thus,
mean() becomes rowMeans(), length() becomes ncol(), and sum() be-
comes rowSums(). The rest of the code stays the same.

rowtstat <- function(X, grp){

t_stat <- function(X) {

m <- rowMeans(X)

n <- ncol(X)

var <- rowSums((X - m) ^ 2) / (n - 1)

list(m = m, n = n, var = var)

}
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g1 <- t_stat(X[, grp == 1])

g2 <- t_stat(X[, grp == 2])

se_total <- sqrt(g1$var / g1$n + g2$var / g2$n)

(g1$m - g2$m) / se_total

}

system.time(t3 <- rowtstat(X, grp))

#> user system elapsed

#> 0.001 0.000 0.001

stopifnot(all.equal(t1, t3))

That’s much faster! It’s at least 40x faster than our previous effort, and
around 1000x faster than where we started.

Finally, we could try byte code compilation. Here we’ll need to use
microbenchmark() instead of system.time() in order to get enough accu-
racy to see a difference:

rowtstat_bc <- compiler::cmpfun(rowtstat)

microbenchmark(

rowtstat(X, grp),

rowtstat_bc(X, grp),

unit = "ms"

)

#> Unit: milliseconds

#> expr min lq median uq max neval

#> rowtstat(X, grp) 0.758 1.14 1.18 1.25 14.90 100

#> rowtstat_bc(X, grp) 0.777 1.11 1.16 1.24 1.77 100

In this example, byte code compilation doesn’t help at all.

17.10 Parallelise

Parallelisation uses multiple cores to work simultaneously on different
parts of a problem. It doesn’t reduce the computing time, but it saves
your time because you’re using more of your computer’s resources. Par-
allel computing is a complex topic, and there’s no way to cover it in
depth here. Some resources I recommend are:
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• Parallel R (http://amazon.com/B005Z29QT4) by Q. Ethan McCallum
and Stephen Weston.

• Parallel Computing for Data Science (http://heather.cs.ucdavis.edu/
paralleldatasci.pdf) by Norm Matloff.

What I want to show is a simple application of parallel computing to
what are called “embarrassingly parallel problems”. An embarrassingly
parallel problem is one that’s made up of many simple problems that can
be solved independently. A great example of this is lapply() because it
operates on each element independently of the others. It’s very easy to
parallelise lapply() on Linux and the Mac because you simply substitute
mclapply() for lapply(). The following code snippet runs a trivial (but
slow) function on all cores of your computer.

library(parallel)

cores <- detectCores()

cores

#> [1] 8

pause <- function(i) {

function(x) Sys.sleep(i)

}

system.time(lapply(1:10, pause(0.25)))

#> user system elapsed

#> 0.001 0.001 2.523

system.time(mclapply(1:10, pause(0.25), mc.cores = cores))

#> user system elapsed

#> 0.013 0.031 0.517

Life is a bit harder in Windows. You need to first set up a local cluster
and then use parLapply():

cluster <- makePSOCKcluster(cores)

system.time(parLapply(cluster, 1:10, function(i) Sys.sleep(1)))

#> user system elapsed

#> 0.003 0.000 2.006

The main difference between mclapply() and makePSOCKcluster() is that
the individual processes generated by mclapply() inherit from the current

http://amazon.com/B005Z29QT4
http://heather.cs.ucdavis.edu/paralleldatasci.pdf
http://heather.cs.ucdavis.edu/paralleldatasci.pdf
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process, while those generated by makePSOCKcluster() start with a fresh
session. This means that most real code will need some setup. Use
clusterEvalQ() to run arbitrary code on each cluster and load needed
packages, and clusterExport() to copy objects in the current session to
the remote sessions.

x <- 10

psock <- parallel::makePSOCKcluster(1L)

clusterEvalQ(psock, x)

#> Error: one node produced an error: object 'x' not found

clusterExport(psock, "x")

clusterEvalQ(psock, x)

#> [[1]]

#> [1] 10

There is some communication overhead with parallel computing. If the
subproblems are very small, then parallelisation might hurt rather than
help. It’s also possible to distribute computation over a network of com-
puters (not just the cores on your local computer) but that’s beyond the
scope of this book, because it gets increasingly complicated to balance
computation and communication costs. A good place to start for more
information is the high performance computing CRAN task view (http:
//cran.r-project.org/web/views/HighPerformanceComputing.html).

17.11 Other techniques

Being able to write fast R code is part of being a good R programmer.
Beyond the specific hints in this chapter, if you want to write fast R
code, you’ll need to improve your general programming skills. Some
ways to do this are to:

• Read R blogs (http://www.r-bloggers.com/) to see what performance
problems other people have struggled with, and how they have made
their code faster.

• Read other R programming books, like Norm Matloff’s The Art of R
Programming (http://amazon.com/1593273843) or Patrick Burns’ R In-
ferno (http://www.burns-stat.com/documents/books/the-r-inferno/)
to learn about common traps.

http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.r-bloggers.com/
http://amazon.com/1593273843
http://www.burns-stat.com/documents/books/the-r-inferno/
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• Take an algorithms and data structure course to learn some
well known ways of tackling certain classes of problems. I
have heard good things about Princeton’s Algorithms course
(https://www.coursera.org/course/algs4partI) offered on Coursera.

• Read general books about optimisation like Mature optimisation
(http://carlos.bueno.org/optimization/mature-optimization.pdf)
by Carlos Bueno, or the Pragmatic Programmer (http://amazon.com/
020161622X) by Andrew Hunt and David Thomas.

You can also reach out to the community for help. Stackoverflow can be
a useful resource. You’ll need to put some effort into creating an easily
digestible example that also captures the salient features of your prob-
lem. If your example is too complex, few people will have the time and
motivation to attempt a solution. If it’s too simple, you’ll get answers
that solve the toy problem but not the real problem. If you also try
to answer questions on stackoverflow, you’ll quickly get a feel for what
makes a good question.

https://www.coursera.org/course/algs4partI
http://carlos.bueno.org/optimization/mature-optimization.pdf
http://amazon.com/020161622X
http://amazon.com/020161622X
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Memory

A solid understanding of R’s memory management will help you predict
how much memory you’ll need for a given task and help you to make the
most of the memory you have. It can even help you write faster code
because accidental copies are a major cause of slow code. The goal of this
chapter is to help you understand the basics of memory management in
R, moving from individual objects to functions to larger blocks of code.
Along the way, you’ll learn about some common myths, such as that you
need to call gc() to free up memory, or that for loops are always slow.

Outline

• Section 18.1 shows you how to use object_size() to see how much
memory an object occupies, and uses that as a launching point to
improve your understanding of how R objects are stored in memory.

• Section 18.2 introduces you to the mem_used() and mem_change() func-
tions that will help you understand how R allocates and frees memory.

• Section 18.3 shows you how to use the lineprof package to understand
how memory is allocated and released in larger code blocks.

• Section 18.4 introduces you to the address() and refs() functions so
that you can understand when R modifies in place and when R modifies
a copy. Understanding when objects are copied is very important for
writing efficient R code.

Prerequisites

In this chapter, we’ll use tools from the pryr and lineprof packages to
understand memory usage, and a sample dataset from ggplot2. If you
don’t already have them, run this code to get the packages you need:

install.packages("ggplot2")

install.packages("pryr")

377
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install.packages("devtools")

devtools::install_github("hadley/lineprof")

Sources

The details of R’s memory management are not documented in a
single place. Most of the information in this chapter was gleaned
from a close reading of the documentation (particularly ?Memory and
?gc), the memory profiling (http://cran.r-project.org/doc/manuals/R-
exts.html#Profiling-R-code-for-memory-use) section of R-exts, and the
SEXPs (http://cran.r-project.org/doc/manuals/R-ints.html#SEXPs)
section of R-ints. The rest I figured out by reading the C source code,
performing small experiments, and asking questions on R-devel. Any
mistakes are entirely mine.

18.1 Object size

To understand memory usage in R, we will start with pryr::object_size().
This function tells you how many bytes of memory an object occupies:

library(pryr)

object_size(1:10)

#> 88 B

object_size(mean)

#> 832 B

object_size(mtcars)

#> 6.74 kB

(This function is better than the built-in object.size() because it ac-
counts for shared elements within an object and includes the size of
environments.)

Something interesting occurs if we use object_size() to systematically
explore the size of an integer vector. The code below computes and
plots the memory usage of integer vectors ranging in length from 0 to 50
elements. You might expect that the size of an empty vector would be
zero and that memory usage would grow proportionately with length.
Neither of those things are true!

http://cran.r-project.org/doc/manuals/R-exts.html#Profiling-R-code-for-memory-use
http://cran.r-project.org/doc/manuals/R-exts.html#Profiling-R-code-for-memory-use
http://cran.r-project.org/doc/manuals/R-ints.html#SEXPs
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sizes <- sapply(0:50, function(n) object_size(seq_len(n)))

plot(0:50, sizes, xlab = "Length", ylab = "Size (bytes)",

type = "s")
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This isn’t just an artefact of integer vectors. Every length 0 vector
occupies 40 bytes of memory:

object_size(numeric())

#> 40 B

object_size(logical())

#> 40 B

object_size(raw())

#> 40 B

object_size(list())

#> 40 B

Those 40 bytes are used to store four components possessed by every
object in R:

• Object metadata (4 bytes). These metadata store the base type
(e.g. integer) and information used for debugging and memory
management.

• Two pointers: one to the next object in memory and one to the previous
object (2 * 8 bytes). This doubly-linked list makes it easy for internal
R code to loop through every object in memory.
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• A pointer to the attributes (8 bytes).

All vectors have three additional components:

• The length of the vector (4 bytes). By using only 4 bytes, you might
expect that R could only support vectors up to 24×8−1 (231, about
two billion) elements. But in R 3.0.0 and later, you can actually
have vectors up to 252 elements. Read R-internals (http://cran.r-
project.org/doc/manuals/R-ints.html#Long-vectors) to see how sup-
port for long vectors was added without having to change the size of
this field.

• The “true” length of the vector (4 bytes). This is basically never used,
except when the object is the hash table used for an environment.
In that case, the true length represents the allocated space, and the
length represents the space currently used.

• The data (?? bytes). An empty vector has 0 bytes of data, but it’s
obviously very important otherwise! Numeric vectors occupy 8 bytes
for every element, integer vectors 4, and complex vectors 16.

If you’re keeping count you’ll notice that this only adds up to 36 bytes.
The remaining 4 bytes are used for padding so that each component
starts on an 8 byte (= 64-bit) boundary. Most cpu architectures re-
quire pointers to be aligned in this way, and even if they don’t re-
quire it, accessing non-aligned pointers tends to be rather slow. (If
you’re interested, you can read more about it in C structure packing
(http://www.catb.org/esr/structure-packing/).)

This explains the intercept on the graph. But why does the memory
size grow irregularly? To understand why, you need to know a little bit
about how R requests memory from the operating system. Requesting
memory (with malloc()) is a relatively expensive operation. Having
to request memory every time a small vector is created would slow R
down considerably. Instead, R asks for a big block of memory and then
manages that block itself. This block is called the small vector pool and
is used for vectors less than 128 bytes long. For efficiency and simplicity,
it only allocates vectors that are 8, 16, 32, 48, 64, or 128 bytes long. If
we adjust our previous plot to remove the 40 bytes of overhead, we can
see that those values correspond to the jumps in memory use.

plot(0:50, sizes - 40, xlab = "Length",

ylab = "Bytes excluding overhead", type = "n")

http://cran.r-project.org/doc/manuals/R-ints.html#Long-vectors
http://cran.r-project.org/doc/manuals/R-ints.html#Long-vectors
http://www.catb.org/esr/structure-packing/
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abline(h = 0, col = "grey80")

abline(h = c(8, 16, 32, 48, 64, 128), col = "grey80")

abline(a = 0, b = 4, col = "grey90", lwd = 4)

lines(sizes - 40, type = "s")

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Length

B
yt

es
 e

xc
lu

di
ng

 o
ve

rh
ea

d

Beyond 128 bytes, it no longer makes sense for R to manage vectors.
After all, allocating big chunks of memory is something that operating
systems are very good at. Beyond 128 bytes, R will ask for memory in
multiples of 8 bytes. This ensures good alignment.

A subtlety of the size of an object is that components can be shared
across multiple objects. For example, look at the following code:

x <- 1:1e6

object_size(x)

#> 4 MB

y <- list(x, x, x)

object_size(y)

#> 4 MB

y isn’t three times as big as x because R is smart enough to not copy x

three times; instead it just points to the existing x.

