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The Fundamental Theorem of Linear Algebra !

Gilbert Strang

1 Four subspaces

This paper is about a theroem and the pictures that go with it. The theorem describes the action
of an m by n matrix. The matrix A produces a linear transformation from R™ to R™ — but this picture
by itself is too large. The “truth” about Az = b is expressed in terms of four subspaces (two of R" and
two of R™). The pictures aim to illustrate the action of A on those subspaces, in a way that students

won'’t forget.

The First step is to see? Az as a combination of the columns of A. Until then the multiplication Az
is just numbers. This step raises the viewpoint to subspaces. We see Az in the column space. Solving

Az = b means finding all combinations of the columns that produce b in the column space:

|

The column space is the range R(A), a subspace of R". This abstraction, from entries in A or

Ty

] :6'2 = zy (column 1) 4+ 24 (column 2) + --- 4+ z,, (column n) = b.

Columns of A
Ly

or b to the picture based on subspace, is absolutely essential. Note how subspaces enter for a purpose.
We could invent vector spaces and construct bases at random. That misses the purpose. Virtually all

algorithms and all applications of linear algebra are understood by moving to subspaces.

The key algorithm is elimination. Multiples of rows are substracted from other rows (and rows are
exchanged). There is no change in the row space. This subspace contains all combinations of the rows

of A, which are the columns of A”. The row space of 4 is the column space R(AT).
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This point cannot be emphasized too much, so we repeat: A~ !b is the vector of coefficients of the expansion of b in
the basis of columns of A.
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The other subspace of R” is the nullspace N(A). It contains all solutions to Az = 0. Those solu-
tions are not changed by elimination®, whose purpose is to compute them. A by-product of elimination

is to display the dimensions of these subspaces, which is the first part of the theorem.

The Fundamental Theorem of Linear Algebra has as many as four parts. Its presentation often
stops with Part 1, but the reader is urged to include Part 2. (That is the only part we will prove — it is
too valuable to miss. This is also as far as we go in teaching.) The last two parts, at the end of this paper,
sharpen the first two. The complete picture shows the action of A on the four subspaces with the right

bases. Those bases come from the singular value decomposition.

The Fundamental Theorem begins with

e Part 1. The dimensions of the subspaces.

e Part 2. The orthogonality of the subspaces’.

The dimensions obey the most important laws of linear algebra:

dim R(A) = dim R(AT) and dim R(A)+ dim N(A) = n.

When the row space has dimension 7, the nullspace has dimension n — r. Elimination identifies r
pivot variables and n — r free variables. Those variables correspond, in the echelon form, to columns
with pivots and columns without pivots. They give the dimension count 7 and n — r. Students see this

for the echelon matrix and believe it for A.

The orthogonality of those spaces is also essential, and very easy. Every x in the nullspace is per-

pendicular to every row of the matrix, exactly because Ax = 0:

— rowl —

— TOW2 — 0
Az = | W |z =

— rowm — 0

The first zero is the dot product of x with row 1. The last zero is the dot product with row m. One
ata time, the rows are perpendicualr to any z in the nullspace. So x is perpendulcar to all combinations

of the rows.

The nullspace N(A) is orthogonal to the row space R(AT).

What is the fourth subspace? If the matrix A leads to R(A) and N(A), then its transpose must lead
to R(AT) and N(AT). The fourth subspace is N(AT), the null space of A'. We need it! The theory

of linear algebra is bound up in the connections between row spaces and column spaces. If R(A7T) is
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orthogonal to N(A), then — just by transposing — the column space R(A) is orthogonal to the “left
nullspace” N(AT). Look at ATy = 0:

column 1 of A 0

column n of A 0

Since y is orthogonal to each column (producing each zero), y is orthogonal to the whole column
space. The point is that A7 is just as good a matrix as A. Nothing is new, except AT is n by m. Therefore
the left nullspace has dimension m — r.

ATy = 0 means the same as y” A = 07. With the vector on the left, y” A is a combination of the

rows of A. Contrast that with Az = combination of the columns®.

2 The First Picture: Linear Equations

Figure 1 shows how A takes z into the column space. The nullspace goes to the zero vector.

Nothing goes elsewhere in the left nullspace — which is waiting its turn.

With b in the column space, Az = b can be solved. There is a particular solution z, in the row space.
The homogeneous solutions x, form the nullspace. The general solution is x,. + x,,. The particularity

of x,., is that it is orthogonal to every z,,.

