
ATOMOS	FPGA	Engineering	Technical	Interview	Questions	

Question	1:	
Write Verilog/VHDL code for a single-cycle pulse synchronizer, which transfers a single-cycle pulse
from one clock domain to another.

The module has the following ports:

• clk1 (input)
• clk2 (input)
• pulse_clk1 (input)
• pulse_clk2 (output)

The purpose of the module is to synchronise the pulse_clk1 signal from the clk1 domain to the
clk2 domain. The pulse_clk1 input is asserted for a single cycle, and should be synchronised as a
single-cycle pulse on the pulse_clk2 output, synchronous to clk2.

The relationship between clk1 and clk2 is arbitrary: i.e. clk1 could be slower or faster than clk2 –
the module should work either way.

If there are multiple pulses on the clk1 side which are ‘close’ together, only the first pulse needs to
be transferred.

Question	2:	
Write VHDL/Verilog for a module that packs variable length data symbols into a 32-bit output word.

The module has the following ports:

• clk (input)

• reset (input)

• din[31:0] (input)

• din_width[4:0] (input)

• din_valid (input)

• flush (input)

• dout (output)

• dout_valid (output)

Data input (din) is valid whenever din_valid is high – and the number of bits in the symbol is
indicated by din_width. When 32-bits of data have been accumulated, dout_valid is driven
high, and the 32-bits of accumulated data are diven on dout. The flush input causes a valid data
word to be output regardless of whether a full 32-bits have been accumulated. The value
din_width is one less than the actual number of valid bits of din – a value of 0x0 indicates that
din has a single valid bit and a value of 0x1f indicates a full compliment of 32 valid bits.

Example input / output sequence. Latency for dout here is shown as 1 cycle (illustrative only), but
this is not important – the latency can be any value.

din_valid din_width din flush dout_valid dout

1 0x7 0x000000aa 0 0 0x00000000
1 0x7 0x000000bb 0 0 0x00000000
1 0x7 0x000000cc 0 0 0x00000000
1 0x7 0x000000dd 0 0 0x00000000
1 0x9 0x00000012 0 1 0xddccbbaa
1 0x9 0x00000345 0 0 0xddccbbaa
1 0x11 0x00000678 0 0 0xddccbbaa
1 0xf 0x0000abcd 0 1 0x678d1412
1 0x9 0x00000345 0 0 0x678d1412
0 0x0 0x00000000 1 0 0x678d1412
0 0x0 0x00000000 0 1 0x0345abcd

Question	3:	
A memory arbiter on an FPGA has the following simple interface, designed to multiple requesters.
Each requester connection to the arbiter has the following signals:

Signal Name Description Direction Width

a_valid Request address and length valid input 1
a_addr Request address Input 32
a_len Request length Input 8

a_ready Request ready. Request accepted when
this signal is high. Ignored when low. output 1

d_wvalid Write data valid input 1
d_wdata Write data input 32

d_wready
Write data ready. Data accepted when
high,
ignored when low.

output 1

d_rvalid Read data valid output 1
d_rdata Read data output 32

d_rready
Read data ready. Data accepted when
high,
ignored when low.

input 1

Request channels (address and burst length) and data channels are independent and can be stalled
at the requester using the "ready" signals. Multiple requests can be made before any data is present.

The implemented design has the multiple requesters placed far away from the arbiter, resulting in
long nets, which causes timing problems. Design a scheme to connect the requesters to the arbiter
which eliminates this problem.

IMPORTANT: The scheme must guarantee that back-to-back requests can be made, and accepted,
so that there are no gaps in the flow of requests or data. This is to ensure that the chosen scheme
does not reduce memory data throughput.

Question	4:	
Write RTL code (either VHDL or Verilog) for a module which manages the following signals for a 1024
entry asynchronous FIFO – these are all outputs from the module:
read_pointer
write_pointer
read_empty
write_full
read_fill
write_fill

The FIFO as the following input signals:
read_clk
write_clk
read_enable
write_enable
reset_n

All read_ signals are synchronous to read_clk, and all write_ signals are synchronous to
write_clk. The reset_n input is an asynchronous reset.

Question	5:	
The following code implements a 3 input adder block, where the output should be the sum of three
inputs one cycle after the inputs are valid. The code has some errors – what are they?

entity adder_three_input is
 port (
 clk : in std_logic;
 a : in unsigned(7 downto 0);
 b : in unsigned(7 downto 0);
 c : in unsigned(7 downto 0);
 z : out unsigned(7 downto 0)
);
end adder_three_input;

architecture rtl of adder_three_input is

 signal a_plus_b : unsigned(7 downto 0);

begin
 process (clk)
 begin
 if rising_edge(clk) then
 a_plus_b <= a + b;
 z <= c + a_plus_b;
 end if;
 end process;
end rtl;