It’s misleading to look at the sizes of x and y individually. If you want to
know how much space they take up together, you have to supply them
to the same object_size() call:
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object_size(x, y)

#> 4 MB

In this case, x and y together take up the same amount of space as y

alone. This is not always the case. If there are no shared components,
as in the following example, then you can add up the sizes of individual
components to find out the total size:

x1 <- 1:1e6

y1 <- list(1:1e6, 1:1e6, 1:1e6)

object_size(x1)

#> 4 MB

object_size(y1)

#> 12 MB

object_size(x1, y1)

#> 16 MB

object_size(x1) + object_size(y1) == object_size(x1, y1)

#> [1] TRUE

The same issue also comes up with strings, because R has a global string
pool. This means that each unique string is only stored in one place, and
therefore character vectors take up less memory than you might expect:

object_size("banana")

#> 96 B

object_size(rep("banana", 10))

#> 216 B

18.1.1 Exercises

1. Repeat the analysis above for numeric, logical, and complex
vectors.

2. If a data frame has one million rows, and three variables (two
numeric, and one integer), how much space will it take up?
Work it out from theory, then verify your work by creating a
data frame and measuring its size.

3. Compare the sizes of the elements in the following two lists.
Each contains basically the same data, but one contains vec-
tors of small strings while the other contains a single long
string.
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vec <- lapply(0:50, function(i) c("ba", rep("na", i)))

str <- lapply(vec, paste0, collapse = "")

4. Which takes up more memory: a factor (x) or the equivalent
character vector (as.character(x))? Why?

5. Explain the difference in size between 1:5 and list(1:5).

18.2 Memory usage and garbage collection

While object_size() tells you the size of a single object, pryr::mem_used()
tells you the total size of all objects in memory:

library(pryr)

mem_used()

#> 44.9 MB

This number won’t agree with the amount of memory reported by your
operating system for a number of reasons:

1. It only includes objects created by R, not the R interpreter
itself.

2. Both R and the operating system are lazy: they won’t reclaim
memory until it’s actually needed. R might be holding on to
memory because the OS hasn’t yet asked for it back.

3. R counts the memory occupied by objects but there may be
gaps due to deleted objects. This problem is known as memory
fragmentation.

mem_change() builds on top of mem_used() to tell you how memory
changes during code execution. Positive numbers represent an increase
in the memory used by R, and negative numbers represent a decrease.

# Need about 4 mb to store 1 million integers

mem_change(x <- 1:1e6)

#> 4.01 MB

# We get that memory back when we delete it

mem_change(rm(x))

#> -4 MB
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Even operations that don’t do anything use up a little memory. This is
because R is tracking the history of everything you do. You can ignore
anything on the order of around 2 kB.

mem_change(NULL)

#> 1.23 kB

mem_change(NULL)

#> 1.23 kB

In some languages, you have to explicitly delete unused objects for their
memory to be returned. R uses an alternative approach: garbage col-
lection (or GC for short). GC automatically releases memory when an
object is no longer used. It does this by tracking how many names point
to each object, and when there are no names pointing to an object, it
deletes that object.

# Create a big object

mem_change(x <- 1:1e6)

#> 4 MB

# Also point to 1:1e6 from y

mem_change(y <- x)

#> 1.29 kB

# Remove x, no memory freed because y is still pointing to it

mem_change(rm(x))

#> 1.18 kB

# Now nothing points to it and the memory can be freed

mem_change(rm(y))

#> -4 MB

Despite what you might have read elsewhere, there’s never any need to
call gc() yourself. R will automatically run garbage collection whenever
it needs more space; if you want to see when that is, call gcinfo(TRUE).
The only reason you might want to call gc() is to ask R to return memory
to the operating system. However, even that might not have any effect:
older versions of Windows had no way for a program to return memory
to the OS.

GC takes care of releasing objects that are no longer used. However,
you do need to be aware of possible memory leaks. A memory leak oc-
curs when you keep pointing to an object without realising it. In R,
the two main causes of memory leaks are formulas and closures because
they both capture the enclosing environment. The following code illus-
trates the problem. In f1(), 1:1e6 is only referenced inside the function,
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so when the function completes the memory is returned and the net
memory change is 0. f2() and f3() both return objects that capture
environments, so that x is not freed when the function completes.

f1 <- function() {

x <- 1:1e6

10

}

mem_change(x <- f1())

#> 1.14 kB

object_size(x)

#> 48 B

f2 <- function() {

x <- 1:1e6

a ~ b

}

mem_change(y <- f2())

#> 4 MB

object_size(y)

#> 4 MB

f3 <- function() {

x <- 1:1e6

function() 10

}

mem_change(z <- f3())

#> 4 MB

object_size(z)

#> 4.01 MB

18.3 Memory profiling with lineprof

mem_change() captures the net change in memory when running a block of
code. Sometimes, however, we may want to measure incremental change.
One way to do this is to use memory profiling to capture usage every
few milliseconds. This functionality is provided by utils::Rprof() but it
doesn’t provide a very useful display of the results. Instead we’ll use the
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lineprof (https://github.com/hadley/lineprof) package. It is powered
by Rprof(), but displays the results in a more informative manner.

To demonstrate lineprof, we’re going to explore a bare-bones imple-
mentation of read.delim() with only three arguments:

read_delim <- function(file, header = TRUE, sep = ",") {

# Determine number of fields by reading first line

first <- scan(file, what = character(1), nlines = 1,

sep = sep, quiet = TRUE)

p <- length(first)

# Load all fields as character vectors

all <- scan(file, what = as.list(rep("character", p)),

sep = sep, skip = if (header) 1 else 0, quiet = TRUE)

# Convert from strings to appropriate types (never to factors)

all[] <- lapply(all, type.convert, as.is = TRUE)

# Set column names

if (header) {

names(all) <- first

} else {

names(all) <- paste0("V", seq_along(all))

}

# Convert list into data frame

as.data.frame(all)

}

We’ll also create a sample csv file:

library(ggplot2)

write.csv(diamonds, "diamonds.csv", row.names = FALSE)

Using lineprof is straightforward. source() the code, apply lineprof()

to an expression, then use shine() to view the results. Note that you
must use source() to load the code. This is because lineprof uses srcrefs
to match up the code and run times. The needed srcrefs are only created
when you load code from disk.

library(lineprof)

https://github.com/hadley/lineprof
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source("code/read-delim.R")

prof <- lineprof(read_delim("diamonds.csv"))

shine(prof)

shine() will also open a new web page (or if you’re using RStudio, a new
pane) that shows your source code annotated with information about
memory usage. shine() starts a shiny app which will “block” your R
session. To exit, press escape or ctrl + break.

Next to the source code, four columns provide details about the perfor-
mance of the code:

• t, the time (in seconds) spent on that line of code (explained in Sec-
tion 17.1).

• a, the memory (in megabytes) allocated by that line of code.
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• r, the memory (in megabytes) released by that line of code. While
memory allocation is deterministic, memory release is stochastic: it
depends on when the GC was run. This means that memory release
only tells you that the memory released was no longer needed before
this line.

• d, the number of vector duplications that occurred. A vector duplica-
tion occurs when R copies a vector as a result of its copy on modify
semantics.

You can hover over any of the bars to get the exact numbers. In this
example, looking at the allocations tells us most of the story:

• scan() allocates about 2.5 MB of memory, which is very close to the
2.8 MB of space that the file occupies on disk. You wouldn’t expect
the two numbers to be identical because R doesn’t need to store the
commas and because the global string pool will save some memory.

• Converting the columns allocates another 0.6 MB of memory. You’d
also expect this step to free some memory because we’ve converted
string columns into integer and numeric columns (which occupy less
space), but we can’t see those releases because GC hasn’t been trig-
gered yet.

• Finally, calling as.data.frame() on a list allocates about 1.6
megabytes of memory and performs over 600 duplications. This is
because as.data.frame() isn’t terribly efficient and ends up copying
the input multiple times. We’ll discuss duplication more in the next
section.

There are two downsides to profiling:

1. read_delim() only takes around half a second, but profiling
can, at best, capture memory usage every 1 ms. This means
we’ll only get about 500 samples.

2. Since GC is lazy, we can never tell exactly when memory is
no longer needed.

You can work around both problems by using torture = TRUE, which
forces R to run GC after every allocation (see gctorture() for more
details). This helps with both problems because memory is freed as
soon as possible, and R runs 10–100x slower. This effectively makes the
resolution of the timer greater, so that you can see smaller allocations
and exactly when memory is no longer needed.
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18.3.1 Exercises

1. When the input is a list, we can make a more efficient
as.data.frame() by using special knowledge. A data frame is
a list with class data.frame and row.names attribute. row.names
is either a character vector or vector of sequential integers,
stored in a special format created by .set_row_names(). This
leads to an alternative as.data.frame():

to_df <- function(x) {

class(x) <- "data.frame"

attr(x, "row.names") <- .set_row_names(length(x[[1]]))

x

}

What impact does this function have on read_delim()? What
are the downsides of this function?

2. Line profile the following function with torture = TRUE. What
is surprising? Read the source code of rm() to figure out what’s
going on.

f <- function(n = 1e5) {

x <- rep(1, n)

rm(x)

}

18.4 Modification in place

What happens to x in the following code?

x <- 1:10

x[5] <- 10

x

#> [1] 1 2 3 4 10 6 7 8 9 10

There are two possibilities:

1. R modifies x in place.



390 Advanced R

2. R makes a copy of x to a new location, modifies the copy, and
then uses the name x to point to the new location.

It turns out that R can do either depending on the circumstances. In
the example above, it will modify in place. But if another variable also
points to x, then R will copy it to a new location. To explore what’s
going on in greater detail, we use two tools from the pryr package. Given
the name of a variable, address() will tell us the variable’s location in
memory and refs() will tell us how many names point to that location.

library(pryr)

x <- 1:10

c(address(x), refs(x))

# [1] "0x103100060" "1"

y <- x

c(address(y), refs(y))

# [1] "0x103100060" "2"

(Note that if you’re using RStudio, refs() will always return 2: the
environment browser makes a reference to every object you create on
the command line.)

refs() is only an estimate. It can only distinguish between one and more
than one reference (future versions of R might do better). This means
that refs() returns 2 in both of the following cases:

x <- 1:5

y <- x

rm(y)

# Should really be 1, because we've deleted y

refs(x)

#> [1] 2

x <- 1:5

y <- x

z <- x

# Should really be 3

refs(x)

#> [1] 2

When refs(x) is 1, modification will occur in place. When refs(x) is 2,
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R will make a copy (this ensures that other pointers to the object remain
unaffected). Note that in the following example, y keeps pointing to the
same location while x changes.

x <- 1:10

y <- x

c(address(x), address(y))

#> [1] "0x52d58b8" "0x52d58b8"

x[5] <- 6L

c(address(x), address(y))

#> [1] "0x55194e8" "0x52d58b8"

Another useful function is tracemem(). It prints a message every time
the traced object is copied:

x <- 1:10

# Prints the current memory location of the object

tracemem(x)

# [1] "<0x7feeaaa1c6b8>"

x[5] <- 6L

y <- x

# Prints where it has moved from and to

x[5] <- 6L

# tracemem[0x7feeaaa1c6b8 -> 0x7feeaaa1c768]:

For interactive use, tracemem() is slightly more useful than refs(), but
because it just prints a message, it’s harder to program with. I don’t
use it in this book because it interacts poorly with knitr (http://yihui.
name/knitr/), the tool I use to interleave text and code.

Non-primitive functions that touch the object always increment the ref
count. Primitive functions usually don’t. (The reasons are a little com-
plicated, but see the R-devel thread confused about NAMED (http:
//r.789695.n4.nabble.com/Confused-about-NAMED-td4103326.html).)

# Touching the object forces an increment

f <- function(x) x

{x <- 1:10; f(x); refs(x)}

#> [1] 2

http://yihui.name/knitr/
http://yihui.name/knitr/
http://r.789695.n4.nabble.com/Confused-about-NAMED-td4103326.html
http://r.789695.n4.nabble.com/Confused-about-NAMED-td4103326.html
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# Sum is primitive, so no increment

{x <- 1:10; sum(x); refs(x)}

#> [1] 1

# f() and g() never evaluate x, so refs don't increment

f <- function(x) 10

g <- function(x) substitute(x)

{x <- 1:10; f(x); refs(x)}

#> [1] 1

{x <- 1:10; g(x); refs(x)}

#> [1] 1

Generally, provided that the object is not referred to elsewhere, any
primitive replacement function will modify in place. This includes [[<-,
[<-, @<-, $<-, attr<-, attributes<-, class<-, dim<-, dimnames<-, names<-,
and levels<-. To be precise, all non-primitive functions increment refs,
but a primitive function may be written in such a way that it doesn’t.
The rules are sufficiently complicated that there’s little point in trying to
memorise them. Instead, you should approach the problem practically
by using refs() and address() to figure out when objects are being
copied.