May I add a personal note about this figure? Many readers of Linear Algebra and Its Applications
[4] have seen it as fundamental. It captures so much about Az = b. Some letters suggested other ways
to draw the orthogonal subspaces — artistically this is the hardest part®. The four subspaces (and very
possibly the figure itself) are of course not original. But as a key to the teaching of linear algebra, this

illustration is a gold mine.
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Figure 1. The action of A: Row space to column space, nullspace to zero.

Other writers made a further suggestion. They proposed a lower level textbook, recognizing that
the range of students who need linear algebra (and the variety of preparation) is enormous. That
new book contains Figures 1 and 2 — also Figure 0, to show the dimensions first. The explanation is
much more gradual than in this paper—but every course has to study subspaces! We should teach the

important ones.
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dim N(A) =n.



3 The Second Figure: Least Squares Equations

If b is not in the column space, Az = b cannot be solved. In practice we still have to come up
with a “solution”. It is extremely common to have more equations than unknowns — more output data
than input controls, more measurements than parameters to describe them. The data may lie close to
a straight line b = C' + Dt. A parabola C' + Dt + Et? would come closer. Whether we use polynomials

or sines and cosines or exponentials, the problem is still linear in the coefficients C', D, F:

: or :
C+Dt, = b C+ Dt +FEt2, = b

m m

There are n = 2 or n = 3 unknowns, and m is larger. Thereisnoz = (C, D) orz = (C, D, E) that
satisfies all m equations. Az = b has a solution only when the points lie exactly on a line or a parabola

— then b is in the column space of the m by 2 or m by 3 matrix A.

The solution is to make the error b — Ax as small as possible. Since Az can never leave the column
space, choose the closest point to b in that subspace. This point is the projection p. Then the error

vector e = b — p has minimal length.

To repeat: The best combination p = AZ is the projection of b onto the column space®. The error

e is perpendicular to that subspace. Therefore e = b — Az is in the left nullspace:

AT(b— AzZ) =0 or ATAz = ATb.
Calculus’ reaches the same linear equations by minimizing the quadratic |b — Az|?. The chain
rule just multiplies both sides of Az = b by AT.

The “normal equations” are AT Az = ATb. They illustrate what is almost invariably true — appli-

cations that start with a rectangular A end up computing with the square symmetric matrix A7 A0, This
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matrix is invertible provided A has independent columns. We make that assumption'': The nullspace
of A contains only z = 0. (Then ATz = 0 implies 27 AT Az = 0 which implies Az = 0 which forces
z =0, so AT Aisinvertible.) The picture for least squares shows the action over on the right side — the

splitting of b into p + e.
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Figure 2. Least squares:  minimizes |b — Ax|? by solving AT Az = ATb.

4 The Third Figure: Orthogonal Bases

Up to this point, nothing was said about bases for the four subspaces'®. Those bases can be con-
structed from an echelon form — the output from elimination'®. This construction is simple, but the
bases are not perfect. A really good choice, in fact a “canonical choice” that is close to unique, would

achieve much more. To complete the Fundamental Theorem, we make two requirements:

e Part 3. The basis vectors are orthonormal.
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e Part 4. The matrix with respect to these bases is diagonal '*.

If v,---, v, is the basis for the row space and v, -, u,. is the basis for the column space, then Av, =

o,;u;. That gives a diagonal matrix . We can further ensure that o; > 0.

Orthonormal bases are no problem — the Gram-Schmidt process is available. But a diagonal form
involves eigenvalues. In this case they are the eigenvalues of A7 A and AAT. Those matrices are sym-
metric and positive semidefinite, so they have nonnegative eigenvalues and orthonormal eigenvectors

2

(which are the bases!)'°. Starting from AT Av;, = o7v,, here are the key steps:

T AT Awy. — 42,7
v, A" Av, = oiv; v,

so that |Av,| =0,

AAT Av; = 02 Av; sothat wu; = Av,/o; isaunit eigenvector of AAT.

All these matrices have rank r. The r positive eigenvalues o7 give the diagonal entries o; of 3.

The whole construction is called the singular value decomposition (SVD). It amounts to a factor-
ization of the original matrix A into ULV, where

1. U is an m by m orthogonal matrix. Its columns u,, -, u,., -, u,, are basis vectors for the column

T
space and left nullspace.
2. ¥ is an m by n diagonal matrix. Its nonzero entries are o, > 0, -+, 0, > 0'°,

3. Visan n by n orthogonal matrix. Its columns v, -+, v,, -, v,, are basis vectors for the row space

T

and nullspace.

The equations Av; = o,u; mean that AV = UX. Then multiplication by V7 gives A = USVT,

When A itself is symmetric, its eigenvectors u; make it diagonal: A = UAU”. The singular value
decomposition extends this spectral theorem to matrices that are not symmetric and not square. The
eigenvalues are in A, the singular values are in 3. The factorization A = ULV joins A = LU (elimina-
tion) and A = QR (orthogonalization) as a beautifully direct statement of a central theorem in linear

algebra.
The history of the SVD is cloudy, beginning with Beltrami !” and Jordan'® in the 1870’s, but its

importance is clear. For a very quick history and proof, and much more about its uses, please see [1].
” The most recurring theme in the book is the practical and theoretical value of this matrix decompo-
sition.” The SVD in linear algebra corresponds to the Cartan'? decomposition in Lie theory [3]. This
is one more case, if further convincing is necessary, in which mathematics gets the properties right —

and the applications follow.

Example?’

YR Av, = oyuy,i =1, JRED AV = US, EX W T RITHBFEE R R 7 0 ¢ = 15 0 7.

BEE A=USVT, B ATA = VETSVT, AAT = USSTUT, LB FRIE AT A € R f] AAT e Rmxm
IESSARRDS FaAL, X RES B ST € R fl ST e Rm>m, il AR (A AR vV /L U G R™ f
R™ BN IEASEE. BAKIIE X A [ SVD 3 iF ] sk AT A [ AAT HOAHBS F A 52 1, 1SR E0) F 2%
FE, IXFHAAE, LR AL DA E N A 153 H svD 4.

PHME 0y >0y 2 >0,

12K FNEUF R DR K (Bugenio Beltrami, 1835 ~ 1900).

18 EHF K 292 (Camille Jordan, 1838 ~ 1922).

O3 E B FIR A 290K - 55 Y (Elie Joseph Cartan, 1869 ~ 1951), R4 £ [ .

WIFESCHRA YA R AT T R T 0, B
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3 6 V10 V5

A= =UxvT

in U. The rows are

All four subspaces are 1-dimensional. The columns of A are multiples of [

multiples of [~1 — 2] in VT .Both AT A and AAT have eigenvalues 50 and 0. So the only singular value
iS Ul =V 50.

Avy = oquy

v v >
i l Av, = o,u,

Figure 3. Orthonormal bases that diagonalize A.

The SVD expresses A as a combination of r rank-one matrices:

T

A=U%VT =ujopvl + - +u,.0,0T (here A=

;] K 2}) .

5 The Fourth Figure: The Pseudoinverse

The SVD leads directly to the “pseudoinverse” of A. Thisis needed, just as the least squares solution
x was needed, to invert A and solve Az = b when those steps are strictly speaking impossible. The
pseudoinverse AT agrees with A~! when A is invertible. The least squares solution of minimum length
(having no nullspacc component) is 27 = ATb. It coincides with  when A has full column rank r = n

— then AT A is invertible and Figure 4 becomes Figure 2.

AT takes the column space back to the row space [4]. On these spaces of equal dimension 7,

the matrix A is invertible and A" inverts it. On the left nullspace, A™ is zero®!. I hope you will feel,

21 BR8] 3 ) RO REAYISORUT, RVRE R TS SO B, Horp B ) ZOR B SCAE. — 2T A2 2 TRl b
W E ARG, fr AR R SCE, TSR N7 T IR HZR T (N AR IEACBUY I, RS [ALE SRk g~ 4
ﬁ ;,/J'Z/{:\ FEOR T AT E RS 5. IEU0 Strang HIZAE INTFIR Lecture 83: Left and right inverses; pseudoinversej: B
ey
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after looking at Figure 4, that this is the one natural best definition of an inverse. Despite those good
adjectives, the SVD and A™ is too much for an introductory linear algebra course. It belongs in a second

course. Still the picture with the four subspaces is absolutely intuitive.

row space

column space

—p = Azt

null space of AT

null space of A

Figure 4. The inverse of A (where possible) is the pseudoinverse A™.