While determining that copies are being made is not hard, preventing
such behaviour is. If you find yourself resorting to exotic tricks to avoid
copies, it may be time to rewrite your function in C++, as described in
Chapter 19.

18.4.1 Loops

For loops in R have a reputation for being slow. Often that slowness is
because you’re modifying a copy instead of modifying in place. Consider
the following code. It subtracts the median from each column of a large
data frame:

x <- data.frame(matrix(runif(100 * 1e4), ncol = 100))

medians <- vapply(x, median, numeric(1))

for(i in seq_along(medians)) {

x[, i] <- x[, i] - medians[i]

}
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You may be surprised to realise that every iteration of the loop copies
the data frame. We can see that more clearly by using address() and
refs() for a small sample of the loop:

for(i in 1:5) {

x[, i] <- x[, i] - medians[i]

print(c(address(x), refs(x)))

}

#> [1] "0x53114b0" "2"

#> [1] "0x2c0faa0" "2"

#> [1] "0x2ddb1a0" "2"

#> [1] "0x39e9310" "2"

#> [1] "0x39ed8d0" "2"

For each iteration, x is moved to a new location so refs(x) is always
2. This occurs because [<-.data.frame is not a primitive function, so it
always increments the refs. We can make the function substantially more
efficient by using a list instead of a data frame. Modifying a list uses
primitive functions, so the refs are not incremented and all modifications
occur in place:

y <- as.list(x)

for(i in 1:5) {

y[[i]] <- y[[i]] - medians[i]

print(c(address(y), refs(y)))

}

#> [1] "0x576a8b0" "1"

#> [1] "0x576a8b0" "1"

#> [1] "0x576a8b0" "1"

#> [1] "0x576a8b0" "1"

#> [1] "0x576a8b0" "1"

This behaviour was substantially more problematic prior to R 3.1.0,
because every copy of the data frame was a deep copy. This made the
motivating example take around 5 s, compared to 0.01 s today.

18.4.2 Exercises

1. The code below makes one duplication. Where does it occur
and why? (Hint: look at refs(y).)
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y <- as.list(x)

for(i in seq_along(medians)) {

y[[i]] <- y[[i]] - medians[i]

}

2. The implementation of as.data.frame() in the previous sec-
tion has one big downside. What is it and how could you avoid
it?
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High performance functions with Rcpp

Sometimes R code just isn’t fast enough. You’ve used profiling to figure
out where your bottlenecks are, and you’ve done everything you can
in R, but your code still isn’t fast enough. In this chapter you’ll learn
how to improve performance by rewriting key functions in C++. This
magic comes by way of the Rcpp (http://www.rcpp.org/) package, a
fantastic tool written by Dirk Eddelbuettel and Romain Francois (with
key contributions by Doug Bates, John Chambers, and JJ Allaire). Rcpp
makes it very simple to connect C++ to R. While it is possible to write
C or Fortran code for use in R, it will be painful by comparison. Rcpp
provides a clean, approachable API that lets you write high-performance
code, insulated from R’s arcane C API.

Typical bottlenecks that C++ can address include:

• Loops that can’t be easily vectorised because subsequent iterations
depend on previous ones.

• Recursive functions, or problems which involve calling functions mil-
lions of times. The overhead of calling a function in C++ is much
lower than that in R.

• Problems that require advanced data structures and algorithms that R
doesn’t provide. Through the standard template library (STL), C++
has efficient implementations of many important data structures, from
ordered maps to double-ended queues.

The aim of this chapter is to discuss only those aspects of C++ and Rcpp
that are absolutely necessary to help you eliminate bottlenecks in your
code. We won’t spend much time on advanced features like object ori-
ented programming or templates because the focus is on writing small,
self-contained functions, not big programs. A working knowledge of
C++ is helpful, but not essential. Many good tutorials and references are
freely available, including http://www.learncpp.com/ and http://www.

cplusplus.com/. For more advanced topics, the Effective C++ series by
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Scott Meyers is popular choice. You may also enjoy Dirk Eddelbuettel’s
Seamless R and C++ integration with Rcpp (http://www.springer.com/
statistics/computational+statistics/book/978-1-4614-6867-7), which
goes into much greater detail into all aspects of Rcpp.

Outline

• Section 19.1 teaches you how to write C++ by converting simple R
functions to their C++ equivalents. You’ll learn how C++ differs from
R, and what the key scalar, vector, and matrix classes are called.

• Section 19.1.6 shows you how to use sourceCpp() to load a C++ file
from disk in the same way you use source() to load a file of R code.

• Section 19.2 discusses how to modify attributes from Rcpp, and men-
tions some of the other important classes.

• Section 19.3 teaches you how to work with R’s missing values in C++.

• Section 19.4 discusses Rcpp “sugar”, which allows you to avoid loops
in C++ and write code that looks very similar to vectorised R code.

• Section 19.5 shows you how to use some of the most important data
structures and algorithms from the standard template library, or STL,
built-in to C++.

• Section 19.6 shows two real case studies where Rcpp was used to get
considerable performance improvements.

• Section 19.7 teaches you how to add C++ code to a package.

• Section 19.8 concludes the chapter with pointers to more resources to
help you learn Rcpp and C++.

Prerequistes

All examples in this chapter need version 0.10.1 or above of the Rcpp

package. This version includes cppFunction() and sourceCpp(), which
makes it very easy to connect C++ to R. Install the latest version of
Rcpp from CRAN with install.packages("Rcpp").
You’ll also need a working C++ compiler. To get it:

• OnWindows, install Rtools (http://cran.r-project.org/bin/windows/
Rtools/).

• On Mac, install Xcode from the app store.
• On Linux, sudo apt-get install r-base-dev or similar.

http://www.springer.com/statistics/computational+statistics/book/978-1-4614-6867-7
http://www.springer.com/statistics/computational+statistics/book/978-1-4614-6867-7
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
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19.1 Getting started with C++

cppFunction() allows you to write C++ functions in R:

library(Rcpp)

cppFunction('int add(int x, int y, int z) {

int sum = x + y + z;

return sum;

}')

# add works like a regular R function

add

#> function (x, y, z)

#> .Primitive(".Call")(<pointer: 0x10839be30>, x, y, z)

add(1, 2, 3)

#> [1] 6

When you run this code, Rcpp will compile the C++ code and construct
an R function that connects to the compiled C++ function. We’re going
to use this simple interface to learn how to write C++. C++ is a large
language, and there’s no way to cover it all in just one chapter. Instead,
you’ll get the basics so that you can start writing useful functions to
address bottlenecks in your R code.

The following sections will teach you the basics by translating simple R
functions to their C++ equivalents. We’ll start simple with a function
that has no inputs and a scalar output, and then get progressively more
complicated:

• Scalar input and scalar output
• Vector input and scalar output
• Vector input and vector output
• Matrix input and vector output

19.1.1 No inputs, scalar output

Let’s start with a very simple function. It has no arguments and always
returns the integer 1:

one <- function() 1L
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The equivalent C++ function is:

int one() {

return 1;

}

We can compile and use this from R with cppFunction

cppFunction('int one() {

return 1;

}')

This small function illustrates a number of important differences between
R and C++:

• The syntax to create a function looks like the syntax to call a function;
you don’t use assignment to create functions as you do in R.

• You must declare the type of output the function returns. This
function returns an int (a scalar integer). The classes for the most
common types of R vectors are: NumericVector, IntegerVector,
CharacterVector, and LogicalVector.

• Scalars and vectors are different. The scalar equivalents of numeric,
integer, character, and logical vectors are: double, int, String, and
bool.

• You must use an explicit return statement to return a value from a
function.

• Every statement is terminated by a ;.

19.1.2 Scalar input, scalar output

The next example function implements a scalar version of the sign()

function which returns 1 if the input is positive, and -1 if it’s negative:

signR <- function(x) {

if (x > 0) {

1

} else if (x == 0) {

0
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} else {

-1

}

}

cppFunction('int signC(int x) {

if (x > 0) {

return 1;

} else if (x == 0) {

return 0;

} else {

return -1;

}

}')

In the C++ version:

• We declare the type of each input in the same way we declare the type
of the output. While this makes the code a little more verbose, it also
makes it very obvious what type of input the function needs.

• The if syntax is identical — while there are some big differences be-
tween R and C++, there are also lots of similarities! C++ also has
a while statement that works the same way as R’s. As in R you can
use break to exit the loop, but to skip one iteration you need to use
continue instead of next.

19.1.3 Vector input, scalar output

One big difference between R and C++ is that the cost of loops is much
lower in C++. For example, we could implement the sum function in R
using a loop. If you’ve been programming in R a while, you’ll probably
have a visceral reaction to this function!

sumR <- function(x) {

total <- 0

for (i in seq_along(x)) {

total <- total + x[i]

}

total

}



400 Advanced R

In C++, loops have very little overhead, so it’s fine to use them. In
Section 19.5, you’ll see alternatives to for loops that more clearly express
your intent; they’re not faster, but they can make your code easier to
understand.

cppFunction('double sumC(NumericVector x) {

int n = x.size();

double total = 0;

for(int i = 0; i < n; ++i) {

total += x[i];

}

return total;

}')

The C++ version is similar, but:

• To find the length of the vector, we use the .size() method, which
returns an integer. C++ methods are called with . (i.e., a full stop).

• The for statement has a different syntax: for(init; check;

increment). This loop is initialised by creating a new variable called i

with value 0. Before each iteration we check that i < n, and terminate
the loop if it’s not. After each iteration, we increment the value of i

by one, using the special prefix operator ++ which increases the value
of i by 1.

• In C++, vector indices start at 0. I’ll say this again because it’s so
important: IN C++, VECTOR INDICES START AT 0! This
is a very common source of bugs when converting R functions to C++.

• Use = for assignment, not <-.

• C++ provides operators that modify in-place: total += x[i] is equiv-
alent to total = total + x[i]. Similar in-place operators are -=, *=,
and /=.

This is a good example of where C++ is much more efficient than R.
As shown by the following microbenchmark, sumC() is competitive with
the built-in (and highly optimised) sum(), while sumR() is several orders
of magnitude slower.

x <- runif(1e3)

microbenchmark(
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sum(x),

sumC(x),

sumR(x)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> sum(x) 1.07 1.24 1.55 2.43 17.2 100

#> sumC(x) 2.73 3.17 4.69 7.87 30.5 100

#> sumR(x) 342.00 381.00 404.00 491.00 1,380.0 100

19.1.4 Vector input, vector output

Next we’ll create a function that computes the Euclidean distance be-
tween a value and a vector of values:

pdistR <- function(x, ys) {

sqrt((x - ys) ^ 2)

}

It’s not obvious that we want x to be a scalar from the function defini-
tion. We’d need to make that clear in the documentation. That’s not a
problem in the C++ version because we have to be explicit about types:

cppFunction('NumericVector pdistC(double x, NumericVector ys) {

int n = ys.size();

NumericVector out(n);

for(int i = 0; i < n; ++i) {

out[i] = sqrt(pow(ys[i] - x, 2.0));

}

return out;

}')

This function introduces only a few new concepts:

• We create a new numeric vector of length n with a constructor:
NumericVector out(n). Another useful way of making a vector is to
copy an existing one: NumericVector zs = clone(ys).

• C++ uses pow(), not ˆ, for exponentiation.
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Note that because the R version is fully vectorised, it’s already going to
be fast. On my computer, it takes around 8 ms with a 1 million element
y vector. The C++ function is twice as fast, ~4 ms, but assuming it
took you 10 minutes to write the C++ function, you’d need to run it
~150,000 times to make rewriting worthwhile. The reason why the C++
function is faster is subtle, and relates to memory management. The
R version needs to create an intermediate vector the same length as y
(x - ys), and allocating memory is an expensive operation. The C++
function avoids this overhead because it uses an intermediate scalar.
In the sugar section, you’ll see how to rewrite this function to take ad-
vantage of Rcpp’s vectorised operations so that the C++ code is almost
as concise as R code.

19.1.5 Matrix input, vector output

Each vector type has a matrix equivalent: NumericMatrix, IntegerMatrix,
CharacterMatrix, and LogicalMatrix. Using them is straightforward. For
example, we could create a function that reproduces rowSums():

cppFunction('NumericVector rowSumsC(NumericMatrix x) {

int nrow = x.nrow(), ncol = x.ncol();

NumericVector out(nrow);

for (int i = 0; i < nrow; i++) {

double total = 0;

for (int j = 0; j < ncol; j++) {

total += x(i, j);

}

out[i] = total;

}

return out;

}')

set.seed(1014)

x <- matrix(sample(100), 10)

rowSums(x)

#> [1] 458 558 488 458 536 537 488 491 508 528

rowSumsC(x)

#> [1] 458 558 488 458 536 537 488 491 508 528

The main differences:

• In C++, you subset a matrix with (), not [].
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• Use .nrow() and .ncol() methods to get the dimensions of a matrix.

19.1.6 Using sourceCpp

So far, we’ve used inline C++ with cppFunction(). This makes presenta-
tion simpler, but for real problems, it’s usually easier to use stand-alone
C++ files and then source them into R using sourceCpp(). This lets
you take advantage of text editor support for C++ files (e.g., syntax
highlighting) as well as making it easier to identify the line numbers in
compilation errors.
Your stand-alone C++ file should have extension .cpp, and needs to
start with:

#include <Rcpp.h>

using namespace Rcpp;

And for each function that you want available within R, you need to
prefix it with:

// [[Rcpp::export]]

Note that the space is mandatory.
If you’re familiar with roxygen2, you might wonder how this relates
to @export. Rcpp::export controls whether a function is exported from
C++ to R; @export controls whether a function is exported from a pack-
age and made available to the user.
You can embed R code in special C++ comment blocks. This is really
convenient if you want to run some test code:

/*** R

# This is R code

*/

The R code is run with source(echo = TRUE) so you don’t need to ex-
plicitly print output.
To compile the C++ code, use sourceCpp("path/to/file.cpp"). This
will create the matching R functions and add them to your current ses-
sion. Note that these functions can not be saved in a .Rdata file and
reloaded in a later session; they must be recreated each time you restart
R. For example, running sourceCpp() on the following file implements
mean in C++ and then compares it to the built-in mean():
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#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double meanC(NumericVector x) {

int n = x.size();

double total = 0;

for(int i = 0; i < n; ++i) {

total += x[i];

}

return total / n;

}

/*** R

library(microbenchmark)

x <- runif(1e5)

microbenchmark(

mean(x),

meanC(x)

)

*/

NB: if you run this code yourself, you’ll notice that meanC() is much faster
than the built-in mean(). This is because it trades numerical accuracy
for speed.

For the remainder of this chapter C++ code will be presented stand-
alone rather than wrapped in a call to cppFunction. If you want to try
compiling and/or modifying the examples you should paste them into a
C++ source file that includes the elements described above.

19.1.7 Exercises

With the basics of C++ in hand, it’s now a great time to practice by
reading and writing some simple C++ functions. For each of the follow-
ing functions, read the code and figure out what the corresponding base
R function is. You might not understand every part of the code yet, but
you should be able to figure out the basics of what the function does.

double f1(NumericVector x) {

int n = x.size();
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double y = 0;

for(int i = 0; i < n; ++i) {

y += x[i] / n;

}

return y;

}

NumericVector f2(NumericVector x) {

int n = x.size();

NumericVector out(n);

out[0] = x[0];

for(int i = 1; i < n; ++i) {

out[i] = out[i - 1] + x[i];

}

return out;

}

bool f3(LogicalVector x) {

int n = x.size();

for(int i = 0; i < n; ++i) {

if (x[i]) return true;

}

return false;

}

int f4(Function pred, List x) {

int n = x.size();

for(int i = 0; i < n; ++i) {

LogicalVector res = pred(x[i]);

if (res[0]) return i + 1;

}

return 0;

}

NumericVector f5(NumericVector x, NumericVector y) {

int n = std::max(x.size(), y.size());

NumericVector x1 = rep_len(x, n);

NumericVector y1 = rep_len(y, n);
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NumericVector out(n);

for (int i = 0; i < n; ++i) {

out[i] = std::min(x1[i], y1[i]);

}

return out;

}

To practice your function writing skills, convert the following functions
into C++. For now, assume the inputs have no missing values.

1. all()

2. cumprod(), cummin(), cummax().
3. diff(). Start by assuming lag 1, and then generalise for lag

n.
4. range.
5. var. Read about the approaches you can take on

wikipedia (http://en.wikipedia.org/wiki/Algorithms_for_
calculating_variance). Whenever implementing a numerical
algorithm, it’s always good to check what is already known
about the problem.

19.2 Attributes and other classes

You’ve already seen the basic vector classes (IntegerVector,
NumericVector, LogicalVector, CharacterVector) and their scalar
(int, double, bool, String) and matrix (IntegerMatrix, NumericMatrix,
LogicalMatrix, CharacterMatrix) equivalents.

All R objects have attributes, which can be queried and modified with
.attr(). Rcpp also provides .names() as an alias for the name attribute.
The following code snippet illustrates these methods. Note the use of
::create(), a class method. This allows you to create an R vector from
C++ scalar values:

#include <Rcpp.h>

using namespace Rcpp;

http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
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// [[Rcpp::export]]

NumericVector attribs() {

NumericVector out = NumericVector::create(1, 2, 3);

out.names() = CharacterVector::create("a", "b", "c");

out.attr("my-attr") = "my-value";

out.attr("class") = "my-class";

return out;

}

For S4 objects, .slot() plays a similar role to .attr().

19.2.1 Lists and data frames

Rcpp also provides classes List and DataFrame, but they are more useful
for output than input. This is because lists and data frames can contain
arbitrary classes but C++ needs to know their classes in advance. If
the list has known structure (e.g., it’s an S3 object), you can extract
the components and manually convert them to their C++ equivalents
with as(). For example, the object created by lm(), the function that
fits a linear model, is a list whose components are always of the same
type. The following code illustrates how you might extract the mean
percentage error (mpe()) of a linear model. This isn’t a good example of
when to use C++, because it’s so easily implemented in R, but it shows
how to work with an important S3 class. Note the use of .inherits()
and the stop() to check that the object really is a linear model.

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double mpe(List mod) {

if (!mod.inherits("lm")) stop("Input must be a linear model");

NumericVector resid = as<NumericVector>(mod["residuals"]);

NumericVector fitted = as<NumericVector>(mod["fitted.values"]);

int n = resid.size();

double err = 0;

for(int i = 0; i < n; ++i) {
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err += resid[i] / (fitted[i] + resid[i]);

}

return err / n;

}

mod <- lm(mpg ~ wt, data = mtcars)

mpe(mod)

#> [1] -0.0154

19.2.2 Functions

You can put R functions in an object of type Function. This makes
calling an R function from C++ straightforward. We first define our
C++ function:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

RObject callWithOne(Function f) {

return f(1);

}

Then call it from R:

callWithOne(function(x) x + 1)

#> [1] 2

callWithOne(paste)

#> [1] "1"

What type of object does an R function return? We don’t know, so we
use the catchall type RObject. An alternative is to return a List. For
example, the following code is a basic implementation of lapply in C++:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

List lapply1(List input, Function f) {

int n = input.size();



High performance functions with Rcpp 409

List out(n);

for(int i = 0; i < n; i++) {

out[i] = f(input[i]);

}

return out;

}

Calling R functions with positional arguments is obvious:

f("y", 1);

But to use named arguments, you need a special syntax:

f(_["x"] = "y", _["value"] = 1);

19.2.3 Other types

There are also classes for many more specialised language objects:
Environment, ComplexVector, RawVector, DottedPair, Language, Promise,
Symbol, WeakReference, and so on. These are beyond the scope of this
chapter and won’t be discussed further.

19.3 Missing values

If you’re working with missing values, you need to know two things:

• how R’s missing values behave in C++’s scalars (e.g., double).
• how to get and set missing values in vectors (e.g., NumericVector).

19.3.1 Scalars

The following code explores what happens when you take one of R’s
missing values, coerce it into a scalar, and then coerce back to an R
vector. Note that this kind of experimentation is a useful way to figure
out what any operation does.
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#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

List scalar_missings() {

int int_s = NA_INTEGER;

String chr_s = NA_STRING;

bool lgl_s = NA_LOGICAL;

double num_s = NA_REAL;

return List::create(int_s, chr_s, lgl_s, num_s);

}

str(scalar_missings())

#> List of 4

#> $ : int NA

#> $ : chr NA

#> $ : logi TRUE

#> $ : num NA

With the exception of bool, things look pretty good here: all of the
missing values have been preserved. However, as we’ll see in the following
sections, things are not quite as straightforward as they seem.

19.3.1.1 Integers

With integers, missing values are stored as the smallest integer. If
you don’t do anything to them, they’ll be preserved. But, since C++
doesn’t know that the smallest integer has this special behaviour, if you
do anything to it you’re likely to get an incorrect value: for example,
evalCpp('NA_INTEGER + 1') gives -2147483647.

So if you want to work with missing values in integers, either use a length
one IntegerVector or be very careful with your code.

19.3.1.2 Doubles

With doubles, you may be able to get away with ignoring missing values
and working with NaNs (not a number). This is because R’s NA is
a special type of IEEE 754 floating point number NaN. So any logical
expression that involves a NaN (or in C++, NAN) always evaluates as
FALSE:
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evalCpp("NAN == 1")

#> [1] FALSE

evalCpp("NAN < 1")

#> [1] FALSE

evalCpp("NAN > 1")

#> [1] FALSE

evalCpp("NAN == NAN")

#> [1] FALSE

But be careful when combining then with boolean values:

evalCpp("NAN && TRUE")

#> [1] TRUE

evalCpp("NAN || FALSE")

#> [1] TRUE

However, in numeric contexts NaNs will propagate NAs:

evalCpp("NAN + 1")

#> [1] NaN

evalCpp("NAN - 1")

#> [1] NaN

evalCpp("NAN / 1")

#> [1] NaN

evalCpp("NAN * 1")

#> [1] NaN

19.3.2 Strings

String is a scalar string class introduced by Rcpp, so it knows how to
deal with missing values.

19.3.3 Boolean

While C++’s bool has two possible values (true or false), a logical
vector in R has three (TRUE, FALSE, and NA). If you coerce a length 1
logical vector, make sure it doesn’t contain any missing values otherwise
they will be converted to TRUE.
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19.3.4 Vectors

With vectors, you need to use a missing value specific to the type of
vector, NA_REAL, NA_INTEGER, NA_LOGICAL, NA_STRING:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

List missing_sampler() {

return List::create(

NumericVector::create(NA_REAL),

IntegerVector::create(NA_INTEGER),

LogicalVector::create(NA_LOGICAL),

CharacterVector::create(NA_STRING));

}

str(missing_sampler())

#> List of 4

#> $ : num NA

#> $ : int NA

#> $ : logi NA

#> $ : chr NA

To check if a value in a vector is missing, use the class method ::is_na():

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

LogicalVector is_naC(NumericVector x) {

int n = x.size();

LogicalVector out(n);

for (int i = 0; i < n; ++i) {

out[i] = NumericVector::is_na(x[i]);

}

return out;

}

is_naC(c(NA, 5.4, 3.2, NA))

#> [1] TRUE FALSE FALSE TRUE
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Another alternative is the sugar function is_na(), which takes a vector
and returns a logical vector.

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

LogicalVector is_naC2(NumericVector x) {

return is_na(x);

}

is_naC2(c(NA, 5.4, 3.2, NA))

#> [1] TRUE FALSE FALSE TRUE

19.3.5 Exercises

1. Rewrite any of the functions from the first exercise to deal
with missing values. If na.rm is true, ignore the missing values.
If na.rm is false, return a missing value if the input contains
any missing values. Some good functions to practice with are
min(), max(), range(), mean(), and var().

2. Rewrite cumsum() and diff() so they can handle missing val-
ues. Note that these functions have slightly more complicated
behaviour.

19.4 Rcpp sugar

Rcpp provides a lot of syntactic “sugar” to ensure that C++ functions
work very similarly to their R equivalents. In fact, Rcpp sugar makes
it possible to write efficient C++ code that looks almost identical to its
R equivalent. If there’s a sugar version of the function you’re interested
in, you should use it: it’ll be both expressive and well tested. Sugar
functions aren’t always faster than a handwritten equivalent, but they
will get faster in the future as more time is spent on optimising Rcpp.