The SVD gives an easy formula for A" , because it chooses the right bases. Since Av, = o,u, ,
the inverse has to be ATu; = v;/0;. Thus the pseudoinverse of ¥ contains the reciprocals 1/0,. The
orthogonal matrices U and V7 are inverted by U and V. All together, the pseudoinverseof A = USVT

is AT =VytUT,

Example (continued)

-1 —2] {—1 —3]
B -2 1 1/\/% ol |-3 1 _i 1 3
0 0 VIO 50 (2 6

Always A" A is the identity matrix on the row space, and zero on the nullspace:

If a matrix takes a vector to zero, there is no way its inverse can bring it back to life!

XS A7 — AR, BRI BRI T8 B8 SOSAME K, (0758 MO — DU, SR IX VBl A A A3,
CRYEHE AY, H A B AT SRR 0. — MBS B TR f - A = B HSRT LA bRl i i 351
+ BT+ B, J: f = o f o BET, XM £ 97 BREET BRI R 2 B SRR TR R P T
m: A= A) ~ARBRSERFE SRR, o imf < BEFMSTHER R SERDH):

f
A m B
T Tt e

QSRR R AT R X A A A2 s TR R 5, D AT AR A X P R R 2[R A 3.
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1 [10 20

1
ATA = — = projection onto the line through
20 40 2

Similarly AA" is the identity on the column space, and zero on the left nullspace:

1 |15 15 1
AAT = 50 [15 45] = projection onto the line through [3]

6 A Summary of the Key Ideas

From its r-dimensional row space to its r-dimensional column space, A yields an invertible linear

transformation.

Proof: Suppose x and z’ are in the row space, and Az equals Az’ in the column space. Then
x — 2’ is in both the row space and nullspace. It is perpendicular to itself. Therefore x = 2’ and the

transformation is one-to-one.

The SVD chooses good bases for those subspaces. Compare with the Jordan form for a real
square matrix. There we are choosing the same basis for both domain and range — our hands are tied.
The best we can do is SAS™ = J or SA = JS . In general J is not real. If real, then in general it is
not diagonal. If diagonal, then in general S is not orthogonal. By choosing two bases, not one, every

matrix does as well as a symmetric matrix. The bases are orthonormal and A is diagonalized.

Some applications permit two bases and others don’t. For powers A” we need S~ to cancel S .
Only a similarity is allowed (one basis). In a differential equation u” = Au, we can make one change of
variable © = Sv. Then v = S~'ASv. But for Az = b, the domain and range are philosophically “not
the same space.” The row and column spaces are isomorphic, but their bases can be different. And for

least squares the SVD is perfect.

This figure** by Tom Hern and Cliff Long [2] shows the diagonalization of A. Basis vectors go to
basis vectors (principal axes). A circle goes to an ellipse. The matrix is factored into U YVT. Behind

the scenes are two symmetric matrices A7 A and AA”. So we reach two orthogonal matrices U and V.

S ERE A, U S RBRE R 0, < o, DU T 20K 613 01 > 00 TS0, LG5
B, I, N ‘

Dbt A+ il BT R8I B4 EACHT P = AAT il P/ = AA, B RE] A 715 B 8,
#RE| AT (91 I E AR, B HIH, 4 A o B (R A R B n = 1), 3 SVD e

il uooL vm
A= z”q]1:v.ﬂf%m=1[; 0 ~-~]{? 5 f;}:;sz,ﬁsz:Am:;sz,/ﬁﬁPpi'ﬂvE@&
JE Jol. f’vﬂvﬁﬁﬁ%ﬁﬁP:va; R A, 24 A = V BV [ S RALIESS R G, P = VT 554p, Ik

\

SRS AL T A, 2 /6% 25 (8] (B2 [ (RS BAP 2 ) IIESCBEY Q = T — P = T —VVT = [](I —v,0]), 3
v; NV IS /HJMWﬁﬂeﬁ B Q RNy 77 AT v 5= IEﬂE’J*B'ﬁj‘ E R AR A 7 v HIFI 2SR
A YT H R ORI E], HA IID‘TT” Tex.

%
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Figure 5. Diagonization of A by SVD.

We close by summarizing the action of A and AT and A*:

N
N
-

— T, _ to. —
Av, = o,u, At u, = oy, Atu, = v, /o; 1

The nullspaces go to zero. Linearity does the rest.
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