Sugar functions can be roughly broken down into

• arithmetic and logical operators
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• logical summary functions
• vector views
• other useful functions

19.4.1 Arithmetic and logical operators

All the basic arithmetic and logical operators are vectorised: + *, -,
/, pow, <, <=, >, >=, ==, !=, !. For example, we could use sugar to
considerably simplify the implementation of pdistC().

pdistR <- function(x, ys) {

sqrt((x - ys) ^ 2)

}

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericVector pdistC2(double x, NumericVector ys) {

return sqrt(pow((x - ys), 2));

}

19.4.2 Logical summary functions

The sugar function any() and all() are fully lazy so that any(x == 0),
for example, might only need to evaluate one element of a vector, and
return a special type that can be converted into a bool using .is_true(),
.is_false(), or .is_na(). We could also use this sugar to write an
efficient function to determine whether or not a numeric vector contains
any missing values. To do this in R, we could use any(is.na(x)):

any_naR <- function(x) any(is.na(x))

However, this will do the same amount of work regardless of the location
of the missing value. Here’s the C++ implementation:

#include <Rcpp.h>

using namespace Rcpp;
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// [[Rcpp::export]]

bool any_naC(NumericVector x) {

return is_true(any(is_na(x)));

}

x0 <- runif(1e5)

x1 <- c(x0, NA)

x2 <- c(NA, x0)

microbenchmark(

any_naR(x0), any_naC(x0),

any_naR(x1), any_naC(x1),

any_naR(x2), any_naC(x2)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> any_naR(x0) 254.00 263.00 285.00 410.00 1,590.0 100

#> any_naC(x0) 336.00 347.00 365.00 467.00 632.0 100

#> any_naR(x1) 253.00 264.00 284.00 365.00 1,390.0 100

#> any_naC(x1) 336.00 347.00 391.00 472.00 639.0 100

#> any_naR(x2) 87.10 95.10 107.00 135.00 1,390.0 100

#> any_naC(x2) 1.85 2.64 3.51 4.56 13.2 100

19.4.3 Vector views

A number of helpful functions provide a “view” of a vector: head(),
tail(), rep_each(), rep_len(), rev(), seq_along(), and seq_len(). In R
these would all produce copies of the vector, but in Rcpp they simply
point to the existing vector and override the subsetting operator ([)
to implement special behaviour. This makes them very efficient: for
instance, rep_len(x, 1e6) does not have to make a million copies of x.

19.4.4 Other useful functions

Finally, there’s a grab bag of sugar functions that mimic frequently used
R functions:

• Math functions: abs(), acos(), asin(), atan(), beta(), ceil(),
ceiling(), choose(), cos(), cosh(), digamma(), exp(), expm1(),
factorial(), floor(), gamma(), lbeta(), lchoose(), lfactorial(),
lgamma(), log(), log10(), log1p(), pentagamma(), psigamma(), round(),
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signif(), sin(), sinh(), sqrt(), tan(), tanh(), tetragamma(),
trigamma(), trunc().

• Scalar summaries: mean(), min(), max(), sum(), sd(), and (for vectors)
var().

• Vector summaries: cumsum(), diff(), pmin(), and pmax().

• Finding values: match(), self_match(), which_max(), which_min().

• Dealing with duplicates: duplicated(), unique().

• d/q/p/r for all standard distributions.

Finally, noNA(x) asserts that the vector x does not contain any missing
values, and allows optimisation of some mathematical operations.

19.5 The STL

The real strength of C++ shows itself when you need to implement more
complex algorithms. The standard template library (STL) provides a
set of extremely useful data structures and algorithms. This section
will explain some of the most important algorithms and data structures
and point you in the right direction to learn more. I can’t teach you
everything you need to know about the STL, but hopefully the examples
will show you the power of the STL, and persuade you that it’s useful
to learn more.
If you need an algorithm or data structure that isn’t implemented in
STL, a good place to look is boost (http://www.boost.org/doc/). In-
stalling boost on your computer is beyond the scope of this chapter,
but once you have it installed, you can use boost data structures and
algorithms by including the appropriate header file with (e.g.) #include

<boost/array.hpp>.

19.5.1 Using iterators

Iterators are used extensively in the STL: many functions either accept or
return iterators. They are the next step up from basic loops, abstracting
away the details of the underlying data structure. Iterators have three
main operators:

http://www.boost.org/doc/
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1. Advance with ++.
2. Get the value they refer to, or dereference, with *.
3. Compare with ==.

For example we could re-write our sum function using iterators:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double sum3(NumericVector x) {

double total = 0;

NumericVector::iterator it;

for(it = x.begin(); it != x.end(); ++it) {

total += *it;

}

return total;

}

The main changes are in the for loop:

• We start at x.begin() and loop until we get to x.end(). A small
optimization is to store the value of the end iterator so we don’t need
to look it up each time. This only saves about 2 ns per iteration, so
it’s only important when the calculations in the loop are very simple.

• Instead of indexing into x, we use the dereference operator to get its
current value: *it.

• Notice the type of the iterator: NumericVector::iterator. Each
vector type has its own iterator type: LogicalVector::iterator,
CharacterVector::iterator, etc.

Iterators also allow us to use the C++ equivalents of the apply fam-
ily of functions. For example, we could again rewrite sum() to use the
accumulate() function, which takes a starting and an ending iterator,
and adds up all the values in the vector. The third argument to accu-
mulate gives the initial value: it’s particularly important because this
also determines the data type that accumulate uses (so we use 0.0 and
not 0 so that accumulate uses a double, not an int.). To use accumulate()
we need to include the <numeric> header.
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#include <numeric>

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double sum4(NumericVector x) {

return std::accumulate(x.begin(), x.end(), 0.0);

}

accumulate() (along with the other functions in <numeric>, like
adjacent_difference(), inner_product(), and partial_sum()) is not
that important in Rcpp because Rcpp sugar provides equivalents.

19.5.2 Algorithms

The <algorithm> header provides a large number of algorithms that work
with iterators. A good reference is available at http://www.cplusplus.

com/reference/algorithm/. For example, we could write a basic Rcpp
version of findInterval() that takes two arguments a vector of values
and a vector of breaks, and locates the bin that each x falls into. This
shows off a few more advanced iterator features. Read the code below
and see if you can figure out how it works.

#include <algorithm>

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

IntegerVector findInterval2(NumericVector x, NumericVector breaks) {

IntegerVector out(x.size());

NumericVector::iterator it, pos;

IntegerVector::iterator out_it;

for(it = x.begin(), out_it = out.begin(); it != x.end();

++it, ++out_it) {

pos = std::upper_bound(breaks.begin(), breaks.end(), *it);

*out_it = std::distance(breaks.begin(), pos);

}

return out;

}

http://www.cplusplus.com/reference/algorithm/
http://www.cplusplus.com/reference/algorithm/
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The key points are:

• We step through two iterators (input and output) simultaneously.

• We can assign into an dereferenced iterator (out_it) to change the
values in out.

• upper_bound() returns an iterator. If we wanted the value of the
upper_bound() we could dereference it; to figure out its location, we
use the distance() function.

• Small note: if we want this function to be as fast as findInterval()

in R (which uses handwritten C code), we need to compute the calls
to .begin() and .end() once and save the results. This is easy, but
it distracts from this example so it has been omitted. Making this
change yields a function that’s slightly faster than R’s findInterval()
function, but is about 1/10 of the code.

It’s generally better to use algorithms from the STL than hand rolled
loops. In Effective STL, Scott Meyers gives three reasons: efficiency,
correctness, and maintainability. Algorithms from the STL are written
by C++ experts to be extremely efficient, and they have been around for
a long time so they are well tested. Using standard algorithms also makes
the intent of your code more clear, helping to make it more readable and
more maintainable.

19.5.3 Data structures

The STL provides a large set of data structures: array, bitset,
list, forward_list, map, multimap, multiset, priority_queue, queue,
dequeue, set, stack, unordered_map, unordered_set, unordered_multimap,
unordered_multiset, and vector. The most important of these data
structures are the vector, the unordered_set, and the unordered_map.
We’ll focus on these three in this section, but using the others is similar:
they just have different performance trade-offs. For example, the deque

(pronounced “deck”) has a very similar interface to vectors but a differ-
ent underlying implementation that has different performance trade-offs.
You may want to try them for your problem. A good reference for
STL data structures is http://www.cplusplus.com/reference/stl/ — I
recommend you keep it open while working with the STL.
Rcpp knows how to convert from many STL data structures to their R
equivalents, so you can return them from your functions without explic-
itly converting to R data structures.

http://www.cplusplus.com/reference/stl/
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19.5.4 Vectors

An STL vector is very similar to an R vector, except that it grows ef-
ficiently. This makes vectors appropriate to use when you don’t know
in advance how big the output will be. Vectors are templated, which
means that you need to specify the type of object the vector will con-
tain when you create it: vector<int>, vector<bool>, vector<double>,
vector<String>. You can access individual elements of a vector using
the standard [] notation, and you can add a new element to the end of
the vector using .push_back(). If you have some idea in advance how big
the vector will be, you can use .reserve() to allocate sufficient storage.

The following code implements run length encoding (rle()). It produces
two vectors of output: a vector of values, and a vector lengths giving
how many times each element is repeated. It works by looping through
the input vector x comparing each value to the previous: if it’s the same,
then it increments the last value in lengths; if it’s different, it adds the
value to the end of values, and sets the corresponding length to 1.

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

List rleC(NumericVector x) {

std::vector<int> lengths;

std::vector<double> values;

// Initialise first value

int i = 0;

double prev = x[0];

values.push_back(prev);

lengths.push_back(1);

NumericVector::iterator it;

for(it = x.begin() + 1; it != x.end(); ++it) {

if (prev == *it) {

lengths[i]++;

} else {

values.push_back(*it);

lengths.push_back(1);

i++;

prev = *it;
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}

}

return List::create(

_["lengths"] = lengths,

_["values"] = values

);

}

(An alternative implementation would be to replace i with the iterator
lengths.rbegin() which always points to the last element of the vector.
You might want to try implementing that yourself.)

Other methods of a vector are described at http://www.cplusplus.com/

reference/vector/vector/.

19.5.5 Sets

Sets maintain a unique set of values, and can efficiently tell if you’ve
seen a value before. They are useful for problems that involve dupli-
cates or unique values (like unique, duplicated, or in). C++ provides
both ordered (std::set) and unordered sets (std::unordered_set), de-
pending on whether or not order matters for you. Unordered sets tend
to be much faster (because they use a hash table internally rather than
a tree), so even if you need an ordered set, you should consider us-
ing an unordered set and then sorting the output. Like vectors, sets
are templated, so you need to request the appropriate type of set for
your purpose: unordered_set<int>, unordered_set<bool>, etc. More de-
tails are available at http://www.cplusplus.com/reference/set/set/ and
http://www.cplusplus.com/reference/unordered_set/unordered_set/.

The following function uses an unordered set to implement an
equivalent to duplicated() for integer vectors. Note the use of
seen.insert(x[i]).second. insert() returns a pair, the .first value is
an iterator that points to element and the .second value is a boolean
that’s true if the value was a new addition to the set.

// [[Rcpp::plugins(cpp11)]]

#include <Rcpp.h>

#include <unordered_set>

using namespace Rcpp;

// [[Rcpp::export]]

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/set/set/
http://www.cplusplus.com/reference/unordered_set/unordered_set/
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LogicalVector duplicatedC(IntegerVector x) {

std::unordered_set<int> seen;

int n = x.size();

LogicalVector out(n);

for (int i = 0; i < n; ++i) {

out[i] = !seen.insert(x[i]).second;

}

return out;

}

Note that unordered sets are only available in C++ 11, which means we
need to use the cpp11 plugin, [[Rcpp::plugins(cpp11)]].

19.5.6 Map

A map is similar to a set, but instead of storing presence or absence,
it can store additional data. It’s useful for functions like table() or
match() that need to look up a value. As with sets, there are ordered
(std::map) and unordered (std::unordered_map) versions. Since maps
have a value and a key, you need to specify both types when initialising
a map: map<double, int>, unordered_map<int, double>, and so on. The
following example shows how you could use a map to implement table()
for numeric vectors:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

std::map<double, int> tableC(NumericVector x) {

std::map<double, int> counts;

int n = x.size();

for (int i = 0; i < n; i++) {

counts[x[i]]++;

}

return counts;

}

Note that unordered maps are only available in C++ 11, so to use them,
you’ll again need [[Rcpp::plugins(cpp11)]].
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19.5.7 Exercises

To practice using the STL algorithms and data structures, implement
the following using R functions in C++, using the hints provided:

1. median.default() using partial_sort.
2. %in% using unordered_set and the find() or count() methods.
3. unique() using an unordered_set (challenge: do it in one line!).
4. min() using std::min(), or max() using std::max().
5. which.min() using min_element, or which.max() using

max_element.
6. setdiff(), union(), and intersect() for integers using sorted

ranges and set_union, set_intersection and set_difference.

19.6 Case studies

The following case studies illustrate some real life uses of C++ to replace
slow R code.

19.6.1 Gibbs sampler

The following case study updates an example blogged about (http:
//dirk.eddelbuettel.com/blog/2011/07/14/) by Dirk Eddelbuettel, illus-
trating the conversion of a Gibbs sampler in R to C++. The R and C++
code shown below is very similar (it only took a few minutes to convert
the R version to the C++ version), but runs about 20 times faster on
my computer. Dirk’s blog post also shows another way to make it even
faster: using the faster random number generator functions in GSL (eas-
ily accessible from R through the RcppGSL package) can make it another
2–3x faster.

The R code is as follows:

gibbs_r <- function(N, thin) {

mat <- matrix(nrow = N, ncol = 2)

x <- y <- 0

http://dirk.eddelbuettel.com/blog/2011/07/14/
http://dirk.eddelbuettel.com/blog/2011/07/14/
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for (i in 1:N) {

for (j in 1:thin) {

x <- rgamma(1, 3, y * y + 4)

y <- rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))

}

mat[i, ] <- c(x, y)

}

mat

}

This is straightforward to convert to C++. We:

• add type declarations to all variables

• use ( instead of [ to index into the matrix

• subscript the results of rgamma and rnorm to convert from a vector into
a scalar

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

NumericMatrix gibbs_cpp(int N, int thin) {

NumericMatrix mat(N, 2);

double x = 0, y = 0;

for(int i = 0; i < N; i++) {

for(int j = 0; j < thin; j++) {

x = rgamma(1, 3, 1 / (y * y + 4))[0];

y = rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))[0];

}

mat(i, 0) = x;

mat(i, 1) = y;

}

return(mat);

}

Benchmarking the two implementations yields:

microbenchmark(
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gibbs_r(100, 10),

gibbs_cpp(100, 10)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> gibbs_r(100, 10) 8,820 10,400 10,900 12,100 52,300 100

#> gibbs_cpp(100, 10) 315 339 348 363 1,610 100

19.6.2 R vectorisation vs. C++ vectorisation

This example is adapted from “Rcpp is smoking fast for agent-based
models in data frames” (http://www.babelgraph.org/wp/?p=358). The
challenge is to predict a model response from three inputs. The basic R
version of the predictor looks like:

vacc1a <- function(age, female, ily) {

p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily

p <- p * if (female) 1.25 else 0.75

p <- max(0, p)

p <- min(1, p)

p

}

We want to be able to apply this function to many inputs, so we might
write a vector-input version using a for loop.

vacc1 <- function(age, female, ily) {

n <- length(age)

out <- numeric(n)

for (i in seq_len(n)) {

out[i] <- vacc1a(age[i], female[i], ily[i])

}

out

}

If you’re familiar with R, you’ll have a gut feeling that this will be slow,
and indeed it is. There are two ways we could attack this problem. If you
have a good R vocabulary, you might immediately see how to vectorise
the function (using ifelse(), pmin(), and pmax()). Alternatively, we
could rewrite vacc1a() and vacc1() in C++, using our knowledge that
loops and function calls have much lower overhead in C++.
Either approach is fairly straightforward. In R:

http://www.babelgraph.org/wp/?p=358
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vacc2 <- function(age, female, ily) {

p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily

p <- p * ifelse(female, 1.25, 0.75)

p <- pmax(0, p)

p <- pmin(1, p)

p

}

(If you’ve worked R a lot you might recognise some potential bottlenecks
in this code: ifelse, pmin, and pmax are known to be slow, and could
be replaced with p + 0.75 + 0.5 * female, p[p < 0] <- 0, p[p > 1] <-

1. You might want to try timing those variations yourself.)

Or in C++:

#include <Rcpp.h>

using namespace Rcpp;

double vacc3a(double age, bool female, bool ily){

double p = 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily;

p = p * (female ? 1.25 : 0.75);

p = std::max(p, 0.0);

p = std::min(p, 1.0);

return p;

}

// [[Rcpp::export]]

NumericVector vacc3(NumericVector age, LogicalVector female,

LogicalVector ily) {

int n = age.size();

NumericVector out(n);

for(int i = 0; i < n; ++i) {

out[i] = vacc3a(age[i], female[i], ily[i]);

}

return out;

}

We next generate some sample data, and check that all three versions
return the same values:

n <- 1000
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age <- rnorm(n, mean = 50, sd = 10)

female <- sample(c(T, F), n, rep = TRUE)

ily <- sample(c(T, F), n, prob = c(0.8, 0.2), rep = TRUE)

stopifnot(

all.equal(vacc1(age, female, ily), vacc2(age, female, ily)),

all.equal(vacc1(age, female, ily), vacc3(age, female, ily))

)

The original blog post forgot to do this, and introduced a bug in the
C++ version: it used 0.004 instead of 0.04. Finally, we can benchmark
our three approaches:

microbenchmark(

vacc1 = vacc1(age, female, ily),

vacc2 = vacc2(age, female, ily),

vacc3 = vacc3(age, female, ily)

)

#> Unit: microseconds

#> expr min lq median uq max neval

#> vacc1 3,780.0 4,000.0 4,180.0 5,160.0 6,610.0 100

#> vacc2 320.0 333.0 357.0 377.0 667.0 100

#> vacc3 15.6 17.8 20.4 24.1 39.7 100

Not surprisingly, our original approach with loops is very slow. Vectoris-
ing in R gives a huge speedup, and we can eke out even more performance
(~10x) with the C++ loop. I was a little surprised that the C++ was
so much faster, but it is because the R version has to create 11 vectors
to store intermediate results, where the C++ code only needs to create
1.

19.7 Using Rcpp in a package

The same C++ code that is used with sourceCpp() can also be bundled
into a package. There are several benefits of moving code from a stand-
alone C++ source file to a package:

1. Your code can be made available to users without C++ de-
velopment tools.
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2. Multiple source files and their dependencies are handled au-
tomatically by the R package build system.

3. Packages provide additional infrastructure for testing, docu-
mentation, and consistency.

To add Rcpp to an existing package, you put your C++ files in the src/

directory and modify/create the following configuration files:

• In DESCRIPTION add

LinkingTo: Rcpp

Imports: Rcpp

• Make sure your NAMESPACE includes:

useDynLib(mypackage)

importFrom(Rcpp, sourceCpp)

We need to import something (anything) from Rcpp so that internal
Rcpp code is properly loaded. This is a bug in R and hopefully will
be fixed in the future.

To generate a new Rcpp package that includes a simple “hello world”
function you can use Rcpp.package.skeleton():

Rcpp.package.skeleton("NewPackage", attributes = TRUE)

To generate a package based on C++ files that you’ve been using with
sourceCpp(), use the cpp_files parameter:

Rcpp.package.skeleton("NewPackage", example_code = FALSE,

cpp_files = c("convolve.cpp"))

Before building the packge, you’ll need to run Rcpp::compileAttributes().
This function scans the C++ files for Rcpp::export attributes and gen-
erates the code required to make the functions available in R. Re-run
compileAttributes() whenever functions are added, removed, or have
their signatures changed. This is done automatically by the devtools
package and by Rstudio.

For more details see the Rcpp package vignette, vignette("Rcpp-package").
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19.8 Learning more

This chapter has only touched on a small part of Rcpp, giving you the
basic tools to rewrite poorly performing R code in C++. The Rcpp book
(http://www.rcpp.org/book) is the best reference to learn more about
Rcpp. As noted, Rcpp has many other capabilities that make it easy to
interface R to existing C++ code, including:

• Additional features of attributes including specifying default argu-
ments, linking in external C++ dependencies, and exporting C++
interfaces from packages. These features and more are covered in the
Rcpp attributes vignette, vignette("Rcpp-attributes").

• Automatically creating wrappers between C++ data structures and
R data structures, including mapping C++ classes to reference
classes. A good introduction to this topic is Rcpp modules vignette,
vignette("Rcpp-modules")

• The Rcpp quick reference guide, vignette("Rcpp-quickref"), contains
a useful summary of Rcpp classes and common programming idioms.

I strongly recommend keeping an eye on the Rcpp homepage (http:
//www.rcpp.org) and Dirk’s Rcpp page (http://dirk.eddelbuettel.com/
code/rcpp.html) as well as signing up for the Rcpp mailing list (http://
lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel).
Rcpp is still under active development, and is getting better with every
release.

Other resources I’ve found helpful in learning C++ are:

• Effective C++ (http://amzn.com/0321334876?tag=devtools-20) and
Effective STL (http://amzn.com/0201749629?tag=devtools-20) by
Scott Meyers.

• C++ Annotations (http://www.icce.rug.nl/documents/cplusplus/
cplusplus.html), aimed at “knowledgeable users of C (or any other
language using a C-like grammar, like Perl or Java) who would like to
know more about, or make the transition to, C++”.

• Algorithm Libraries (http://www.cs.helsinki.fi/u/tpkarkka/alglib/
k06/), which provides a more technical, but still concise, description of
important STL concepts. (Follow the links under notes).

http://www.rcpp.org/book
http://www.rcpp.org
http://www.rcpp.org
http://dirk.eddelbuettel.com/code/rcpp.html
http://dirk.eddelbuettel.com/code/rcpp.html
http://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel
http://amzn.com/0321334876?tag=devtools-20
http://amzn.com/0201749629?tag=devtools-20
http://www.icce.rug.nl/documents/cplusplus/cplusplus.html
http://www.icce.rug.nl/documents/cplusplus/cplusplus.html
http://www.cs.helsinki.fi/u/tpkarkka/alglib/k06/
http://www.cs.helsinki.fi/u/tpkarkka/alglib/k06/
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Writing performance code may also require you to rethink your
basic approach: a solid understanding of basic data structures and
algorithms is very helpful here. That’s beyond the scope of this
book, but I’d suggest the Algorithm Design Manual (http://amzn.
com/0387948600?tag=devtools-20), MIT’s Introduction to Algorithms
(http://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/),
Algorithms by Robert Sedgewick and Kevin Wayne which has a free
online textbook (http://algs4.cs.princeton.edu/home/) and a matching
coursera course (https://www.coursera.org/course/algs4partI).
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20
R’s C interface

Reading R’s source code is an extremely powerful technique for improv-
ing your programming skills. However, many base R functions, and
many functions in older packages, are written in C. It’s useful to be
able to figure out how those functions work, so this chapter will intro-
duce you to R’s C API. You’ll need some basic C knowledge, which
you can get from a standard C text (e.g., The C Programming Lan-
guage (http://amzn.com/0131101633?tag=devtools-20) by Kernigan and
Ritchie), or from Chapter 19. You’ll need a little patience, but it is
possible to read R’s C source code, and you will learn a lot doing it.

The contents of this chapter draw heavily from Section 5 (“System and
foreign language interfaces”) of Writing R extensions (http://cran.r-
project.org/doc/manuals/R-exts.html), but focus on best practices and
modern tools. This means it does not cover the old .C interface, the old
API defined in Rdefines.h, or rarely used language features. To see R’s
complete C API, look at the header file Rinternals.h. It’s easiest to find
and display this file from within R:

rinternals <- file.path(R.home("include"), "Rinternals.h")

file.show(rinternals)

All functions are defined with either the prefix Rf_ or R_ but are exported
without it (unless #define R_NO_REMAP has been used).

I do not recommend using C for writing new high-performance code.
Instead write C++ with Rcpp. The Rcpp API protects you from many
of the historical idiosyncracies of the R API, takes care of memory man-
agement for you, and provides many useful helper methods.

Outline

• Section 20.1 shows the basics of creating and calling C functions with
the inline package.
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• Section 20.2 shows how to translate data structure names from R to
C.

• Section 20.3 teaches you how to create, modify, and coerce vectors in
C.

• Section 20.4 shows you how to work with pairlists. You need to know
this because the distinction between pairlists and list is more important
in C than R.

• Section 20.5 talks about the importance of input validation so that
your C function doesn’t crash R.

• Section 20.6 concludes the chapter by showing you how to find the C
source code for internal and primitive R functions.

Prerequisites

To understand existing C code, it’s useful to generate simple examples
of your own that you can experiment with. To that end, all examples in
this chapter use the inline package, which makes it extremely easy to
compile and link C code to your current R session. Get it by running
install.packages("inline"). To easily find the C code associated with
internal and primitive functions, you’ll need a function from pryr. Get
the package with install.packages("pryr").

You’ll also need a C compiler. Windows users can use Rtools (http:
//cran.r-project.org/bin/windows/Rtools/). Mac users will need the
Xcode command line tools (http://developer.apple.com/). Most Linux
distributions will come with the necessary compilers.

In Windows, it’s necessary that the Rtools executables directory (typi-
cally C:\Rtools\bin) and the C compiler executables directory (typically
C:\Rtools\gcc-4.6.3\bin) are included in the Windows PATH environ-
ment variable. You may need to reboot Windows before R can recognise
these values.

20.1 Calling C functions from R

Generally, calling a C function from R requires two pieces: a C function
and an R wrapper function that uses .Call(). The simple function below

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/bin/windows/Rtools/
http://developer.apple.com/
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adds two numbers together and illustrates some of the complexities of
coding in C:

// In C ----------------------------------------

#include <R.h>

#include <Rinternals.h>

SEXP add(SEXP a, SEXP b) {

SEXP result = PROTECT(allocVector(REALSXP, 1));

REAL(result)[0] = asReal(a) + asReal(b);

UNPROTECT(1);

return result;

}

# In R ----------------------------------------

add <- function(a, b) {

.Call("add", a, b)

}

(An alternative to using .Call is to use .External. It is used almost
identically, except that the C function will receive a single argument
containing a LISTSXP, a pairlist from which the arguments can be ex-
tracted. This makes it possible to write functions that take a variable
number of arguments. However, it’s not commonly used in base R and
inline does not currently support .External functions so I don’t discuss
it further in this chapter.)
In this chapter we’ll produce the two pieces in one step by using the
inline package. This allows us to write:

add <- cfunction(c(a = "integer", b = "integer"), "

SEXP result = PROTECT(allocVector(REALSXP, 1));

REAL(result)[0] = asReal(a) + asReal(b);

UNPROTECT(1);

return result;

")

add(1, 5)

#> [1] 6

Before we begin reading and writing C code, we need to know a little
about the basic data structures.
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20.2 C data structures

At the C-level, all R objects are stored in a common datatype, the SEXP,
or S-expression. All R objects are S-expressions so every C function
that you create must return a SEXP as output and take SEXPs as inputs.
(Technically, this is a pointer to a structure with typedef SEXPREC.) A
SEXP is a variant type, with subtypes for all R’s data structures. The
most important types are:

• REALSXP: numeric vector
• INTSXP: integer vector
• LGLSXP: logical vector
• STRSXP: character vector
• VECSXP: list
• CLOSXP: function (closure)
• ENVSXP: environment

Beware: In C, lists are called VECSXPs not LISTSXPs. This is because
early implementations of lists were Lisp-like linked lists, which are now
known as “pairlists”.

Character vectors are a little more complicated than the other atomic
vectors. A STRSXPs contains a vector of CHARSXPs, where each CHARSXP

points to C-style string stored in a global pool. This design allows
individual CHARSXP’s to be shared between multiple character vectors,
reducing memory usage. See Section 18.1 for more details.

There are also SEXPs for less common object types:

• CPLXSXP: complex vectors
• LISTSXP: “pair” lists. At the R level, you only need to care about the

distinction lists and pairlists for function arguments, but internally
they are used in many more places

• DOTSXP: ‘…’
• SYMSXP: names/symbols
• NILSXP: NULL

And SEXPs for internal objects, objects that are usually only created and
used by C functions, not R functions:
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• LANGSXP: language constructs
• CHARSXP: “scalar” strings
• PROMSXP: promises, lazily evaluated function arguments
• EXPRSXP: expressions

There’s no built-in R function to easily access these names, but pryr
provides sexp_type():

library(pryr)

sexp_type(10L)

#> [1] "INTSXP"

sexp_type("a")

#> [1] "STRSXP"

sexp_type(T)

#> [1] "LGLSXP"

sexp_type(list(a = 1))

#> [1] "VECSXP"

sexp_type(pairlist(a = 1))

#> [1] "LISTSXP"

20.3 Creating and modifying vectors

At the heart of every C function are conversions between R data struc-
tures and C data structures. Inputs and output will always be R data
structures (SEXPs) and you will need to convert them to C data struc-
tures in order to do any work. This section focusses on vectors because
they’re the type of object you’re most likely to work with.

An additional complication is the garbage collector: if you don’t protect
every R object you create, the garbage collector will think they are
unused and delete them.

20.3.1 Creating vectors and garbage collection

The simplest way to create a new R-level object is to use allocVector().
It takes two arguments, the type of SEXP (or SEXPTYPE) to create, and
the length of the vector. The following code creates a three element list
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containing a logical vector, a numeric vector, and an integer vector, all
of length four:

dummy <- cfunction(body = '

SEXP dbls = PROTECT(allocVector(REALSXP, 4));

SEXP lgls = PROTECT(allocVector(LGLSXP, 4));

SEXP ints = PROTECT(allocVector(INTSXP, 4));

SEXP vec = PROTECT(allocVector(VECSXP, 3));

SET_VECTOR_ELT(vec, 0, dbls);

SET_VECTOR_ELT(vec, 1, lgls);

SET_VECTOR_ELT(vec, 2, ints);

UNPROTECT(4);

return vec;

')

dummy()

#> [[1]]

#> [1] 6.95e-310 6.95e-310 6.95e-310 0.00e+00

#>

#> [[2]]

#> [1] TRUE TRUE TRUE TRUE

#>

#> [[3]]

#> [1] -738103480 32751 -738104536 32751

You might wonder what all the PROTECT() calls do. They tell R that
the object is in use and shouldn’t be deleted if the garbage collector is
activated. (We don’t need to protect objects that R already knows we’re
using, like function arguments.)

You also need to make sure that every protected object is unprotected.
UNPROTECT() takes a single integer argument, n, and unprotects the last
n objects that were protected. The number of protects and unprotects
must match. If not, R will warn about a “stack imbalance in .Call”.
Other specialised forms of protection are needed in some circumstances:

• UNPROTECT_PTR() unprotects the object pointed to by the SEXPs.

• PROTECT_WITH_INDEX() saves an index of the protection location that
can be used to replace the protected value using REPROTECT().

Consult the R externals section on garbage collection (http://cran.

http://cran.r-project.org/doc/manuals/R-exts.html#Garbage-Collection
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r-project.org/doc/manuals/R-exts.html#Garbage-Collection) for more
details.

Properly protecting the R objects you allocate is extremely important!
Improper protection leads to difficulty diagnosing errors, typically seg-
faults, but other corruption is possible as well. In general, if you allocate
a new R object, you must PROTECT it.

If you run dummy() a few times, you’ll notice the output varies. This is
because allocVector() assigns memory to each output, but it doesn’t
clean it out first. For real functions, you may want to loop through each
element in the vector and set it to a constant. The most efficient way to
do that is to use memset():

zeroes <- cfunction(c(n_ = "integer"), '

int n = asInteger(n_);

SEXP out = PROTECT(allocVector(INTSXP, n));

memset(INTEGER(out), 0, n * sizeof(int));

UNPROTECT(1);

return out;

')

zeroes(10);

#> [1] 0 0 0 0 0 0 0 0 0 0

20.3.2 Missing and non-finite values

Each atomic vector has a special constant for getting or setting missing
values:

• INTSXP: NA_INTEGER
• LGLSXP: NA_LOGICAL
• STRSXP: NA_STRING

Missing values are somewhat more complicated for REALSXP because
there is an existing protocol for missing values defined by the float-
ing point standard (IEEE 754 (http://en.wikipedia.org/wiki/IEEE_
floating_point)). In doubles, an NA is NaN with a special bit pattern (the
lowest word is 1954, the year Ross Ihaka was born), and there are other
special values for positive and negative infinity. Use ISNA(), ISNAN(),
and !R_FINITE() macros to check for missing, NaN, or non-finite values.

http://cran.r-project.org/doc/manuals/R-exts.html#Garbage-Collection
http://cran.r-project.org/doc/manuals/R-exts.html#Garbage-Collection
http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
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Use the constants NA_REAL, R_NaN, R_PosInf, and R_NegInf to set those
values.
We can use this knowledge to make a simple version of is.NA():

is_na <- cfunction(c(x = "ANY"), '

int n = length(x);

SEXP out = PROTECT(allocVector(LGLSXP, n));

for (int i = 0; i < n; i++) {

switch(TYPEOF(x)) {

case LGLSXP:

LOGICAL(out)[i] = (LOGICAL(x)[i] == NA_LOGICAL);

break;

case INTSXP:

LOGICAL(out)[i] = (INTEGER(x)[i] == NA_INTEGER);

break;

case REALSXP:

LOGICAL(out)[i] = ISNA(REAL(x)[i]);

break;

case STRSXP:

LOGICAL(out)[i] = (STRING_ELT(x, i) == NA_STRING);

break;

default:

LOGICAL(out)[i] = NA_LOGICAL;

}

}

UNPROTECT(1);

return out;

')

is_na(c(NA, 1L))

#> [1] TRUE FALSE

is_na(c(NA, 1))

#> [1] TRUE FALSE

is_na(c(NA, "a"))

#> [1] TRUE FALSE

is_na(c(NA, TRUE))

#> [1] TRUE FALSE

Note that base::is.na() returns TRUE for both NA and NaNs in a numeric
vector, as opposed to the C ISNA() macro, which returns TRUE only for
NA_REALs.
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20.3.3 Accessing vector data

There is a helper function for each atomic vector that allows you to access
the C array which stores the data in a vector. Use REAL(), INTEGER(),
LOGICAL(), COMPLEX(), and RAW() to access the C array inside numeric,
integer, logical, complex, and raw vectors. The following example shows
how to use REAL() to inspect and modify a numeric vector:

add_one <- cfunction(c(x = "numeric"), "

int n = length(x);

SEXP out = PROTECT(allocVector(REALSXP, n));

for (int i = 0; i < n; i++) {

REAL(out)[i] = REAL(x)[i] + 1;

}

UNPROTECT(1);

return out;

")

add_one(as.numeric(1:10))

#> [1] 2 3 4 5 6 7 8 9 10 11

When working with longer vectors, there’s a performance advantage to
using the helper function once and saving the result in a pointer:

add_two <- cfunction(c(x = "numeric"), "

int n = length(x);

double *px, *pout;

SEXP out = PROTECT(allocVector(REALSXP, n));

px = REAL(x);

pout = REAL(out);

for (int i = 0; i < n; i++) {

pout[i] = px[i] + 2;

}

UNPROTECT(1);

return out;

")

add_two(as.numeric(1:10))

#> [1] 3 4 5 6 7 8 9 10 11 12
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x <- as.numeric(1:1e6)

microbenchmark(

add_one(x),

add_two(x)

)

#> Unit: milliseconds

#> expr min lq median uq max neval

#> add_one(x) 5.03 5.45 6.17 7.77 38.4 100

#> add_two(x) 1.20 1.46 2.15 3.74 36.7 100

On my computer, add_two() is about twice as fast as add_one() for a
million element vector. This is a common idiom in base R.

20.3.4 Character vectors and lists

Strings and lists are more complicated because the individual elements of
a vector are SEXPs, not basic C data structures. Each element of a STRSXP

is a CHARSXPs, an immutable object that contains a pointer to C string
stored in a global pool. Use STRING_ELT(x, i) to extract the CHARSXP, and
CHAR(STRING_ELT(x, i)) to get the actual const char* string. Set values
with SET_STRING_ELT(x, i, value). Use mkChar() to turn a C string into
a CHARSXP and mkString() to turn a C string into a STRSXP. Use mkChar()

to create strings to insert in an existing vector, use mkString() to create
a new (length 1) vector.

The following function shows how to make a character vector containing
known strings:

abc <- cfunction(NULL, '

SEXP out = PROTECT(allocVector(STRSXP, 3));

SET_STRING_ELT(out, 0, mkChar("a"));

SET_STRING_ELT(out, 1, mkChar("b"));

SET_STRING_ELT(out, 2, mkChar("c"));

UNPROTECT(1);

return out;

')

abc()

#> [1] "a" "b" "c"
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Things are a little harder if you want to modify the strings in the vector
because you need to know a lot about string manipulation in C (which
is hard, and harder to do right). For any problem that involves any kind
of string modification, you’re better off using Rcpp.

The elements of a list can be any other SEXP, which generally makes them
hard to work with in C (you’ll need lots of switch statements to deal
with the possibilities). The accessor functions for lists are VECTOR_ELT(x,
i) and SET_VECTOR_ELT(x, i, value).

20.3.5 Modifying inputs

You must be very careful when modifying function inputs. The following
function has some rather unexpected behaviour:

add_three <- cfunction(c(x = "numeric"), '

REAL(x)[0] = REAL(x)[0] + 3;

return x;

')

x <- 1

y <- x

add_three(x)

#> [1] 4

x

#> [1] 4

y

#> [1] 4

Not only has it modified the value of x, it has also modified y! This hap-
pens because of R’s lazy copy-on-modify semantics. To avoid problems
like this, always duplicate() inputs before modifying them:

add_four <- cfunction(c(x = "numeric"), '

SEXP x_copy = PROTECT(duplicate(x));

REAL(x_copy)[0] = REAL(x_copy)[0] + 4;

UNPROTECT(1);

return x_copy;

')

x <- 1

y <- x

add_four(x)

#> [1] 5
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x

#> [1] 1

y

#> [1] 1

If you’re working with lists, use shallow_duplicate() to make a shallow
copy; duplicate() will also copy every element in the list.

20.3.6 Coercing scalars

There are a few helper functions that turn length one R vectors into C
scalars:

• asLogical(x): LGLSXP -> int

• asInteger(x): INTSXP -> int

• asReal(x): REALSXP -> double

• CHAR(asChar(x)): STRSXP -> const char*

And helpers to go in the opposite direction:

• ScalarLogical(x): int -> LGLSXP

• ScalarInteger(x): int -> INTSXP

• ScalarReal(x): double -> REALSXP

• mkString(x): const char* -> STRSXP

These all create R-level objects, so they need to be PROTECT()ed.

20.3.7 Long vectors

As of R 3.0.0, R vectors can have length greater than 231 − 1. This
means that vector lengths can no longer be reliably stored in an int and
if you want your code to work with long vectors, you can’t write code
like int n = length(x). Instead use the R_xlen_t type and the xlength()
function, and write R_xlen_t n = xlength(x).
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20.4 Pairlists

In R code, there are only a few instances when you need to care about
the difference between a pairlist and a list (as described in Section 14.5).
In C, pairlists play much more important role because they are used
for calls, unevaluated arguments, attributes, and in .... In C, lists and
pairlists differ primarily in how you access and name elements.
Unlike lists (VECSXPs), pairlists (LISTSXPs) have no way to index into an
arbitrary location. Instead, R provides a set of helper functions that
navigate along a linked list. The basic helpers are CAR(), which extracts
the first element of the list, and CDR(), which extracts the rest of the
list. These can be composed to get CAAR(), CDAR(), CADDR(), CADDDR(),
and so on. Corresponding to the getters, R provides setters SETCAR(),
SETCDR(), etc.
The following example shows how CAR() and CDR() can pull out pieces
of a quoted function call:

car <- cfunction(c(x = "ANY"), 'return CAR(x);')

cdr <- cfunction(c(x = "ANY"), 'return CDR(x);')

cadr <- cfunction(c(x = "ANY"), 'return CADR(x);')

x <- quote(f(a = 1, b = 2))

# The first element

car(x)

#> f

# Second and third elements

cdr(x)

#> $a

#> [1] 1

#>

#> $b

#> [1] 2

# Second element

car(cdr(x))

#> [1] 1

cadr(x)

#> [1] 1

Pairlists are always terminated with R_NilValue. To loop over all ele-
ments of a pairlist, use this template:
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count <- cfunction(c(x = "ANY"), '

SEXP el, nxt;

int i = 0;

for(nxt = x; nxt != R_NilValue; el = CAR(nxt), nxt = CDR(nxt)) {

i++;

}

return ScalarInteger(i);

')

count(quote(f(a, b, c)))

#> [1] 4

count(quote(f()))

#> [1] 1

You can make new pairlists with CONS() and new calls with LCONS().
Remember to set the last value to R_NilValue. Since these are R objects
as well, they are eligible for garbage collection and must be PROTECTed.
In fact, it is unsafe to write code like the following:

new_call <- cfunction(NULL, '

return LCONS(install("+"), LCONS(

ScalarReal(10), LCONS(

ScalarReal(5), R_NilValue

)

));

')

gctorture(TRUE)

new_call()

#> 5 + 5

gctorture(FALSE)

On my machine, I get the result 5 + 5 — highly unexpected! In fact, to
be safe, we must PROTECT each ScalarReal that is generated, as every R
object allocation can trigger the garbage collector.

new_call <- cfunction(NULL, '

SEXP REALSXP_10 = PROTECT(ScalarReal(10));

SEXP REALSXP_5 = PROTECT(ScalarReal(5));

SEXP out = PROTECT(LCONS(install("+"), LCONS(

REALSXP_10, LCONS(

REALSXP_5, R_NilValue

)
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)));

UNPROTECT(3);

return out;

')

gctorture(TRUE)

new_call()

#> 10 + 5

gctorture(FALSE)

TAG() and SET_TAG() allow you to get and set the tag (aka name) asso-
ciated with an element of a pairlist. The tag should be a symbol. To
create a symbol (the equivalent of as.symbol() in R), use install().
Attributes are also pairlists, but come with the helper functions
setAttrib() and getAttrib():

set_attr <- cfunction(c(obj = "SEXP", attr = "SEXP", value = "SEXP"), '

const char* attr_s = CHAR(asChar(attr));

duplicate(obj);

setAttrib(obj, install(attr_s), value);

return obj;

')

x <- 1:10

set_attr(x, "a", 1)

#> [1] 1 2 3 4 5 6 7 8 9 10

#> attr(,"a")

#> [1] 1

(Note that setAttrib() and getAttrib() must do a linear search over
the attributes pairlist.)
There are some (confusingly named) shortcuts for common setting op-
erations: classgets(), namesgets(), dimgets(), and dimnamesgets() are
the internal versions of the default methods of class<-, names<-, dim<-,
and dimnames<-.

20.5 Input validation

If the user provides unexpected input to your function (e.g., a list instead
of a numeric vector), it’s very easy to crash R. For this reason, it’s a good
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idea to write a wrapper function that checks arguments are of the correct
type. It’s usually easier to do this at the R level. For example, going
back to our first example of C code, we might rename the C function to
add_ and write a wrapper around it to check that the inputs are ok:

add_ <- cfunction(signature(a = "integer", b = "integer"), "

SEXP result = PROTECT(allocVector(REALSXP, 1));

REAL(result)[0] = asReal(a) + asReal(b);

UNPROTECT(1);

return result;

")

add <- function(a, b) {

stopifnot(is.numeric(a), is.numeric(b))

stopifnot(length(a) == 1, length(b) == 1)

add_(a, b)

}

Alternatively, if we wanted to be more accepting of diverse inputs we
could do the following:

add <- function(a, b) {

a <- as.numeric(a)

b <- as.numeric(b)

if (length(a) > 1) warning("Only first element of a used")

if (length(b) > 1) warning("Only first element of b used")

add_(a, b)

}

To coerce objects at the C level, use PROTECT(new = coerceVector(old,

SEXPTYPE)). This will return an error if the SEXP can not be converted to
the desired type.

To check if an object is of a specified type, you can use TYPEOF, which
returns a SEXPTYPE:

is_numeric <- cfunction(c("x" = "ANY"), "

return ScalarLogical(TYPEOF(x) == REALSXP);

")

is_numeric(7)
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#> [1] TRUE

is_numeric("a")

#> [1] FALSE

There are also a number of helper functions which return 0 for FALSE
and 1 for TRUE:

• For atomic vectors: isInteger(), isReal(), isComplex(), isLogical(),
isString().

• For combinations of atomic vectors: isNumeric() (integer, logical,
real), isNumber() (integer, logical, real, complex), isVectorAtomic()

(logical, integer, numeric, complex, string, raw).

• For matrices (isMatrix()) and arrays (isArray()).

• For more esoteric objects: isEnvironment(), isExpression(), isList()
(a pair list), isNewList() (a list), isSymbol(), isNull(), isObject() (S4
objects), isVector() (atomic vectors, lists, expressions).

Note that some of these functions behave differently to similarly named
R functions with similar names. For example isVector() is true for
atomic vectors, lists, and expressions, where is.vector() returns TRUE

only if its input has no attributes apart from names.

20.6 Finding the C source code for a function

In the base package, R doesn’t use .Call(). Instead, it uses two special
functions: .Internal() and .Primitive(). Finding the source code for
these functions is an arduous task: you first need to look for their C
function name in src/main/names.c and then search the R source code.
pryr::show_c_source() automates this task using GitHub code search:

tabulate

#> function (bin, nbins = max(1L, bin, na.rm = TRUE))

#> {

#> if (!is.numeric(bin) && !is.factor(bin))

#> stop("'bin' must be numeric or a factor")

#> if (typeof(bin) != "integer")
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#> bin <- as.integer(bin)

#> if (nbins > .Machine$integer.max)

#> stop("attempt to make a table with >= 2^31 elements")

#> nbins <- as.integer(nbins)

#> if (is.na(nbins))

#> stop("invalid value of 'nbins'")

#> .Internal(tabulate(bin, nbins))

#> }

#> <bytecode: 0x7fc52c9c5ff0>

#> <environment: namespace:base>

pryr::show_c_source(.Internal(tabulate(bin, nbins)))

#> tabulate is implemented by do_tabulate with op = 0

This reveals the following C source code (slightly edited for clarity):

SEXP attribute_hidden do_tabulate(SEXP call, SEXP op, SEXP args,

SEXP rho) {

checkArity(op, args);

SEXP in = CAR(args), nbin = CADR(args);

if (TYPEOF(in) != INTSXP) error("invalid input");

R_xlen_t n = XLENGTH(in);

/* FIXME: could in principle be a long vector */

int nb = asInteger(nbin);

if (nb == NA_INTEGER || nb < 0)

error(_("invalid '%s' argument"), "nbin");

SEXP ans = allocVector(INTSXP, nb);

int *x = INTEGER(in), *y = INTEGER(ans);

memset(y, 0, nb * sizeof(int));

for(R_xlen_t i = 0 ; i < n ; i++) {

if (x[i] != NA_INTEGER && x[i] > 0 && x[i] <= nb) {

y[x[i] - 1]++;

}

}

return ans;

}

Internal and primitive functions have a somewhat different interface than
.Call() functions. They always have four arguments:
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• SEXP call: the complete call to the function. CAR(call) gives the name
of the function (as a symbol); CDR(call) gives the arguments.

• SEXP op: an “offset pointer”. This is used when multiple R functions
use the same C function. For example do_logic() implements &, |,
and !. show_c_source() prints this out for you.

• SEXP args: a pairlist containing the unevaluated arguments to the func-
tion.

• SEXP rho: the environment in which the call was executed.

This gives internal functions an incredible amount of flexibility as to how
and when the arguments are evaluated. For example, internal S3 generics
call DispatchOrEval() which either calls the appropriate S3 method or
evaluates all the arguments in place. This flexibility come at a price,
because it makes the code harder to understand. However, evaluating
the arguments is usually the first step and the rest of the function is
straightforward.
The following code shows do_tabulate() converted into standard a
.Call() interface:

tabulate2 <- cfunction(c(bin = "SEXP", nbins = "SEXP"), '

if (TYPEOF(bin) != INTSXP) error("invalid input");

R_xlen_t n = XLENGTH(bin);

/* FIXME: could in principle be a long vector */

int nb = asInteger(nbins);

if (nb == NA_INTEGER || nb < 0)

error("invalid \'%s\' argument", "nbin");

SEXP ans = allocVector(INTSXP, nb);

int *x = INTEGER(bin), *y = INTEGER(ans);

memset(y, 0, nb * sizeof(int));

for(R_xlen_t i = 0 ; i < n ; i++) {

if (x[i] != NA_INTEGER && x[i] > 0 && x[i] <= nb) {

y[x[i] - 1]++;

}

}

return ans;

')

tabulate2(c(1L, 1L, 1L, 2L, 2L), 3)

#> [1] 3 2 0
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To get this to compile, I also removed the call to _() which is an internal
R function used to translate error messages between different languages.

The final version below moves more of the coercion logic into an accom-
panying R function, and does some minor restructuring to make the code
a little easier to understand. I also added a PROTECT(); this is probably
missing in the original because the author knew that it would be safe.

tabulate_ <- cfunction(c(bin = "SEXP", nbins = "SEXP"), '

int nb = asInteger(nbins);

// Allocate vector for output - assumes that there are

// less than 2^32 bins, and that each bin has less than

// 2^32 elements in it.

SEXP out = PROTECT(allocVector(INTSXP, nb));

int *pbin = INTEGER(bin), *pout = INTEGER(out);

memset(pout, 0, nb * sizeof(int));

R_xlen_t n = xlength(bin);

for(R_xlen_t i = 0; i < n; i++) {

int val = pbin[i];

if (val != NA_INTEGER && val > 0 && val <= nb) {

pout[val - 1]++; // C is zero-indexed

}

}

UNPROTECT(1);

return out;

')

tabulate3 <- function(bin, nbins) {

bin <- as.integer(bin)

if (length(nbins) != 1 || nbins <= 0 || is.na(nbins)) {

stop("nbins must be a positive integer", call. = FALSE)

}

tabulate_(bin, nbins)

}

tabulate3(c(1, 1, 1, 2, 2), 3)

#> [1] 3 2 0
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